time.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. /*
  2. * linux/arch/parisc/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992, 1995 Linus Torvalds
  5. * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
  6. * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
  7. *
  8. * 1994-07-02 Alan Modra
  9. * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10. * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
  11. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  12. */
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/sched.h>
  16. #include <linux/kernel.h>
  17. #include <linux/param.h>
  18. #include <linux/string.h>
  19. #include <linux/mm.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/time.h>
  22. #include <linux/init.h>
  23. #include <linux/smp.h>
  24. #include <linux/profile.h>
  25. #include <asm/uaccess.h>
  26. #include <asm/io.h>
  27. #include <asm/irq.h>
  28. #include <asm/param.h>
  29. #include <asm/pdc.h>
  30. #include <asm/led.h>
  31. #include <linux/timex.h>
  32. static unsigned long clocktick __read_mostly; /* timer cycles per tick */
  33. /*
  34. * We keep time on PA-RISC Linux by using the Interval Timer which is
  35. * a pair of registers; one is read-only and one is write-only; both
  36. * accessed through CR16. The read-only register is 32 or 64 bits wide,
  37. * and increments by 1 every CPU clock tick. The architecture only
  38. * guarantees us a rate between 0.5 and 2, but all implementations use a
  39. * rate of 1. The write-only register is 32-bits wide. When the lowest
  40. * 32 bits of the read-only register compare equal to the write-only
  41. * register, it raises a maskable external interrupt. Each processor has
  42. * an Interval Timer of its own and they are not synchronised.
  43. *
  44. * We want to generate an interrupt every 1/HZ seconds. So we program
  45. * CR16 to interrupt every @clocktick cycles. The it_value in cpu_data
  46. * is programmed with the intended time of the next tick. We can be
  47. * held off for an arbitrarily long period of time by interrupts being
  48. * disabled, so we may miss one or more ticks.
  49. */
  50. irqreturn_t timer_interrupt(int irq, void *dev_id)
  51. {
  52. unsigned long now;
  53. unsigned long next_tick;
  54. unsigned long cycles_elapsed, ticks_elapsed;
  55. unsigned long cycles_remainder;
  56. unsigned int cpu = smp_processor_id();
  57. struct cpuinfo_parisc *cpuinfo = &cpu_data[cpu];
  58. /* gcc can optimize for "read-only" case with a local clocktick */
  59. unsigned long cpt = clocktick;
  60. profile_tick(CPU_PROFILING);
  61. /* Initialize next_tick to the expected tick time. */
  62. next_tick = cpuinfo->it_value;
  63. /* Get current interval timer.
  64. * CR16 reads as 64 bits in CPU wide mode.
  65. * CR16 reads as 32 bits in CPU narrow mode.
  66. */
  67. now = mfctl(16);
  68. cycles_elapsed = now - next_tick;
  69. if ((cycles_elapsed >> 5) < cpt) {
  70. /* use "cheap" math (add/subtract) instead
  71. * of the more expensive div/mul method
  72. */
  73. cycles_remainder = cycles_elapsed;
  74. ticks_elapsed = 1;
  75. while (cycles_remainder > cpt) {
  76. cycles_remainder -= cpt;
  77. ticks_elapsed++;
  78. }
  79. } else {
  80. cycles_remainder = cycles_elapsed % cpt;
  81. ticks_elapsed = 1 + cycles_elapsed / cpt;
  82. }
  83. /* Can we differentiate between "early CR16" (aka Scenario 1) and
  84. * "long delay" (aka Scenario 3)? I don't think so.
  85. *
  86. * We expected timer_interrupt to be delivered at least a few hundred
  87. * cycles after the IT fires. But it's arbitrary how much time passes
  88. * before we call it "late". I've picked one second.
  89. */
  90. if (ticks_elapsed > HZ) {
  91. /* Scenario 3: very long delay? bad in any case */
  92. printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
  93. " cycles %lX rem %lX "
  94. " next/now %lX/%lX\n",
  95. cpu,
  96. cycles_elapsed, cycles_remainder,
  97. next_tick, now );
  98. }
  99. /* convert from "division remainder" to "remainder of clock tick" */
  100. cycles_remainder = cpt - cycles_remainder;
  101. /* Determine when (in CR16 cycles) next IT interrupt will fire.
  102. * We want IT to fire modulo clocktick even if we miss/skip some.
  103. * But those interrupts don't in fact get delivered that regularly.
  104. */
  105. next_tick = now + cycles_remainder;
  106. cpuinfo->it_value = next_tick;
  107. /* Skip one clocktick on purpose if we are likely to miss next_tick.
  108. * We want to avoid the new next_tick being less than CR16.
  109. * If that happened, itimer wouldn't fire until CR16 wrapped.
  110. * We'll catch the tick we missed on the tick after that.
  111. */
  112. if (!(cycles_remainder >> 13))
  113. next_tick += cpt;
  114. /* Program the IT when to deliver the next interrupt. */
  115. /* Only bottom 32-bits of next_tick are written to cr16. */
  116. mtctl(next_tick, 16);
  117. /* Done mucking with unreliable delivery of interrupts.
  118. * Go do system house keeping.
  119. */
  120. if (!--cpuinfo->prof_counter) {
  121. cpuinfo->prof_counter = cpuinfo->prof_multiplier;
  122. update_process_times(user_mode(get_irq_regs()));
  123. }
  124. if (cpu == 0) {
  125. write_seqlock(&xtime_lock);
  126. do_timer(ticks_elapsed);
  127. write_sequnlock(&xtime_lock);
  128. }
  129. /* check soft power switch status */
  130. if (cpu == 0 && !atomic_read(&power_tasklet.count))
  131. tasklet_schedule(&power_tasklet);
  132. return IRQ_HANDLED;
  133. }
  134. unsigned long profile_pc(struct pt_regs *regs)
  135. {
  136. unsigned long pc = instruction_pointer(regs);
  137. if (regs->gr[0] & PSW_N)
  138. pc -= 4;
  139. #ifdef CONFIG_SMP
  140. if (in_lock_functions(pc))
  141. pc = regs->gr[2];
  142. #endif
  143. return pc;
  144. }
  145. EXPORT_SYMBOL(profile_pc);
  146. /*
  147. * Return the number of micro-seconds that elapsed since the last
  148. * update to wall time (aka xtime). The xtime_lock
  149. * must be at least read-locked when calling this routine.
  150. */
  151. static inline unsigned long gettimeoffset (void)
  152. {
  153. #ifndef CONFIG_SMP
  154. /*
  155. * FIXME: This won't work on smp because jiffies are updated by cpu 0.
  156. * Once parisc-linux learns the cr16 difference between processors,
  157. * this could be made to work.
  158. */
  159. unsigned long now;
  160. unsigned long prev_tick;
  161. unsigned long next_tick;
  162. unsigned long elapsed_cycles;
  163. unsigned long usec;
  164. unsigned long cpuid = smp_processor_id();
  165. unsigned long cpt = clocktick;
  166. next_tick = cpu_data[cpuid].it_value;
  167. now = mfctl(16); /* Read the hardware interval timer. */
  168. prev_tick = next_tick - cpt;
  169. /* Assume Scenario 1: "now" is later than prev_tick. */
  170. elapsed_cycles = now - prev_tick;
  171. /* aproximate HZ with shifts. Intended math is "(elapsed/clocktick) > HZ" */
  172. #if HZ == 1000
  173. if (elapsed_cycles > (cpt << 10) )
  174. #elif HZ == 250
  175. if (elapsed_cycles > (cpt << 8) )
  176. #elif HZ == 100
  177. if (elapsed_cycles > (cpt << 7) )
  178. #else
  179. #warn WTF is HZ set to anyway?
  180. if (elapsed_cycles > (HZ * cpt) )
  181. #endif
  182. {
  183. /* Scenario 3: clock ticks are missing. */
  184. printk (KERN_CRIT "gettimeoffset(CPU %ld): missing %ld ticks!"
  185. " cycles %lX prev/now/next %lX/%lX/%lX clock %lX\n",
  186. cpuid, elapsed_cycles / cpt,
  187. elapsed_cycles, prev_tick, now, next_tick, cpt);
  188. }
  189. /* FIXME: Can we improve the precision? Not with PAGE0. */
  190. usec = (elapsed_cycles * 10000) / PAGE0->mem_10msec;
  191. return usec;
  192. #else
  193. return 0;
  194. #endif
  195. }
  196. void
  197. do_gettimeofday (struct timeval *tv)
  198. {
  199. unsigned long flags, seq, usec, sec;
  200. /* Hold xtime_lock and adjust timeval. */
  201. do {
  202. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  203. usec = gettimeoffset();
  204. sec = xtime.tv_sec;
  205. usec += (xtime.tv_nsec / 1000);
  206. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  207. /* Move adjusted usec's into sec's. */
  208. while (usec >= USEC_PER_SEC) {
  209. usec -= USEC_PER_SEC;
  210. ++sec;
  211. }
  212. /* Return adjusted result. */
  213. tv->tv_sec = sec;
  214. tv->tv_usec = usec;
  215. }
  216. EXPORT_SYMBOL(do_gettimeofday);
  217. int
  218. do_settimeofday (struct timespec *tv)
  219. {
  220. time_t wtm_sec, sec = tv->tv_sec;
  221. long wtm_nsec, nsec = tv->tv_nsec;
  222. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  223. return -EINVAL;
  224. write_seqlock_irq(&xtime_lock);
  225. {
  226. /*
  227. * This is revolting. We need to set "xtime"
  228. * correctly. However, the value in this location is
  229. * the value at the most recent update of wall time.
  230. * Discover what correction gettimeofday would have
  231. * done, and then undo it!
  232. */
  233. nsec -= gettimeoffset() * 1000;
  234. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
  235. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
  236. set_normalized_timespec(&xtime, sec, nsec);
  237. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  238. ntp_clear();
  239. }
  240. write_sequnlock_irq(&xtime_lock);
  241. clock_was_set();
  242. return 0;
  243. }
  244. EXPORT_SYMBOL(do_settimeofday);
  245. /*
  246. * XXX: We can do better than this.
  247. * Returns nanoseconds
  248. */
  249. unsigned long long sched_clock(void)
  250. {
  251. return (unsigned long long)jiffies * (1000000000 / HZ);
  252. }
  253. void __init start_cpu_itimer(void)
  254. {
  255. unsigned int cpu = smp_processor_id();
  256. unsigned long next_tick = mfctl(16) + clocktick;
  257. mtctl(next_tick, 16); /* kick off Interval Timer (CR16) */
  258. cpu_data[cpu].it_value = next_tick;
  259. }
  260. void __init time_init(void)
  261. {
  262. static struct pdc_tod tod_data;
  263. clocktick = (100 * PAGE0->mem_10msec) / HZ;
  264. start_cpu_itimer(); /* get CPU 0 started */
  265. if (pdc_tod_read(&tod_data) == 0) {
  266. unsigned long flags;
  267. write_seqlock_irqsave(&xtime_lock, flags);
  268. xtime.tv_sec = tod_data.tod_sec;
  269. xtime.tv_nsec = tod_data.tod_usec * 1000;
  270. set_normalized_timespec(&wall_to_monotonic,
  271. -xtime.tv_sec, -xtime.tv_nsec);
  272. write_sequnlock_irqrestore(&xtime_lock, flags);
  273. } else {
  274. printk(KERN_ERR "Error reading tod clock\n");
  275. xtime.tv_sec = 0;
  276. xtime.tv_nsec = 0;
  277. }
  278. }