|
@@ -170,6 +170,628 @@ static void emif_update_timings(u32 base, const struct emif_regs *regs)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
|
+#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg))
|
|
|
+
|
|
|
+static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM;
|
|
|
+static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN;
|
|
|
+static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Organization and refresh requirements for LPDDR2 devices of different
|
|
|
+ * types and densities. Derived from JESD209-2 section 2.4
|
|
|
+ */
|
|
|
+const struct lpddr2_addressing addressing_table[] = {
|
|
|
+ /* Banks tREFIx10 rowx32,rowx16 colx32,colx16 density */
|
|
|
+ {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */
|
|
|
+ {BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */
|
|
|
+ {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */
|
|
|
+ {BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */
|
|
|
+ {BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */
|
|
|
+ {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */
|
|
|
+ {BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */
|
|
|
+ {BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */
|
|
|
+ {BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */
|
|
|
+ {BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */
|
|
|
+};
|
|
|
+
|
|
|
+static const u32 lpddr2_density_2_size_in_mbytes[] = {
|
|
|
+ 8, /* 64Mb */
|
|
|
+ 16, /* 128Mb */
|
|
|
+ 32, /* 256Mb */
|
|
|
+ 64, /* 512Mb */
|
|
|
+ 128, /* 1Gb */
|
|
|
+ 256, /* 2Gb */
|
|
|
+ 512, /* 4Gb */
|
|
|
+ 1024, /* 8Gb */
|
|
|
+ 2048, /* 16Gb */
|
|
|
+ 4096 /* 32Gb */
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Calculate the period of DDR clock from frequency value and set the
|
|
|
+ * denominator and numerator in global variables for easy access later
|
|
|
+ */
|
|
|
+static void set_ddr_clk_period(u32 freq)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * period = 1/freq
|
|
|
+ * period_in_ns = 10^9/freq
|
|
|
+ */
|
|
|
+ *T_num = 1000000000;
|
|
|
+ *T_den = freq;
|
|
|
+ cancel_out(T_num, T_den, 200);
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Convert time in nano seconds to number of cycles of DDR clock
|
|
|
+ */
|
|
|
+static inline u32 ns_2_cycles(u32 ns)
|
|
|
+{
|
|
|
+ return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * ns_2_cycles with the difference that the time passed is 2 times the actual
|
|
|
+ * value(to avoid fractions). The cycles returned is for the original value of
|
|
|
+ * the timing parameter
|
|
|
+ */
|
|
|
+static inline u32 ns_x2_2_cycles(u32 ns)
|
|
|
+{
|
|
|
+ return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Find addressing table index based on the device's type(S2 or S4) and
|
|
|
+ * density
|
|
|
+ */
|
|
|
+s8 addressing_table_index(u8 type, u8 density, u8 width)
|
|
|
+{
|
|
|
+ u8 index;
|
|
|
+ if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8))
|
|
|
+ return -1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Look at the way ADDR_TABLE_INDEX* values have been defined
|
|
|
+ * in emif.h compared to LPDDR2_DENSITY_* values
|
|
|
+ * The table is layed out in the increasing order of density
|
|
|
+ * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed
|
|
|
+ * at the end
|
|
|
+ */
|
|
|
+ if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb))
|
|
|
+ index = ADDR_TABLE_INDEX1GS2;
|
|
|
+ else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb))
|
|
|
+ index = ADDR_TABLE_INDEX2GS2;
|
|
|
+ else
|
|
|
+ index = density;
|
|
|
+
|
|
|
+ debug("emif: addressing table index %d\n", index);
|
|
|
+
|
|
|
+ return index;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Find the the right timing table from the array of timing
|
|
|
+ * tables of the device using DDR clock frequency
|
|
|
+ */
|
|
|
+static const struct lpddr2_ac_timings *get_timings_table(const struct
|
|
|
+ lpddr2_ac_timings const *const *device_timings,
|
|
|
+ u32 freq)
|
|
|
+{
|
|
|
+ u32 i, temp, freq_nearest;
|
|
|
+ const struct lpddr2_ac_timings *timings = 0;
|
|
|
+
|
|
|
+ emif_assert(freq <= MAX_LPDDR2_FREQ);
|
|
|
+ emif_assert(device_timings);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Start with the maximum allowed frequency - that is always safe
|
|
|
+ */
|
|
|
+ freq_nearest = MAX_LPDDR2_FREQ;
|
|
|
+ /*
|
|
|
+ * Find the timings table that has the max frequency value:
|
|
|
+ * i. Above or equal to the DDR frequency - safe
|
|
|
+ * ii. The lowest that satisfies condition (i) - optimal
|
|
|
+ */
|
|
|
+ for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) {
|
|
|
+ temp = device_timings[i]->max_freq;
|
|
|
+ if ((temp >= freq) && (temp <= freq_nearest)) {
|
|
|
+ freq_nearest = temp;
|
|
|
+ timings = device_timings[i];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ debug("emif: timings table: %d\n", freq_nearest);
|
|
|
+ return timings;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Finds the value of emif_sdram_config_reg
|
|
|
+ * All parameters are programmed based on the device on CS0.
|
|
|
+ * If there is a device on CS1, it will be same as that on CS0 or
|
|
|
+ * it will be NVM. We don't support NVM yet.
|
|
|
+ * If cs1_device pointer is NULL it is assumed that there is no device
|
|
|
+ * on CS1
|
|
|
+ */
|
|
|
+static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device,
|
|
|
+ const struct lpddr2_device_details *cs1_device,
|
|
|
+ const struct lpddr2_addressing *addressing,
|
|
|
+ u8 RL)
|
|
|
+{
|
|
|
+ u32 config_reg = 0;
|
|
|
+
|
|
|
+ config_reg |= (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT;
|
|
|
+ config_reg |= EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING <<
|
|
|
+ OMAP44XX_REG_IBANK_POS_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= RL << OMAP44XX_REG_CL_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= addressing->row_sz[cs0_device->io_width] <<
|
|
|
+ OMAP44XX_REG_ROWSIZE_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) <<
|
|
|
+ OMAP44XX_REG_EBANK_SHIFT;
|
|
|
+
|
|
|
+ config_reg |= addressing->col_sz[cs0_device->io_width] <<
|
|
|
+ OMAP44XX_REG_PAGESIZE_SHIFT;
|
|
|
+
|
|
|
+ return config_reg;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_sdram_ref_ctrl(u32 freq,
|
|
|
+ const struct lpddr2_addressing *addressing)
|
|
|
+{
|
|
|
+ u32 ref_ctrl = 0, val = 0, freq_khz;
|
|
|
+ freq_khz = freq / 1000;
|
|
|
+ /*
|
|
|
+ * refresh rate to be set is 'tREFI * freq in MHz
|
|
|
+ * division by 10000 to account for khz and x10 in t_REFI_us_x10
|
|
|
+ */
|
|
|
+ val = addressing->t_REFI_us_x10 * freq_khz / 10000;
|
|
|
+ ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT;
|
|
|
+
|
|
|
+ return ref_ctrl;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings,
|
|
|
+ const struct lpddr2_min_tck *min_tck,
|
|
|
+ const struct lpddr2_addressing *addressing)
|
|
|
+{
|
|
|
+ u32 tim1 = 0, val = 0;
|
|
|
+ val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT;
|
|
|
+
|
|
|
+ if (addressing->num_banks == BANKS8)
|
|
|
+ val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) /
|
|
|
+ (4 * (*T_num)) - 1;
|
|
|
+ else
|
|
|
+ val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1;
|
|
|
+
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT;
|
|
|
+
|
|
|
+ val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_RC_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_WR_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1;
|
|
|
+ tim1 |= val << OMAP44XX_REG_T_RP_SHIFT;
|
|
|
+
|
|
|
+ return tim1;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings,
|
|
|
+ const struct lpddr2_min_tck *min_tck)
|
|
|
+{
|
|
|
+ u32 tim2 = 0, val = 0;
|
|
|
+ val = max(min_tck->tCKE, timings->tCKE) - 1;
|
|
|
+ tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1;
|
|
|
+ tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the
|
|
|
+ * same value
|
|
|
+ */
|
|
|
+ val = ns_2_cycles(timings->tXSR) - 1;
|
|
|
+ tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT;
|
|
|
+ tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1;
|
|
|
+ tim2 |= val << OMAP44XX_REG_T_XP_SHIFT;
|
|
|
+
|
|
|
+ return tim2;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings,
|
|
|
+ const struct lpddr2_min_tck *min_tck,
|
|
|
+ const struct lpddr2_addressing *addressing)
|
|
|
+{
|
|
|
+ u32 tim3 = 0, val = 0;
|
|
|
+ val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF);
|
|
|
+ tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT;
|
|
|
+
|
|
|
+ val = ns_2_cycles(timings->tRFCab) - 1;
|
|
|
+ tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT;
|
|
|
+
|
|
|
+ val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1;
|
|
|
+ tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT;
|
|
|
+
|
|
|
+ val = ns_2_cycles(timings->tZQCS) - 1;
|
|
|
+ tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT;
|
|
|
+
|
|
|
+ val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1;
|
|
|
+ tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT;
|
|
|
+
|
|
|
+ return tim3;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device,
|
|
|
+ const struct lpddr2_addressing *addressing,
|
|
|
+ u8 volt_ramp)
|
|
|
+{
|
|
|
+ u32 zq = 0, val = 0;
|
|
|
+ if (volt_ramp)
|
|
|
+ val =
|
|
|
+ EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 /
|
|
|
+ addressing->t_REFI_us_x10;
|
|
|
+ else
|
|
|
+ val =
|
|
|
+ EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 /
|
|
|
+ addressing->t_REFI_us_x10;
|
|
|
+ zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT;
|
|
|
+
|
|
|
+ zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT;
|
|
|
+
|
|
|
+ zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT;
|
|
|
+
|
|
|
+ zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Assuming that two chipselects have a single calibration resistor
|
|
|
+ * If there are indeed two calibration resistors, then this flag should
|
|
|
+ * be enabled to take advantage of dual calibration feature.
|
|
|
+ * This data should ideally come from board files. But considering
|
|
|
+ * that none of the boards today have calibration resistors per CS,
|
|
|
+ * it would be an unnecessary overhead.
|
|
|
+ */
|
|
|
+ zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT;
|
|
|
+
|
|
|
+ zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT;
|
|
|
+
|
|
|
+ zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT;
|
|
|
+
|
|
|
+ return zq;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device,
|
|
|
+ const struct lpddr2_addressing *addressing,
|
|
|
+ u8 is_derated)
|
|
|
+{
|
|
|
+ u32 alert = 0, interval;
|
|
|
+ interval =
|
|
|
+ TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10;
|
|
|
+ if (is_derated)
|
|
|
+ interval *= 4;
|
|
|
+ alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT;
|
|
|
+
|
|
|
+ alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT;
|
|
|
+
|
|
|
+ alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT;
|
|
|
+
|
|
|
+ alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT;
|
|
|
+
|
|
|
+ alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT;
|
|
|
+
|
|
|
+ alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT;
|
|
|
+
|
|
|
+ return alert;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_read_idle_ctrl_reg(u8 volt_ramp)
|
|
|
+{
|
|
|
+ u32 idle = 0, val = 0;
|
|
|
+ if (volt_ramp)
|
|
|
+ val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 + 1;
|
|
|
+ else
|
|
|
+ /*Maximum value in normal conditions - suggested by hw team */
|
|
|
+ val = 0x1FF;
|
|
|
+ idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT;
|
|
|
+
|
|
|
+ idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT;
|
|
|
+
|
|
|
+ return idle;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL)
|
|
|
+{
|
|
|
+ u32 phy = 0, val = 0;
|
|
|
+
|
|
|
+ phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT;
|
|
|
+
|
|
|
+ if (freq <= 100000000)
|
|
|
+ val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS;
|
|
|
+ else if (freq <= 200000000)
|
|
|
+ val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ;
|
|
|
+ else
|
|
|
+ val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ;
|
|
|
+ phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT;
|
|
|
+
|
|
|
+ /* Other fields are constant magic values. Hardcode them together */
|
|
|
+ phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL <<
|
|
|
+ OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT;
|
|
|
+
|
|
|
+ return phy;
|
|
|
+}
|
|
|
+
|
|
|
+static u32 get_emif_mem_size(struct emif_device_details *devices)
|
|
|
+{
|
|
|
+ u32 size_mbytes = 0, temp;
|
|
|
+
|
|
|
+ if (!devices)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ if (devices->cs0_device_details) {
|
|
|
+ temp = devices->cs0_device_details->density;
|
|
|
+ size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
|
|
|
+ }
|
|
|
+
|
|
|
+ if (devices->cs1_device_details) {
|
|
|
+ temp = devices->cs1_device_details->density;
|
|
|
+ size_mbytes += lpddr2_density_2_size_in_mbytes[temp];
|
|
|
+ }
|
|
|
+ /* convert to bytes */
|
|
|
+ return size_mbytes << 20;
|
|
|
+}
|
|
|
+
|
|
|
+/* Gets the encoding corresponding to a given DMM section size */
|
|
|
+u32 get_dmm_section_size_map(u32 section_size)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Section size mapping:
|
|
|
+ * 0x0: 16-MiB section
|
|
|
+ * 0x1: 32-MiB section
|
|
|
+ * 0x2: 64-MiB section
|
|
|
+ * 0x3: 128-MiB section
|
|
|
+ * 0x4: 256-MiB section
|
|
|
+ * 0x5: 512-MiB section
|
|
|
+ * 0x6: 1-GiB section
|
|
|
+ * 0x7: 2-GiB section
|
|
|
+ */
|
|
|
+ section_size >>= 24; /* divide by 16 MB */
|
|
|
+ return log_2_n_round_down(section_size);
|
|
|
+}
|
|
|
+
|
|
|
+static void emif_calculate_regs(
|
|
|
+ const struct emif_device_details *emif_dev_details,
|
|
|
+ u32 freq, struct emif_regs *regs)
|
|
|
+{
|
|
|
+ u32 temp, sys_freq;
|
|
|
+ const struct lpddr2_addressing *addressing;
|
|
|
+ const struct lpddr2_ac_timings *timings;
|
|
|
+ const struct lpddr2_min_tck *min_tck;
|
|
|
+ const struct lpddr2_device_details *cs0_dev_details =
|
|
|
+ emif_dev_details->cs0_device_details;
|
|
|
+ const struct lpddr2_device_details *cs1_dev_details =
|
|
|
+ emif_dev_details->cs1_device_details;
|
|
|
+ const struct lpddr2_device_timings *cs0_dev_timings =
|
|
|
+ emif_dev_details->cs0_device_timings;
|
|
|
+
|
|
|
+ emif_assert(emif_dev_details);
|
|
|
+ emif_assert(regs);
|
|
|
+ /*
|
|
|
+ * You can not have a device on CS1 without one on CS0
|
|
|
+ * So configuring EMIF without a device on CS0 doesn't
|
|
|
+ * make sense
|
|
|
+ */
|
|
|
+ emif_assert(cs0_dev_details);
|
|
|
+ emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM);
|
|
|
+ /*
|
|
|
+ * If there is a device on CS1 it should be same type as CS0
|
|
|
+ * (or NVM. But NVM is not supported in this driver yet)
|
|
|
+ */
|
|
|
+ emif_assert((cs1_dev_details == NULL) ||
|
|
|
+ (cs1_dev_details->type == LPDDR2_TYPE_NVM) ||
|
|
|
+ (cs0_dev_details->type == cs1_dev_details->type));
|
|
|
+ emif_assert(freq <= MAX_LPDDR2_FREQ);
|
|
|
+
|
|
|
+ set_ddr_clk_period(freq);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The device on CS0 is used for all timing calculations
|
|
|
+ * There is only one set of registers for timings per EMIF. So, if the
|
|
|
+ * second CS(CS1) has a device, it should have the same timings as the
|
|
|
+ * device on CS0
|
|
|
+ */
|
|
|
+ timings = get_timings_table(cs0_dev_timings->ac_timings, freq);
|
|
|
+ emif_assert(timings);
|
|
|
+ min_tck = cs0_dev_timings->min_tck;
|
|
|
+
|
|
|
+ temp = addressing_table_index(cs0_dev_details->type,
|
|
|
+ cs0_dev_details->density,
|
|
|
+ cs0_dev_details->io_width);
|
|
|
+
|
|
|
+ emif_assert((temp >= 0));
|
|
|
+ addressing = &(addressing_table[temp]);
|
|
|
+ emif_assert(addressing);
|
|
|
+
|
|
|
+ sys_freq = get_sys_clk_freq();
|
|
|
+
|
|
|
+ regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details,
|
|
|
+ cs1_dev_details,
|
|
|
+ addressing, RL_BOOT);
|
|
|
+
|
|
|
+ regs->sdram_config = get_sdram_config_reg(cs0_dev_details,
|
|
|
+ cs1_dev_details,
|
|
|
+ addressing, RL_FINAL);
|
|
|
+
|
|
|
+ regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing);
|
|
|
+
|
|
|
+ regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing);
|
|
|
+
|
|
|
+ regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck);
|
|
|
+
|
|
|
+ regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing);
|
|
|
+
|
|
|
+ regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE);
|
|
|
+
|
|
|
+ regs->temp_alert_config =
|
|
|
+ get_temp_alert_config(cs1_dev_details, addressing, 0);
|
|
|
+
|
|
|
+ regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing,
|
|
|
+ LPDDR2_VOLTAGE_STABLE);
|
|
|
+
|
|
|
+ regs->emif_ddr_phy_ctlr_1_init =
|
|
|
+ get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT);
|
|
|
+
|
|
|
+ regs->emif_ddr_phy_ctlr_1 =
|
|
|
+ get_ddr_phy_ctrl_1(freq, RL_FINAL);
|
|
|
+
|
|
|
+ regs->freq = freq;
|
|
|
+
|
|
|
+ print_timing_reg(regs->sdram_config_init);
|
|
|
+ print_timing_reg(regs->sdram_config);
|
|
|
+ print_timing_reg(regs->ref_ctrl);
|
|
|
+ print_timing_reg(regs->sdram_tim1);
|
|
|
+ print_timing_reg(regs->sdram_tim2);
|
|
|
+ print_timing_reg(regs->sdram_tim3);
|
|
|
+ print_timing_reg(regs->read_idle_ctrl);
|
|
|
+ print_timing_reg(regs->temp_alert_config);
|
|
|
+ print_timing_reg(regs->zq_config);
|
|
|
+ print_timing_reg(regs->emif_ddr_phy_ctlr_1);
|
|
|
+ print_timing_reg(regs->emif_ddr_phy_ctlr_1_init);
|
|
|
+}
|
|
|
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
|
|
|
+
|
|
|
+#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS
|
|
|
+/* Base AC Timing values specified by JESD209-2 for 400MHz operation */
|
|
|
+static const struct lpddr2_ac_timings timings_jedec_400_mhz = {
|
|
|
+ .max_freq = 400000000,
|
|
|
+ .RL = 6,
|
|
|
+ .tRPab = 21,
|
|
|
+ .tRCD = 18,
|
|
|
+ .tWR = 15,
|
|
|
+ .tRASmin = 42,
|
|
|
+ .tRRD = 10,
|
|
|
+ .tWTRx2 = 15,
|
|
|
+ .tXSR = 140,
|
|
|
+ .tXPx2 = 15,
|
|
|
+ .tRFCab = 130,
|
|
|
+ .tRTPx2 = 15,
|
|
|
+ .tCKE = 3,
|
|
|
+ .tCKESR = 15,
|
|
|
+ .tZQCS = 90,
|
|
|
+ .tZQCL = 360,
|
|
|
+ .tZQINIT = 1000,
|
|
|
+ .tDQSCKMAXx2 = 11,
|
|
|
+ .tRASmax = 70,
|
|
|
+ .tFAW = 50
|
|
|
+};
|
|
|
+
|
|
|
+/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */
|
|
|
+static const struct lpddr2_ac_timings timings_jedec_333_mhz = {
|
|
|
+ .max_freq = 333000000,
|
|
|
+ .RL = 5,
|
|
|
+ .tRPab = 21,
|
|
|
+ .tRCD = 18,
|
|
|
+ .tWR = 15,
|
|
|
+ .tRASmin = 42,
|
|
|
+ .tRRD = 10,
|
|
|
+ .tWTRx2 = 15,
|
|
|
+ .tXSR = 140,
|
|
|
+ .tXPx2 = 15,
|
|
|
+ .tRFCab = 130,
|
|
|
+ .tRTPx2 = 15,
|
|
|
+ .tCKE = 3,
|
|
|
+ .tCKESR = 15,
|
|
|
+ .tZQCS = 90,
|
|
|
+ .tZQCL = 360,
|
|
|
+ .tZQINIT = 1000,
|
|
|
+ .tDQSCKMAXx2 = 11,
|
|
|
+ .tRASmax = 70,
|
|
|
+ .tFAW = 50
|
|
|
+};
|
|
|
+
|
|
|
+/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */
|
|
|
+static const struct lpddr2_ac_timings timings_jedec_200_mhz = {
|
|
|
+ .max_freq = 200000000,
|
|
|
+ .RL = 3,
|
|
|
+ .tRPab = 21,
|
|
|
+ .tRCD = 18,
|
|
|
+ .tWR = 15,
|
|
|
+ .tRASmin = 42,
|
|
|
+ .tRRD = 10,
|
|
|
+ .tWTRx2 = 20,
|
|
|
+ .tXSR = 140,
|
|
|
+ .tXPx2 = 15,
|
|
|
+ .tRFCab = 130,
|
|
|
+ .tRTPx2 = 15,
|
|
|
+ .tCKE = 3,
|
|
|
+ .tCKESR = 15,
|
|
|
+ .tZQCS = 90,
|
|
|
+ .tZQCL = 360,
|
|
|
+ .tZQINIT = 1000,
|
|
|
+ .tDQSCKMAXx2 = 11,
|
|
|
+ .tRASmax = 70,
|
|
|
+ .tFAW = 50
|
|
|
+};
|
|
|
+
|
|
|
+/*
|
|
|
+ * Min tCK values specified by JESD209-2
|
|
|
+ * Min tCK specifies the minimum duration of some AC timing parameters in terms
|
|
|
+ * of the number of cycles. If the calculated number of cycles based on the
|
|
|
+ * absolute time value is less than the min tCK value, min tCK value should
|
|
|
+ * be used instead. This typically happens at low frequencies.
|
|
|
+ */
|
|
|
+static const struct lpddr2_min_tck min_tck_jedec = {
|
|
|
+ .tRL = 3,
|
|
|
+ .tRP_AB = 3,
|
|
|
+ .tRCD = 3,
|
|
|
+ .tWR = 3,
|
|
|
+ .tRAS_MIN = 3,
|
|
|
+ .tRRD = 2,
|
|
|
+ .tWTR = 2,
|
|
|
+ .tXP = 2,
|
|
|
+ .tRTP = 2,
|
|
|
+ .tCKE = 3,
|
|
|
+ .tCKESR = 3,
|
|
|
+ .tFAW = 8
|
|
|
+};
|
|
|
+
|
|
|
+static const struct lpddr2_ac_timings const*
|
|
|
+ jedec_ac_timings[MAX_NUM_SPEEDBINS] = {
|
|
|
+ &timings_jedec_200_mhz,
|
|
|
+ &timings_jedec_333_mhz,
|
|
|
+ &timings_jedec_400_mhz
|
|
|
+};
|
|
|
+
|
|
|
+static const struct lpddr2_device_timings jedec_default_timings = {
|
|
|
+ .ac_timings = jedec_ac_timings,
|
|
|
+ .min_tck = &min_tck_jedec
|
|
|
+};
|
|
|
+
|
|
|
+void emif_get_device_timings(u32 emif_nr,
|
|
|
+ const struct lpddr2_device_timings **cs0_device_timings,
|
|
|
+ const struct lpddr2_device_timings **cs1_device_timings)
|
|
|
+{
|
|
|
+ /* Assume Identical devices on EMIF1 & EMIF2 */
|
|
|
+ *cs0_device_timings = &jedec_default_timings;
|
|
|
+ *cs1_device_timings = &jedec_default_timings;
|
|
|
+}
|
|
|
+#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */
|
|
|
+
|
|
|
static void do_sdram_init(u32 base)
|
|
|
{
|
|
|
const struct emif_regs *regs;
|
|
@@ -180,11 +802,54 @@ static void do_sdram_init(u32 base)
|
|
|
in_sdram = running_from_sdram();
|
|
|
emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2;
|
|
|
|
|
|
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
|
emif_get_reg_dump(emif_nr, ®s);
|
|
|
if (!regs) {
|
|
|
debug("EMIF: reg dump not provided\n");
|
|
|
return;
|
|
|
}
|
|
|
+#else
|
|
|
+ /*
|
|
|
+ * The user has not provided the register values. We need to
|
|
|
+ * calculate it based on the timings and the DDR frequency
|
|
|
+ */
|
|
|
+ struct emif_device_details dev_details;
|
|
|
+ struct emif_regs calculated_regs;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Get device details:
|
|
|
+ * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set
|
|
|
+ * - Obtained from user otherwise
|
|
|
+ */
|
|
|
+ struct lpddr2_device_details cs0_dev_details, cs1_dev_details;
|
|
|
+ emif_get_device_details(emif_nr, &cs0_dev_details,
|
|
|
+ &cs1_dev_details);
|
|
|
+ dev_details.cs0_device_details = &cs0_dev_details;
|
|
|
+ dev_details.cs1_device_details = &cs1_dev_details;
|
|
|
+
|
|
|
+ /* Return if no devices on this EMIF */
|
|
|
+ if (!dev_details.cs0_device_details &&
|
|
|
+ !dev_details.cs1_device_details) {
|
|
|
+ emif_sizes[emif_nr - 1] = 0;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (!in_sdram)
|
|
|
+ emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Get device timings:
|
|
|
+ * - Default timings specified by JESD209-2 if
|
|
|
+ * CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set
|
|
|
+ * - Obtained from user otherwise
|
|
|
+ */
|
|
|
+ emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings,
|
|
|
+ &dev_details.cs1_device_timings);
|
|
|
+
|
|
|
+ /* Calculate the register values */
|
|
|
+ emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs);
|
|
|
+ regs = &calculated_regs;
|
|
|
+#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */
|
|
|
|
|
|
/*
|
|
|
* Initializing the LPDDR2 device can not happen from SDRAM.
|
|
@@ -242,8 +907,82 @@ static void dmm_init(u32 base)
|
|
|
{
|
|
|
const struct dmm_lisa_map_regs *lisa_map_regs;
|
|
|
|
|
|
+#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS
|
|
|
emif_get_dmm_regs(&lisa_map_regs);
|
|
|
+#else
|
|
|
+ u32 emif1_size, emif2_size, mapped_size, section_map = 0;
|
|
|
+ u32 section_cnt, sys_addr;
|
|
|
+ struct dmm_lisa_map_regs lis_map_regs_calculated = {0};
|
|
|
+
|
|
|
+ mapped_size = 0;
|
|
|
+ section_cnt = 3;
|
|
|
+ sys_addr = CONFIG_SYS_SDRAM_BASE;
|
|
|
+ emif1_size = emif_sizes[0];
|
|
|
+ emif2_size = emif_sizes[1];
|
|
|
+ debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size);
|
|
|
+
|
|
|
+ if (!emif1_size && !emif2_size)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* symmetric interleaved section */
|
|
|
+ if (emif1_size && emif2_size) {
|
|
|
+ mapped_size = min(emif1_size, emif2_size);
|
|
|
+ section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL;
|
|
|
+ section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT;
|
|
|
+ /* only MSB */
|
|
|
+ section_map |= (sys_addr >> 24) <<
|
|
|
+ OMAP44XX_SYS_ADDR_SHIFT;
|
|
|
+ section_map |= get_dmm_section_size_map(mapped_size * 2)
|
|
|
+ << OMAP44XX_SYS_SIZE_SHIFT;
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
|
|
|
+ emif1_size -= mapped_size;
|
|
|
+ emif2_size -= mapped_size;
|
|
|
+ sys_addr += (mapped_size * 2);
|
|
|
+ section_cnt--;
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Single EMIF section(we can have a maximum of 1 single EMIF
|
|
|
+ * section- either EMIF1 or EMIF2 or none, but not both)
|
|
|
+ */
|
|
|
+ if (emif1_size) {
|
|
|
+ section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL;
|
|
|
+ section_map |= get_dmm_section_size_map(emif1_size)
|
|
|
+ << OMAP44XX_SYS_SIZE_SHIFT;
|
|
|
+ /* only MSB */
|
|
|
+ section_map |= (mapped_size >> 24) <<
|
|
|
+ OMAP44XX_SDRC_ADDR_SHIFT;
|
|
|
+ /* only MSB */
|
|
|
+ section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT;
|
|
|
+ section_cnt--;
|
|
|
+ }
|
|
|
+ if (emif2_size) {
|
|
|
+ section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL;
|
|
|
+ section_map |= get_dmm_section_size_map(emif2_size) <<
|
|
|
+ OMAP44XX_SYS_SIZE_SHIFT;
|
|
|
+ /* only MSB */
|
|
|
+ section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT;
|
|
|
+ /* only MSB */
|
|
|
+ section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT;
|
|
|
+ section_cnt--;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (section_cnt == 2) {
|
|
|
+ /* Only 1 section - either symmetric or single EMIF */
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_3 = section_map;
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_2 = 0;
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_1 = 0;
|
|
|
+ } else {
|
|
|
+ /* 2 sections - 1 symmetric, 1 single EMIF */
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_2 = section_map;
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_1 = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* TRAP for invalid TILER mappings in section 0 */
|
|
|
+ lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP;
|
|
|
|
|
|
+ lisa_map_regs = &lis_map_regs_calculated;
|
|
|
+#endif
|
|
|
struct dmm_lisa_map_regs *hw_lisa_map_regs =
|
|
|
(struct dmm_lisa_map_regs *)base;
|
|
|
|