123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335 |
- /*
- * linux/arch/parisc/kernel/time.c
- *
- * Copyright (C) 1991, 1992, 1995 Linus Torvalds
- * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
- * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
- *
- * 1994-07-02 Alan Modra
- * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
- * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
- * "A Kernel Model for Precision Timekeeping" by Dave Mills
- */
- #include <linux/errno.h>
- #include <linux/module.h>
- #include <linux/sched.h>
- #include <linux/kernel.h>
- #include <linux/param.h>
- #include <linux/string.h>
- #include <linux/mm.h>
- #include <linux/interrupt.h>
- #include <linux/time.h>
- #include <linux/init.h>
- #include <linux/smp.h>
- #include <linux/profile.h>
- #include <asm/uaccess.h>
- #include <asm/io.h>
- #include <asm/irq.h>
- #include <asm/param.h>
- #include <asm/pdc.h>
- #include <asm/led.h>
- #include <linux/timex.h>
- static unsigned long clocktick __read_mostly; /* timer cycles per tick */
- /*
- * We keep time on PA-RISC Linux by using the Interval Timer which is
- * a pair of registers; one is read-only and one is write-only; both
- * accessed through CR16. The read-only register is 32 or 64 bits wide,
- * and increments by 1 every CPU clock tick. The architecture only
- * guarantees us a rate between 0.5 and 2, but all implementations use a
- * rate of 1. The write-only register is 32-bits wide. When the lowest
- * 32 bits of the read-only register compare equal to the write-only
- * register, it raises a maskable external interrupt. Each processor has
- * an Interval Timer of its own and they are not synchronised.
- *
- * We want to generate an interrupt every 1/HZ seconds. So we program
- * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
- * is programmed with the intended time of the next tick. We can be
- * held off for an arbitrarily long period of time by interrupts being
- * disabled, so we may miss one or more ticks.
- */
- irqreturn_t timer_interrupt(int irq, void *dev_id)
- {
- unsigned long now;
- unsigned long next_tick;
- unsigned long cycles_elapsed, ticks_elapsed;
- unsigned long cycles_remainder;
- unsigned int cpu = smp_processor_id();
- struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
- /* gcc can optimize for "read-only" case with a local clocktick */
- unsigned long cpt = clocktick;
- profile_tick(CPU_PROFILING);
- /* Initialize next_tick to the expected tick time. */
- next_tick = cpuinfo->it_value;
- /* Get current interval timer.
- * CR16 reads as 64 bits in CPU wide mode.
- * CR16 reads as 32 bits in CPU narrow mode.
- */
- now = mfctl(16);
- cycles_elapsed = now - next_tick;
- if ((cycles_elapsed >> 5) < cpt) {
- /* use "cheap" math (add/subtract) instead
- * of the more expensive div/mul method
- */
- cycles_remainder = cycles_elapsed;
- ticks_elapsed = 1;
- while (cycles_remainder > cpt) {
- cycles_remainder -= cpt;
- ticks_elapsed++;
- }
- } else {
- cycles_remainder = cycles_elapsed % cpt;
- ticks_elapsed = 1 + cycles_elapsed / cpt;
- }
- /* Can we differentiate between "early CR16" (aka Scenario 1) and
- * "long delay" (aka Scenario 3)? I don't think so.
- *
- * We expected timer_interrupt to be delivered at least a few hundred
- * cycles after the IT fires. But it's arbitrary how much time passes
- * before we call it "late". I've picked one second.
- */
- if (ticks_elapsed > HZ) {
- /* Scenario 3: very long delay? bad in any case */
- printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
- " cycles %lX rem %lX "
- " next/now %lX/%lX\n",
- cpu,
- cycles_elapsed, cycles_remainder,
- next_tick, now );
- }
- /* convert from "division remainder" to "remainder of clock tick" */
- cycles_remainder = cpt - cycles_remainder;
- /* Determine when (in CR16 cycles) next IT interrupt will fire.
- * We want IT to fire modulo clocktick even if we miss/skip some.
- * But those interrupts don't in fact get delivered that regularly.
- */
- next_tick = now + cycles_remainder;
- cpuinfo->it_value = next_tick;
- /* Skip one clocktick on purpose if we are likely to miss next_tick.
- * We want to avoid the new next_tick being less than CR16.
- * If that happened, itimer wouldn't fire until CR16 wrapped.
- * We'll catch the tick we missed on the tick after that.
- */
- if (!(cycles_remainder >> 13))
- next_tick += cpt;
- /* Program the IT when to deliver the next interrupt. */
- /* Only bottom 32-bits of next_tick are written to cr16. */
- mtctl(next_tick, 16);
- /* Done mucking with unreliable delivery of interrupts.
- * Go do system house keeping.
- */
- if (!--cpuinfo->prof_counter) {
- cpuinfo->prof_counter = cpuinfo->prof_multiplier;
- update_process_times(user_mode(get_irq_regs()));
- }
- if (cpu == 0) {
- write_seqlock(&xtime_lock);
- do_timer(ticks_elapsed);
- write_sequnlock(&xtime_lock);
- }
- /* check soft power switch status */
- if (cpu == 0 && !atomic_read(&power_tasklet.count))
- tasklet_schedule(&power_tasklet);
- return IRQ_HANDLED;
- }
- unsigned long profile_pc(struct pt_regs *regs)
- {
- unsigned long pc = instruction_pointer(regs);
- if (regs->gr[0] & PSW_N)
- pc -= 4;
- #ifdef CONFIG_SMP
- if (in_lock_functions(pc))
- pc = regs->gr[2];
- #endif
- return pc;
- }
- EXPORT_SYMBOL(profile_pc);
- /*
- * Return the number of micro-seconds that elapsed since the last
- * update to wall time (aka xtime). The xtime_lock
- * must be at least read-locked when calling this routine.
- */
- static inline unsigned long gettimeoffset (void)
- {
- #ifndef CONFIG_SMP
- /*
- * FIXME: This won't work on smp because jiffies are updated by cpu 0.
- * Once parisc-linux learns the cr16 difference between processors,
- * this could be made to work.
- */
- unsigned long now;
- unsigned long prev_tick;
- unsigned long next_tick;
- unsigned long elapsed_cycles;
- unsigned long usec;
- unsigned long cpuid = smp_processor_id();
- unsigned long cpt = clocktick;
- next_tick = cpu_data[cpuid].it_value;
- now = mfctl(16); /* Read the hardware interval timer. */
- prev_tick = next_tick - cpt;
- /* Assume Scenario 1: "now" is later than prev_tick. */
- elapsed_cycles = now - prev_tick;
- /* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
- #if HZ == 1000
- if (elapsed_cycles > (cpt << 10) )
- #elif HZ == 250
- if (elapsed_cycles > (cpt << 8) )
- #elif HZ == 100
- if (elapsed_cycles > (cpt << 7) )
- #else
- #warn WTF is HZ set to anyway?
- if (elapsed_cycles > (HZ * cpt) )
- #endif
- {
- /* Scenario 3: clock ticks are missing. */
- printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
- " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
- cpuid, elapsed_cycles / cpt,
- elapsed_cycles, prev_tick, now, next_tick, cpt);
- }
- /* FIXME: Can we improve the precision? Not with PAGE0. */
- usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
- return usec;
- #else
- return 0;
- #endif
- }
- void
- do_gettimeofday (struct timeval *tv)
- {
- unsigned long flags, seq, usec, sec;
- /* Hold xtime_lock and adjust timeval. */
- do {
- seq = read_seqbegin_irqsave(&xtime_lock, flags);
- usec = gettimeoffset();
- sec = xtime.tv_sec;
- usec += (xtime.tv_nsec / 1000);
- } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
- /* Move adjusted usec's into sec's. */
- while (usec >= USEC_PER_SEC) {
- usec -= USEC_PER_SEC;
- ++sec;
- }
- /* Return adjusted result. */
- tv->tv_sec = sec;
- tv->tv_usec = usec;
- }
- EXPORT_SYMBOL(do_gettimeofday);
- int
- do_settimeofday (struct timespec *tv)
- {
- time_t wtm_sec, sec = tv->tv_sec;
- long wtm_nsec, nsec = tv->tv_nsec;
- if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
- return -EINVAL;
- write_seqlock_irq(&xtime_lock);
- {
- /*
- * This is revolting. We need to set "xtime"
- * correctly. However, the value in this location is
- * the value at the most recent update of wall time.
- * Discover what correction gettimeofday would have
- * done, and then undo it!
- */
- nsec -= gettimeoffset() * 1000;
- wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
- wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
- set_normalized_timespec(&xtime, sec, nsec);
- set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
- ntp_clear();
- }
- write_sequnlock_irq(&xtime_lock);
- clock_was_set();
- return 0;
- }
- EXPORT_SYMBOL(do_settimeofday);
- /*
- * XXX: We can do better than this.
- * Returns nanoseconds
- */
- unsigned long long sched_clock(void)
- {
- return (unsigned long long)jiffies * (1000000000 / HZ);
- }
- void __init start_cpu_itimer(void)
- {
- unsigned int cpu = smp_processor_id();
- unsigned long next_tick = mfctl(16) + clocktick;
- mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
- cpu_data[cpu].it_value = next_tick;
- }
- void __init time_init(void)
- {
- static struct pdc_tod tod_data;
- clocktick = (100 * PAGE0->mem_10msec) / HZ;
- start_cpu_itimer(); /* get CPU 0 started */
- if (pdc_tod_read(&tod_data) == 0) {
- unsigned long flags;
- write_seqlock_irqsave(&xtime_lock, flags);
- xtime.tv_sec = tod_data.tod_sec;
- xtime.tv_nsec = tod_data.tod_usec * 1000;
- set_normalized_timespec(&wall_to_monotonic,
- -xtime.tv_sec, -xtime.tv_nsec);
- write_sequnlock_irqrestore(&xtime_lock, flags);
- } else {
- printk(KERN_ERR "Error reading tod clock\n");
- xtime.tv_sec = 0;
- xtime.tv_nsec = 0;
- }
- }
|