123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- /*
- * PowerPC64 atomic bit operations.
- * Dave Engebretsen, Todd Inglett, Don Reed, Pat McCarthy, Peter Bergner,
- * Anton Blanchard
- *
- * Originally taken from the 32b PPC code. Modified to use 64b values for
- * the various counters & memory references.
- *
- * Bitops are odd when viewed on big-endian systems. They were designed
- * on little endian so the size of the bitset doesn't matter (low order bytes
- * come first) as long as the bit in question is valid.
- *
- * Bits are "tested" often using the C expression (val & (1<<nr)) so we do
- * our best to stay compatible with that. The assumption is that val will
- * be unsigned long for such tests. As such, we assume the bits are stored
- * as an array of unsigned long (the usual case is a single unsigned long,
- * of course). Here's an example bitset with bit numbering:
- *
- * |63..........0|127........64|195.......128|255.......196|
- *
- * This leads to a problem. If an int, short or char is passed as a bitset
- * it will be a bad memory reference since we want to store in chunks
- * of unsigned long (64 bits here) size.
- *
- * There are a few little-endian macros used mostly for filesystem bitmaps,
- * these work on similar bit arrays layouts, but byte-oriented:
- *
- * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
- *
- * The main difference is that bit 3-5 in the bit number field needs to be
- * reversed compared to the big-endian bit fields. This can be achieved
- * by XOR with 0b111000 (0x38).
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version
- * 2 of the License, or (at your option) any later version.
- */
- #ifndef _PPC64_BITOPS_H
- #define _PPC64_BITOPS_H
- #ifdef __KERNEL__
- #include <asm/memory.h>
- /*
- * clear_bit doesn't imply a memory barrier
- */
- #define smp_mb__before_clear_bit() smp_mb()
- #define smp_mb__after_clear_bit() smp_mb()
- static __inline__ int test_bit(unsigned long nr, __const__ volatile unsigned long *addr)
- {
- return (1UL & (addr[nr >> 6] >> (nr & 63)));
- }
- static __inline__ void set_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- "1: ldarx %0,0,%3 # set_bit\n\
- or %0,%0,%2\n\
- stdcx. %0,0,%3\n\
- bne- 1b"
- : "=&r" (old), "=m" (*p)
- : "r" (mask), "r" (p), "m" (*p)
- : "cc");
- }
- static __inline__ void clear_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- "1: ldarx %0,0,%3 # clear_bit\n\
- andc %0,%0,%2\n\
- stdcx. %0,0,%3\n\
- bne- 1b"
- : "=&r" (old), "=m" (*p)
- : "r" (mask), "r" (p), "m" (*p)
- : "cc");
- }
- static __inline__ void change_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- "1: ldarx %0,0,%3 # change_bit\n\
- xor %0,%0,%2\n\
- stdcx. %0,0,%3\n\
- bne- 1b"
- : "=&r" (old), "=m" (*p)
- : "r" (mask), "r" (p), "m" (*p)
- : "cc");
- }
- static __inline__ int test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old, t;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- EIEIO_ON_SMP
- "1: ldarx %0,0,%3 # test_and_set_bit\n\
- or %1,%0,%2 \n\
- stdcx. %1,0,%3 \n\
- bne- 1b"
- ISYNC_ON_SMP
- : "=&r" (old), "=&r" (t)
- : "r" (mask), "r" (p)
- : "cc", "memory");
- return (old & mask) != 0;
- }
- static __inline__ int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old, t;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- EIEIO_ON_SMP
- "1: ldarx %0,0,%3 # test_and_clear_bit\n\
- andc %1,%0,%2\n\
- stdcx. %1,0,%3\n\
- bne- 1b"
- ISYNC_ON_SMP
- : "=&r" (old), "=&r" (t)
- : "r" (mask), "r" (p)
- : "cc", "memory");
- return (old & mask) != 0;
- }
- static __inline__ int test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long old, t;
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- __asm__ __volatile__(
- EIEIO_ON_SMP
- "1: ldarx %0,0,%3 # test_and_change_bit\n\
- xor %1,%0,%2\n\
- stdcx. %1,0,%3\n\
- bne- 1b"
- ISYNC_ON_SMP
- : "=&r" (old), "=&r" (t)
- : "r" (mask), "r" (p)
- : "cc", "memory");
- return (old & mask) != 0;
- }
- static __inline__ void set_bits(unsigned long mask, unsigned long *addr)
- {
- unsigned long old;
- __asm__ __volatile__(
- "1: ldarx %0,0,%3 # set_bit\n\
- or %0,%0,%2\n\
- stdcx. %0,0,%3\n\
- bne- 1b"
- : "=&r" (old), "=m" (*addr)
- : "r" (mask), "r" (addr), "m" (*addr)
- : "cc");
- }
- /*
- * non-atomic versions
- */
- static __inline__ void __set_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- *p |= mask;
- }
- static __inline__ void __clear_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- *p &= ~mask;
- }
- static __inline__ void __change_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- *p ^= mask;
- }
- static __inline__ int __test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- unsigned long old = *p;
- *p = old | mask;
- return (old & mask) != 0;
- }
- static __inline__ int __test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- unsigned long old = *p;
- *p = old & ~mask;
- return (old & mask) != 0;
- }
- static __inline__ int __test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
- {
- unsigned long mask = 1UL << (nr & 0x3f);
- unsigned long *p = ((unsigned long *)addr) + (nr >> 6);
- unsigned long old = *p;
- *p = old ^ mask;
- return (old & mask) != 0;
- }
- /*
- * Return the zero-based bit position (from RIGHT TO LEFT, 63 -> 0) of the
- * most significant (left-most) 1-bit in a double word.
- */
- static __inline__ int __ilog2(unsigned long x)
- {
- int lz;
- asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
- return 63 - lz;
- }
- /*
- * Determines the bit position of the least significant (rightmost) 0 bit
- * in the specified double word. The returned bit position will be zero-based,
- * starting from the right side (63 - 0).
- */
- static __inline__ unsigned long ffz(unsigned long x)
- {
- /* no zero exists anywhere in the 8 byte area. */
- if ((x = ~x) == 0)
- return 64;
- /*
- * Calculate the bit position of the least signficant '1' bit in x
- * (since x has been changed this will actually be the least signficant
- * '0' bit in * the original x). Note: (x & -x) gives us a mask that
- * is the least significant * (RIGHT-most) 1-bit of the value in x.
- */
- return __ilog2(x & -x);
- }
- static __inline__ int __ffs(unsigned long x)
- {
- return __ilog2(x & -x);
- }
- /*
- * ffs: find first bit set. This is defined the same way as
- * the libc and compiler builtin ffs routines, therefore
- * differs in spirit from the above ffz (man ffs).
- */
- static __inline__ int ffs(int x)
- {
- unsigned long i = (unsigned long)x;
- return __ilog2(i & -i) + 1;
- }
- /*
- * fls: find last (most-significant) bit set.
- * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
- */
- #define fls(x) generic_fls(x)
- /*
- * hweightN: returns the hamming weight (i.e. the number
- * of bits set) of a N-bit word
- */
- #define hweight64(x) generic_hweight64(x)
- #define hweight32(x) generic_hweight32(x)
- #define hweight16(x) generic_hweight16(x)
- #define hweight8(x) generic_hweight8(x)
- extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
- #define find_first_zero_bit(addr, size) \
- find_next_zero_bit((addr), (size), 0)
- extern unsigned long find_next_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
- #define find_first_bit(addr, size) \
- find_next_bit((addr), (size), 0)
- extern unsigned long find_next_zero_le_bit(const unsigned long *addr, unsigned long size, unsigned long offset);
- #define find_first_zero_le_bit(addr, size) \
- find_next_zero_le_bit((addr), (size), 0)
- static __inline__ int test_le_bit(unsigned long nr, __const__ unsigned long * addr)
- {
- __const__ unsigned char *ADDR = (__const__ unsigned char *) addr;
- return (ADDR[nr >> 3] >> (nr & 7)) & 1;
- }
- #define test_and_clear_le_bit(nr, addr) \
- test_and_clear_bit((nr) ^ 0x38, (addr))
- #define test_and_set_le_bit(nr, addr) \
- test_and_set_bit((nr) ^ 0x38, (addr))
- /*
- * non-atomic versions
- */
- #define __set_le_bit(nr, addr) \
- __set_bit((nr) ^ 0x38, (addr))
- #define __clear_le_bit(nr, addr) \
- __clear_bit((nr) ^ 0x38, (addr))
- #define __test_and_clear_le_bit(nr, addr) \
- __test_and_clear_bit((nr) ^ 0x38, (addr))
- #define __test_and_set_le_bit(nr, addr) \
- __test_and_set_bit((nr) ^ 0x38, (addr))
- #define ext2_set_bit(nr,addr) \
- __test_and_set_le_bit((nr), (unsigned long*)addr)
- #define ext2_clear_bit(nr, addr) \
- __test_and_clear_le_bit((nr), (unsigned long*)addr)
- #define ext2_set_bit_atomic(lock, nr, addr) \
- test_and_set_le_bit((nr), (unsigned long*)addr)
- #define ext2_clear_bit_atomic(lock, nr, addr) \
- test_and_clear_le_bit((nr), (unsigned long*)addr)
- #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr)
- #define ext2_find_first_zero_bit(addr, size) \
- find_first_zero_le_bit((unsigned long*)addr, size)
- #define ext2_find_next_zero_bit(addr, size, off) \
- find_next_zero_le_bit((unsigned long*)addr, size, off)
- #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr)
- #define minix_set_bit(nr,addr) set_bit(nr,addr)
- #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr)
- #define minix_test_bit(nr,addr) test_bit(nr,addr)
- #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
- #endif /* __KERNEL__ */
- #endif /* _PPC64_BITOPS_H */
|