sched.c 221 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/kthread.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/reciprocal_div.h>
  65. #include <linux/unistd.h>
  66. #include <linux/pagemap.h>
  67. #include <linux/hrtimer.h>
  68. #include <linux/tick.h>
  69. #include <linux/bootmem.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. /*
  77. * Convert user-nice values [ -20 ... 0 ... 19 ]
  78. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  79. * and back.
  80. */
  81. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  82. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  83. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  84. /*
  85. * 'User priority' is the nice value converted to something we
  86. * can work with better when scaling various scheduler parameters,
  87. * it's a [ 0 ... 39 ] range.
  88. */
  89. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  90. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  91. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  92. /*
  93. * Helpers for converting nanosecond timing to jiffy resolution
  94. */
  95. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  96. #define NICE_0_LOAD SCHED_LOAD_SCALE
  97. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  98. /*
  99. * These are the 'tuning knobs' of the scheduler:
  100. *
  101. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  102. * Timeslices get refilled after they expire.
  103. */
  104. #define DEF_TIMESLICE (100 * HZ / 1000)
  105. /*
  106. * single value that denotes runtime == period, ie unlimited time.
  107. */
  108. #define RUNTIME_INF ((u64)~0ULL)
  109. #ifdef CONFIG_SMP
  110. /*
  111. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  112. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  113. */
  114. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  115. {
  116. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  117. }
  118. /*
  119. * Each time a sched group cpu_power is changed,
  120. * we must compute its reciprocal value
  121. */
  122. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  123. {
  124. sg->__cpu_power += val;
  125. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  126. }
  127. #endif
  128. static inline int rt_policy(int policy)
  129. {
  130. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  131. return 1;
  132. return 0;
  133. }
  134. static inline int task_has_rt_policy(struct task_struct *p)
  135. {
  136. return rt_policy(p->policy);
  137. }
  138. /*
  139. * This is the priority-queue data structure of the RT scheduling class:
  140. */
  141. struct rt_prio_array {
  142. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  143. struct list_head queue[MAX_RT_PRIO];
  144. };
  145. struct rt_bandwidth {
  146. /* nests inside the rq lock: */
  147. spinlock_t rt_runtime_lock;
  148. ktime_t rt_period;
  149. u64 rt_runtime;
  150. struct hrtimer rt_period_timer;
  151. };
  152. static struct rt_bandwidth def_rt_bandwidth;
  153. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  154. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  155. {
  156. struct rt_bandwidth *rt_b =
  157. container_of(timer, struct rt_bandwidth, rt_period_timer);
  158. ktime_t now;
  159. int overrun;
  160. int idle = 0;
  161. for (;;) {
  162. now = hrtimer_cb_get_time(timer);
  163. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  164. if (!overrun)
  165. break;
  166. idle = do_sched_rt_period_timer(rt_b, overrun);
  167. }
  168. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  169. }
  170. static
  171. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  172. {
  173. rt_b->rt_period = ns_to_ktime(period);
  174. rt_b->rt_runtime = runtime;
  175. spin_lock_init(&rt_b->rt_runtime_lock);
  176. hrtimer_init(&rt_b->rt_period_timer,
  177. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  178. rt_b->rt_period_timer.function = sched_rt_period_timer;
  179. rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  180. }
  181. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  182. {
  183. ktime_t now;
  184. if (rt_b->rt_runtime == RUNTIME_INF)
  185. return;
  186. if (hrtimer_active(&rt_b->rt_period_timer))
  187. return;
  188. spin_lock(&rt_b->rt_runtime_lock);
  189. for (;;) {
  190. if (hrtimer_active(&rt_b->rt_period_timer))
  191. break;
  192. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  193. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  194. hrtimer_start(&rt_b->rt_period_timer,
  195. rt_b->rt_period_timer.expires,
  196. HRTIMER_MODE_ABS);
  197. }
  198. spin_unlock(&rt_b->rt_runtime_lock);
  199. }
  200. #ifdef CONFIG_RT_GROUP_SCHED
  201. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  202. {
  203. hrtimer_cancel(&rt_b->rt_period_timer);
  204. }
  205. #endif
  206. /*
  207. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  208. * detach_destroy_domains and partition_sched_domains.
  209. */
  210. static DEFINE_MUTEX(sched_domains_mutex);
  211. #ifdef CONFIG_GROUP_SCHED
  212. #include <linux/cgroup.h>
  213. struct cfs_rq;
  214. static LIST_HEAD(task_groups);
  215. /* task group related information */
  216. struct task_group {
  217. #ifdef CONFIG_CGROUP_SCHED
  218. struct cgroup_subsys_state css;
  219. #endif
  220. #ifdef CONFIG_FAIR_GROUP_SCHED
  221. /* schedulable entities of this group on each cpu */
  222. struct sched_entity **se;
  223. /* runqueue "owned" by this group on each cpu */
  224. struct cfs_rq **cfs_rq;
  225. unsigned long shares;
  226. #endif
  227. #ifdef CONFIG_RT_GROUP_SCHED
  228. struct sched_rt_entity **rt_se;
  229. struct rt_rq **rt_rq;
  230. struct rt_bandwidth rt_bandwidth;
  231. #endif
  232. struct rcu_head rcu;
  233. struct list_head list;
  234. struct task_group *parent;
  235. struct list_head siblings;
  236. struct list_head children;
  237. };
  238. #ifdef CONFIG_USER_SCHED
  239. /*
  240. * Root task group.
  241. * Every UID task group (including init_task_group aka UID-0) will
  242. * be a child to this group.
  243. */
  244. struct task_group root_task_group;
  245. #ifdef CONFIG_FAIR_GROUP_SCHED
  246. /* Default task group's sched entity on each cpu */
  247. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  248. /* Default task group's cfs_rq on each cpu */
  249. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  250. #endif /* CONFIG_FAIR_GROUP_SCHED */
  251. #ifdef CONFIG_RT_GROUP_SCHED
  252. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  253. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  254. #endif /* CONFIG_RT_GROUP_SCHED */
  255. #else /* !CONFIG_FAIR_GROUP_SCHED */
  256. #define root_task_group init_task_group
  257. #endif /* CONFIG_FAIR_GROUP_SCHED */
  258. /* task_group_lock serializes add/remove of task groups and also changes to
  259. * a task group's cpu shares.
  260. */
  261. static DEFINE_SPINLOCK(task_group_lock);
  262. #ifdef CONFIG_FAIR_GROUP_SCHED
  263. #ifdef CONFIG_USER_SCHED
  264. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  265. #else /* !CONFIG_USER_SCHED */
  266. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  267. #endif /* CONFIG_USER_SCHED */
  268. /*
  269. * A weight of 0 or 1 can cause arithmetics problems.
  270. * A weight of a cfs_rq is the sum of weights of which entities
  271. * are queued on this cfs_rq, so a weight of a entity should not be
  272. * too large, so as the shares value of a task group.
  273. * (The default weight is 1024 - so there's no practical
  274. * limitation from this.)
  275. */
  276. #define MIN_SHARES 2
  277. #define MAX_SHARES (1UL << 18)
  278. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  279. #endif
  280. /* Default task group.
  281. * Every task in system belong to this group at bootup.
  282. */
  283. struct task_group init_task_group;
  284. /* return group to which a task belongs */
  285. static inline struct task_group *task_group(struct task_struct *p)
  286. {
  287. struct task_group *tg;
  288. #ifdef CONFIG_USER_SCHED
  289. tg = p->user->tg;
  290. #elif defined(CONFIG_CGROUP_SCHED)
  291. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  292. struct task_group, css);
  293. #else
  294. tg = &init_task_group;
  295. #endif
  296. return tg;
  297. }
  298. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  299. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  300. {
  301. #ifdef CONFIG_FAIR_GROUP_SCHED
  302. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  303. p->se.parent = task_group(p)->se[cpu];
  304. #endif
  305. #ifdef CONFIG_RT_GROUP_SCHED
  306. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  307. p->rt.parent = task_group(p)->rt_se[cpu];
  308. #endif
  309. }
  310. #else
  311. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  312. static inline struct task_group *task_group(struct task_struct *p)
  313. {
  314. return NULL;
  315. }
  316. #endif /* CONFIG_GROUP_SCHED */
  317. /* CFS-related fields in a runqueue */
  318. struct cfs_rq {
  319. struct load_weight load;
  320. unsigned long nr_running;
  321. u64 exec_clock;
  322. u64 min_vruntime;
  323. u64 pair_start;
  324. struct rb_root tasks_timeline;
  325. struct rb_node *rb_leftmost;
  326. struct list_head tasks;
  327. struct list_head *balance_iterator;
  328. /*
  329. * 'curr' points to currently running entity on this cfs_rq.
  330. * It is set to NULL otherwise (i.e when none are currently running).
  331. */
  332. struct sched_entity *curr, *next;
  333. unsigned long nr_spread_over;
  334. #ifdef CONFIG_FAIR_GROUP_SCHED
  335. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  336. /*
  337. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  338. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  339. * (like users, containers etc.)
  340. *
  341. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  342. * list is used during load balance.
  343. */
  344. struct list_head leaf_cfs_rq_list;
  345. struct task_group *tg; /* group that "owns" this runqueue */
  346. #ifdef CONFIG_SMP
  347. /*
  348. * the part of load.weight contributed by tasks
  349. */
  350. unsigned long task_weight;
  351. /*
  352. * h_load = weight * f(tg)
  353. *
  354. * Where f(tg) is the recursive weight fraction assigned to
  355. * this group.
  356. */
  357. unsigned long h_load;
  358. /*
  359. * this cpu's part of tg->shares
  360. */
  361. unsigned long shares;
  362. /*
  363. * load.weight at the time we set shares
  364. */
  365. unsigned long rq_weight;
  366. #endif
  367. #endif
  368. };
  369. /* Real-Time classes' related field in a runqueue: */
  370. struct rt_rq {
  371. struct rt_prio_array active;
  372. unsigned long rt_nr_running;
  373. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  374. int highest_prio; /* highest queued rt task prio */
  375. #endif
  376. #ifdef CONFIG_SMP
  377. unsigned long rt_nr_migratory;
  378. int overloaded;
  379. #endif
  380. int rt_throttled;
  381. u64 rt_time;
  382. u64 rt_runtime;
  383. /* Nests inside the rq lock: */
  384. spinlock_t rt_runtime_lock;
  385. #ifdef CONFIG_RT_GROUP_SCHED
  386. unsigned long rt_nr_boosted;
  387. struct rq *rq;
  388. struct list_head leaf_rt_rq_list;
  389. struct task_group *tg;
  390. struct sched_rt_entity *rt_se;
  391. #endif
  392. };
  393. #ifdef CONFIG_SMP
  394. /*
  395. * We add the notion of a root-domain which will be used to define per-domain
  396. * variables. Each exclusive cpuset essentially defines an island domain by
  397. * fully partitioning the member cpus from any other cpuset. Whenever a new
  398. * exclusive cpuset is created, we also create and attach a new root-domain
  399. * object.
  400. *
  401. */
  402. struct root_domain {
  403. atomic_t refcount;
  404. cpumask_t span;
  405. cpumask_t online;
  406. /*
  407. * The "RT overload" flag: it gets set if a CPU has more than
  408. * one runnable RT task.
  409. */
  410. cpumask_t rto_mask;
  411. atomic_t rto_count;
  412. #ifdef CONFIG_SMP
  413. struct cpupri cpupri;
  414. #endif
  415. };
  416. /*
  417. * By default the system creates a single root-domain with all cpus as
  418. * members (mimicking the global state we have today).
  419. */
  420. static struct root_domain def_root_domain;
  421. #endif
  422. /*
  423. * This is the main, per-CPU runqueue data structure.
  424. *
  425. * Locking rule: those places that want to lock multiple runqueues
  426. * (such as the load balancing or the thread migration code), lock
  427. * acquire operations must be ordered by ascending &runqueue.
  428. */
  429. struct rq {
  430. /* runqueue lock: */
  431. spinlock_t lock;
  432. /*
  433. * nr_running and cpu_load should be in the same cacheline because
  434. * remote CPUs use both these fields when doing load calculation.
  435. */
  436. unsigned long nr_running;
  437. #define CPU_LOAD_IDX_MAX 5
  438. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  439. unsigned char idle_at_tick;
  440. #ifdef CONFIG_NO_HZ
  441. unsigned long last_tick_seen;
  442. unsigned char in_nohz_recently;
  443. #endif
  444. /* capture load from *all* tasks on this cpu: */
  445. struct load_weight load;
  446. unsigned long nr_load_updates;
  447. u64 nr_switches;
  448. struct cfs_rq cfs;
  449. struct rt_rq rt;
  450. #ifdef CONFIG_FAIR_GROUP_SCHED
  451. /* list of leaf cfs_rq on this cpu: */
  452. struct list_head leaf_cfs_rq_list;
  453. #endif
  454. #ifdef CONFIG_RT_GROUP_SCHED
  455. struct list_head leaf_rt_rq_list;
  456. #endif
  457. /*
  458. * This is part of a global counter where only the total sum
  459. * over all CPUs matters. A task can increase this counter on
  460. * one CPU and if it got migrated afterwards it may decrease
  461. * it on another CPU. Always updated under the runqueue lock:
  462. */
  463. unsigned long nr_uninterruptible;
  464. struct task_struct *curr, *idle;
  465. unsigned long next_balance;
  466. struct mm_struct *prev_mm;
  467. u64 clock;
  468. atomic_t nr_iowait;
  469. #ifdef CONFIG_SMP
  470. struct root_domain *rd;
  471. struct sched_domain *sd;
  472. /* For active balancing */
  473. int active_balance;
  474. int push_cpu;
  475. /* cpu of this runqueue: */
  476. int cpu;
  477. int online;
  478. unsigned long avg_load_per_task;
  479. struct task_struct *migration_thread;
  480. struct list_head migration_queue;
  481. #endif
  482. #ifdef CONFIG_SCHED_HRTICK
  483. unsigned long hrtick_flags;
  484. ktime_t hrtick_expire;
  485. struct hrtimer hrtick_timer;
  486. #endif
  487. #ifdef CONFIG_SCHEDSTATS
  488. /* latency stats */
  489. struct sched_info rq_sched_info;
  490. /* sys_sched_yield() stats */
  491. unsigned int yld_exp_empty;
  492. unsigned int yld_act_empty;
  493. unsigned int yld_both_empty;
  494. unsigned int yld_count;
  495. /* schedule() stats */
  496. unsigned int sched_switch;
  497. unsigned int sched_count;
  498. unsigned int sched_goidle;
  499. /* try_to_wake_up() stats */
  500. unsigned int ttwu_count;
  501. unsigned int ttwu_local;
  502. /* BKL stats */
  503. unsigned int bkl_count;
  504. #endif
  505. struct lock_class_key rq_lock_key;
  506. };
  507. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  508. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  509. {
  510. rq->curr->sched_class->check_preempt_curr(rq, p);
  511. }
  512. static inline int cpu_of(struct rq *rq)
  513. {
  514. #ifdef CONFIG_SMP
  515. return rq->cpu;
  516. #else
  517. return 0;
  518. #endif
  519. }
  520. /*
  521. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  522. * See detach_destroy_domains: synchronize_sched for details.
  523. *
  524. * The domain tree of any CPU may only be accessed from within
  525. * preempt-disabled sections.
  526. */
  527. #define for_each_domain(cpu, __sd) \
  528. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  529. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  530. #define this_rq() (&__get_cpu_var(runqueues))
  531. #define task_rq(p) cpu_rq(task_cpu(p))
  532. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  533. static inline void update_rq_clock(struct rq *rq)
  534. {
  535. rq->clock = sched_clock_cpu(cpu_of(rq));
  536. }
  537. /*
  538. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  539. */
  540. #ifdef CONFIG_SCHED_DEBUG
  541. # define const_debug __read_mostly
  542. #else
  543. # define const_debug static const
  544. #endif
  545. /**
  546. * runqueue_is_locked
  547. *
  548. * Returns true if the current cpu runqueue is locked.
  549. * This interface allows printk to be called with the runqueue lock
  550. * held and know whether or not it is OK to wake up the klogd.
  551. */
  552. int runqueue_is_locked(void)
  553. {
  554. int cpu = get_cpu();
  555. struct rq *rq = cpu_rq(cpu);
  556. int ret;
  557. ret = spin_is_locked(&rq->lock);
  558. put_cpu();
  559. return ret;
  560. }
  561. /*
  562. * Debugging: various feature bits
  563. */
  564. #define SCHED_FEAT(name, enabled) \
  565. __SCHED_FEAT_##name ,
  566. enum {
  567. #include "sched_features.h"
  568. };
  569. #undef SCHED_FEAT
  570. #define SCHED_FEAT(name, enabled) \
  571. (1UL << __SCHED_FEAT_##name) * enabled |
  572. const_debug unsigned int sysctl_sched_features =
  573. #include "sched_features.h"
  574. 0;
  575. #undef SCHED_FEAT
  576. #ifdef CONFIG_SCHED_DEBUG
  577. #define SCHED_FEAT(name, enabled) \
  578. #name ,
  579. static __read_mostly char *sched_feat_names[] = {
  580. #include "sched_features.h"
  581. NULL
  582. };
  583. #undef SCHED_FEAT
  584. static int sched_feat_open(struct inode *inode, struct file *filp)
  585. {
  586. filp->private_data = inode->i_private;
  587. return 0;
  588. }
  589. static ssize_t
  590. sched_feat_read(struct file *filp, char __user *ubuf,
  591. size_t cnt, loff_t *ppos)
  592. {
  593. char *buf;
  594. int r = 0;
  595. int len = 0;
  596. int i;
  597. for (i = 0; sched_feat_names[i]; i++) {
  598. len += strlen(sched_feat_names[i]);
  599. len += 4;
  600. }
  601. buf = kmalloc(len + 2, GFP_KERNEL);
  602. if (!buf)
  603. return -ENOMEM;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (sysctl_sched_features & (1UL << i))
  606. r += sprintf(buf + r, "%s ", sched_feat_names[i]);
  607. else
  608. r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
  609. }
  610. r += sprintf(buf + r, "\n");
  611. WARN_ON(r >= len + 2);
  612. r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
  613. kfree(buf);
  614. return r;
  615. }
  616. static ssize_t
  617. sched_feat_write(struct file *filp, const char __user *ubuf,
  618. size_t cnt, loff_t *ppos)
  619. {
  620. char buf[64];
  621. char *cmp = buf;
  622. int neg = 0;
  623. int i;
  624. if (cnt > 63)
  625. cnt = 63;
  626. if (copy_from_user(&buf, ubuf, cnt))
  627. return -EFAULT;
  628. buf[cnt] = 0;
  629. if (strncmp(buf, "NO_", 3) == 0) {
  630. neg = 1;
  631. cmp += 3;
  632. }
  633. for (i = 0; sched_feat_names[i]; i++) {
  634. int len = strlen(sched_feat_names[i]);
  635. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  636. if (neg)
  637. sysctl_sched_features &= ~(1UL << i);
  638. else
  639. sysctl_sched_features |= (1UL << i);
  640. break;
  641. }
  642. }
  643. if (!sched_feat_names[i])
  644. return -EINVAL;
  645. filp->f_pos += cnt;
  646. return cnt;
  647. }
  648. static struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .read = sched_feat_read,
  651. .write = sched_feat_write,
  652. };
  653. static __init int sched_init_debug(void)
  654. {
  655. debugfs_create_file("sched_features", 0644, NULL, NULL,
  656. &sched_feat_fops);
  657. return 0;
  658. }
  659. late_initcall(sched_init_debug);
  660. #endif
  661. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  662. /*
  663. * Number of tasks to iterate in a single balance run.
  664. * Limited because this is done with IRQs disabled.
  665. */
  666. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  667. /*
  668. * ratelimit for updating the group shares.
  669. * default: 0.5ms
  670. */
  671. const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
  672. /*
  673. * period over which we measure -rt task cpu usage in us.
  674. * default: 1s
  675. */
  676. unsigned int sysctl_sched_rt_period = 1000000;
  677. static __read_mostly int scheduler_running;
  678. /*
  679. * part of the period that we allow rt tasks to run in us.
  680. * default: 0.95s
  681. */
  682. int sysctl_sched_rt_runtime = 950000;
  683. static inline u64 global_rt_period(void)
  684. {
  685. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  686. }
  687. static inline u64 global_rt_runtime(void)
  688. {
  689. if (sysctl_sched_rt_period < 0)
  690. return RUNTIME_INF;
  691. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  692. }
  693. #ifndef prepare_arch_switch
  694. # define prepare_arch_switch(next) do { } while (0)
  695. #endif
  696. #ifndef finish_arch_switch
  697. # define finish_arch_switch(prev) do { } while (0)
  698. #endif
  699. static inline int task_current(struct rq *rq, struct task_struct *p)
  700. {
  701. return rq->curr == p;
  702. }
  703. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  704. static inline int task_running(struct rq *rq, struct task_struct *p)
  705. {
  706. return task_current(rq, p);
  707. }
  708. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  709. {
  710. }
  711. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  712. {
  713. #ifdef CONFIG_DEBUG_SPINLOCK
  714. /* this is a valid case when another task releases the spinlock */
  715. rq->lock.owner = current;
  716. #endif
  717. /*
  718. * If we are tracking spinlock dependencies then we have to
  719. * fix up the runqueue lock - which gets 'carried over' from
  720. * prev into current:
  721. */
  722. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  723. spin_unlock_irq(&rq->lock);
  724. }
  725. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  726. static inline int task_running(struct rq *rq, struct task_struct *p)
  727. {
  728. #ifdef CONFIG_SMP
  729. return p->oncpu;
  730. #else
  731. return task_current(rq, p);
  732. #endif
  733. }
  734. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  735. {
  736. #ifdef CONFIG_SMP
  737. /*
  738. * We can optimise this out completely for !SMP, because the
  739. * SMP rebalancing from interrupt is the only thing that cares
  740. * here.
  741. */
  742. next->oncpu = 1;
  743. #endif
  744. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  745. spin_unlock_irq(&rq->lock);
  746. #else
  747. spin_unlock(&rq->lock);
  748. #endif
  749. }
  750. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * After ->oncpu is cleared, the task can be moved to a different CPU.
  755. * We must ensure this doesn't happen until the switch is completely
  756. * finished.
  757. */
  758. smp_wmb();
  759. prev->oncpu = 0;
  760. #endif
  761. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  762. local_irq_enable();
  763. #endif
  764. }
  765. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  766. /*
  767. * __task_rq_lock - lock the runqueue a given task resides on.
  768. * Must be called interrupts disabled.
  769. */
  770. static inline struct rq *__task_rq_lock(struct task_struct *p)
  771. __acquires(rq->lock)
  772. {
  773. for (;;) {
  774. struct rq *rq = task_rq(p);
  775. spin_lock(&rq->lock);
  776. if (likely(rq == task_rq(p)))
  777. return rq;
  778. spin_unlock(&rq->lock);
  779. }
  780. }
  781. /*
  782. * task_rq_lock - lock the runqueue a given task resides on and disable
  783. * interrupts. Note the ordering: we can safely lookup the task_rq without
  784. * explicitly disabling preemption.
  785. */
  786. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  787. __acquires(rq->lock)
  788. {
  789. struct rq *rq;
  790. for (;;) {
  791. local_irq_save(*flags);
  792. rq = task_rq(p);
  793. spin_lock(&rq->lock);
  794. if (likely(rq == task_rq(p)))
  795. return rq;
  796. spin_unlock_irqrestore(&rq->lock, *flags);
  797. }
  798. }
  799. static void __task_rq_unlock(struct rq *rq)
  800. __releases(rq->lock)
  801. {
  802. spin_unlock(&rq->lock);
  803. }
  804. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  805. __releases(rq->lock)
  806. {
  807. spin_unlock_irqrestore(&rq->lock, *flags);
  808. }
  809. /*
  810. * this_rq_lock - lock this runqueue and disable interrupts.
  811. */
  812. static struct rq *this_rq_lock(void)
  813. __acquires(rq->lock)
  814. {
  815. struct rq *rq;
  816. local_irq_disable();
  817. rq = this_rq();
  818. spin_lock(&rq->lock);
  819. return rq;
  820. }
  821. static void __resched_task(struct task_struct *p, int tif_bit);
  822. static inline void resched_task(struct task_struct *p)
  823. {
  824. __resched_task(p, TIF_NEED_RESCHED);
  825. }
  826. #ifdef CONFIG_SCHED_HRTICK
  827. /*
  828. * Use HR-timers to deliver accurate preemption points.
  829. *
  830. * Its all a bit involved since we cannot program an hrt while holding the
  831. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  832. * reschedule event.
  833. *
  834. * When we get rescheduled we reprogram the hrtick_timer outside of the
  835. * rq->lock.
  836. */
  837. static inline void resched_hrt(struct task_struct *p)
  838. {
  839. __resched_task(p, TIF_HRTICK_RESCHED);
  840. }
  841. static inline void resched_rq(struct rq *rq)
  842. {
  843. unsigned long flags;
  844. spin_lock_irqsave(&rq->lock, flags);
  845. resched_task(rq->curr);
  846. spin_unlock_irqrestore(&rq->lock, flags);
  847. }
  848. enum {
  849. HRTICK_SET, /* re-programm hrtick_timer */
  850. HRTICK_RESET, /* not a new slice */
  851. HRTICK_BLOCK, /* stop hrtick operations */
  852. };
  853. /*
  854. * Use hrtick when:
  855. * - enabled by features
  856. * - hrtimer is actually high res
  857. */
  858. static inline int hrtick_enabled(struct rq *rq)
  859. {
  860. if (!sched_feat(HRTICK))
  861. return 0;
  862. if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
  863. return 0;
  864. return hrtimer_is_hres_active(&rq->hrtick_timer);
  865. }
  866. /*
  867. * Called to set the hrtick timer state.
  868. *
  869. * called with rq->lock held and irqs disabled
  870. */
  871. static void hrtick_start(struct rq *rq, u64 delay, int reset)
  872. {
  873. assert_spin_locked(&rq->lock);
  874. /*
  875. * preempt at: now + delay
  876. */
  877. rq->hrtick_expire =
  878. ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
  879. /*
  880. * indicate we need to program the timer
  881. */
  882. __set_bit(HRTICK_SET, &rq->hrtick_flags);
  883. if (reset)
  884. __set_bit(HRTICK_RESET, &rq->hrtick_flags);
  885. /*
  886. * New slices are called from the schedule path and don't need a
  887. * forced reschedule.
  888. */
  889. if (reset)
  890. resched_hrt(rq->curr);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * Update the timer from the possible pending state.
  899. */
  900. static void hrtick_set(struct rq *rq)
  901. {
  902. ktime_t time;
  903. int set, reset;
  904. unsigned long flags;
  905. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  906. spin_lock_irqsave(&rq->lock, flags);
  907. set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
  908. reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
  909. time = rq->hrtick_expire;
  910. clear_thread_flag(TIF_HRTICK_RESCHED);
  911. spin_unlock_irqrestore(&rq->lock, flags);
  912. if (set) {
  913. hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
  914. if (reset && !hrtimer_active(&rq->hrtick_timer))
  915. resched_rq(rq);
  916. } else
  917. hrtick_clear(rq);
  918. }
  919. /*
  920. * High-resolution timer tick.
  921. * Runs from hardirq context with interrupts disabled.
  922. */
  923. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  924. {
  925. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  926. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  927. spin_lock(&rq->lock);
  928. update_rq_clock(rq);
  929. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  930. spin_unlock(&rq->lock);
  931. return HRTIMER_NORESTART;
  932. }
  933. #ifdef CONFIG_SMP
  934. static void hotplug_hrtick_disable(int cpu)
  935. {
  936. struct rq *rq = cpu_rq(cpu);
  937. unsigned long flags;
  938. spin_lock_irqsave(&rq->lock, flags);
  939. rq->hrtick_flags = 0;
  940. __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  941. spin_unlock_irqrestore(&rq->lock, flags);
  942. hrtick_clear(rq);
  943. }
  944. static void hotplug_hrtick_enable(int cpu)
  945. {
  946. struct rq *rq = cpu_rq(cpu);
  947. unsigned long flags;
  948. spin_lock_irqsave(&rq->lock, flags);
  949. __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
  950. spin_unlock_irqrestore(&rq->lock, flags);
  951. }
  952. static int
  953. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  954. {
  955. int cpu = (int)(long)hcpu;
  956. switch (action) {
  957. case CPU_UP_CANCELED:
  958. case CPU_UP_CANCELED_FROZEN:
  959. case CPU_DOWN_PREPARE:
  960. case CPU_DOWN_PREPARE_FROZEN:
  961. case CPU_DEAD:
  962. case CPU_DEAD_FROZEN:
  963. hotplug_hrtick_disable(cpu);
  964. return NOTIFY_OK;
  965. case CPU_UP_PREPARE:
  966. case CPU_UP_PREPARE_FROZEN:
  967. case CPU_DOWN_FAILED:
  968. case CPU_DOWN_FAILED_FROZEN:
  969. case CPU_ONLINE:
  970. case CPU_ONLINE_FROZEN:
  971. hotplug_hrtick_enable(cpu);
  972. return NOTIFY_OK;
  973. }
  974. return NOTIFY_DONE;
  975. }
  976. static void init_hrtick(void)
  977. {
  978. hotcpu_notifier(hotplug_hrtick, 0);
  979. }
  980. #endif /* CONFIG_SMP */
  981. static void init_rq_hrtick(struct rq *rq)
  982. {
  983. rq->hrtick_flags = 0;
  984. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  985. rq->hrtick_timer.function = hrtick;
  986. rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
  987. }
  988. void hrtick_resched(void)
  989. {
  990. struct rq *rq;
  991. unsigned long flags;
  992. if (!test_thread_flag(TIF_HRTICK_RESCHED))
  993. return;
  994. local_irq_save(flags);
  995. rq = cpu_rq(smp_processor_id());
  996. hrtick_set(rq);
  997. local_irq_restore(flags);
  998. }
  999. #else
  1000. static inline void hrtick_clear(struct rq *rq)
  1001. {
  1002. }
  1003. static inline void hrtick_set(struct rq *rq)
  1004. {
  1005. }
  1006. static inline void init_rq_hrtick(struct rq *rq)
  1007. {
  1008. }
  1009. void hrtick_resched(void)
  1010. {
  1011. }
  1012. static inline void init_hrtick(void)
  1013. {
  1014. }
  1015. #endif
  1016. /*
  1017. * resched_task - mark a task 'to be rescheduled now'.
  1018. *
  1019. * On UP this means the setting of the need_resched flag, on SMP it
  1020. * might also involve a cross-CPU call to trigger the scheduler on
  1021. * the target CPU.
  1022. */
  1023. #ifdef CONFIG_SMP
  1024. #ifndef tsk_is_polling
  1025. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1026. #endif
  1027. static void __resched_task(struct task_struct *p, int tif_bit)
  1028. {
  1029. int cpu;
  1030. assert_spin_locked(&task_rq(p)->lock);
  1031. if (unlikely(test_tsk_thread_flag(p, tif_bit)))
  1032. return;
  1033. set_tsk_thread_flag(p, tif_bit);
  1034. cpu = task_cpu(p);
  1035. if (cpu == smp_processor_id())
  1036. return;
  1037. /* NEED_RESCHED must be visible before we test polling */
  1038. smp_mb();
  1039. if (!tsk_is_polling(p))
  1040. smp_send_reschedule(cpu);
  1041. }
  1042. static void resched_cpu(int cpu)
  1043. {
  1044. struct rq *rq = cpu_rq(cpu);
  1045. unsigned long flags;
  1046. if (!spin_trylock_irqsave(&rq->lock, flags))
  1047. return;
  1048. resched_task(cpu_curr(cpu));
  1049. spin_unlock_irqrestore(&rq->lock, flags);
  1050. }
  1051. #ifdef CONFIG_NO_HZ
  1052. /*
  1053. * When add_timer_on() enqueues a timer into the timer wheel of an
  1054. * idle CPU then this timer might expire before the next timer event
  1055. * which is scheduled to wake up that CPU. In case of a completely
  1056. * idle system the next event might even be infinite time into the
  1057. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1058. * leaves the inner idle loop so the newly added timer is taken into
  1059. * account when the CPU goes back to idle and evaluates the timer
  1060. * wheel for the next timer event.
  1061. */
  1062. void wake_up_idle_cpu(int cpu)
  1063. {
  1064. struct rq *rq = cpu_rq(cpu);
  1065. if (cpu == smp_processor_id())
  1066. return;
  1067. /*
  1068. * This is safe, as this function is called with the timer
  1069. * wheel base lock of (cpu) held. When the CPU is on the way
  1070. * to idle and has not yet set rq->curr to idle then it will
  1071. * be serialized on the timer wheel base lock and take the new
  1072. * timer into account automatically.
  1073. */
  1074. if (rq->curr != rq->idle)
  1075. return;
  1076. /*
  1077. * We can set TIF_RESCHED on the idle task of the other CPU
  1078. * lockless. The worst case is that the other CPU runs the
  1079. * idle task through an additional NOOP schedule()
  1080. */
  1081. set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
  1082. /* NEED_RESCHED must be visible before we test polling */
  1083. smp_mb();
  1084. if (!tsk_is_polling(rq->idle))
  1085. smp_send_reschedule(cpu);
  1086. }
  1087. #endif /* CONFIG_NO_HZ */
  1088. #else /* !CONFIG_SMP */
  1089. static void __resched_task(struct task_struct *p, int tif_bit)
  1090. {
  1091. assert_spin_locked(&task_rq(p)->lock);
  1092. set_tsk_thread_flag(p, tif_bit);
  1093. }
  1094. #endif /* CONFIG_SMP */
  1095. #if BITS_PER_LONG == 32
  1096. # define WMULT_CONST (~0UL)
  1097. #else
  1098. # define WMULT_CONST (1UL << 32)
  1099. #endif
  1100. #define WMULT_SHIFT 32
  1101. /*
  1102. * Shift right and round:
  1103. */
  1104. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1105. /*
  1106. * delta *= weight / lw
  1107. */
  1108. static unsigned long
  1109. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1110. struct load_weight *lw)
  1111. {
  1112. u64 tmp;
  1113. if (!lw->inv_weight) {
  1114. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1115. lw->inv_weight = 1;
  1116. else
  1117. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1118. / (lw->weight+1);
  1119. }
  1120. tmp = (u64)delta_exec * weight;
  1121. /*
  1122. * Check whether we'd overflow the 64-bit multiplication:
  1123. */
  1124. if (unlikely(tmp > WMULT_CONST))
  1125. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1126. WMULT_SHIFT/2);
  1127. else
  1128. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1129. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1130. }
  1131. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1132. {
  1133. lw->weight += inc;
  1134. lw->inv_weight = 0;
  1135. }
  1136. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1137. {
  1138. lw->weight -= dec;
  1139. lw->inv_weight = 0;
  1140. }
  1141. /*
  1142. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1143. * of tasks with abnormal "nice" values across CPUs the contribution that
  1144. * each task makes to its run queue's load is weighted according to its
  1145. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1146. * scaled version of the new time slice allocation that they receive on time
  1147. * slice expiry etc.
  1148. */
  1149. #define WEIGHT_IDLEPRIO 2
  1150. #define WMULT_IDLEPRIO (1 << 31)
  1151. /*
  1152. * Nice levels are multiplicative, with a gentle 10% change for every
  1153. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1154. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1155. * that remained on nice 0.
  1156. *
  1157. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1158. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1159. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1160. * If a task goes up by ~10% and another task goes down by ~10% then
  1161. * the relative distance between them is ~25%.)
  1162. */
  1163. static const int prio_to_weight[40] = {
  1164. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1165. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1166. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1167. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1168. /* 0 */ 1024, 820, 655, 526, 423,
  1169. /* 5 */ 335, 272, 215, 172, 137,
  1170. /* 10 */ 110, 87, 70, 56, 45,
  1171. /* 15 */ 36, 29, 23, 18, 15,
  1172. };
  1173. /*
  1174. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1175. *
  1176. * In cases where the weight does not change often, we can use the
  1177. * precalculated inverse to speed up arithmetics by turning divisions
  1178. * into multiplications:
  1179. */
  1180. static const u32 prio_to_wmult[40] = {
  1181. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1182. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1183. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1184. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1185. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1186. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1187. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1188. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1189. };
  1190. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1191. /*
  1192. * runqueue iterator, to support SMP load-balancing between different
  1193. * scheduling classes, without having to expose their internal data
  1194. * structures to the load-balancing proper:
  1195. */
  1196. struct rq_iterator {
  1197. void *arg;
  1198. struct task_struct *(*start)(void *);
  1199. struct task_struct *(*next)(void *);
  1200. };
  1201. #ifdef CONFIG_SMP
  1202. static unsigned long
  1203. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1204. unsigned long max_load_move, struct sched_domain *sd,
  1205. enum cpu_idle_type idle, int *all_pinned,
  1206. int *this_best_prio, struct rq_iterator *iterator);
  1207. static int
  1208. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1209. struct sched_domain *sd, enum cpu_idle_type idle,
  1210. struct rq_iterator *iterator);
  1211. #endif
  1212. #ifdef CONFIG_CGROUP_CPUACCT
  1213. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1214. #else
  1215. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1216. #endif
  1217. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1218. {
  1219. update_load_add(&rq->load, load);
  1220. }
  1221. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1222. {
  1223. update_load_sub(&rq->load, load);
  1224. }
  1225. #ifdef CONFIG_SMP
  1226. static unsigned long source_load(int cpu, int type);
  1227. static unsigned long target_load(int cpu, int type);
  1228. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1229. static unsigned long cpu_avg_load_per_task(int cpu)
  1230. {
  1231. struct rq *rq = cpu_rq(cpu);
  1232. if (rq->nr_running)
  1233. rq->avg_load_per_task = rq->load.weight / rq->nr_running;
  1234. return rq->avg_load_per_task;
  1235. }
  1236. #ifdef CONFIG_FAIR_GROUP_SCHED
  1237. typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
  1238. /*
  1239. * Iterate the full tree, calling @down when first entering a node and @up when
  1240. * leaving it for the final time.
  1241. */
  1242. static void
  1243. walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
  1244. {
  1245. struct task_group *parent, *child;
  1246. rcu_read_lock();
  1247. parent = &root_task_group;
  1248. down:
  1249. (*down)(parent, cpu, sd);
  1250. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1251. parent = child;
  1252. goto down;
  1253. up:
  1254. continue;
  1255. }
  1256. (*up)(parent, cpu, sd);
  1257. child = parent;
  1258. parent = parent->parent;
  1259. if (parent)
  1260. goto up;
  1261. rcu_read_unlock();
  1262. }
  1263. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1264. /*
  1265. * Calculate and set the cpu's group shares.
  1266. */
  1267. static void
  1268. __update_group_shares_cpu(struct task_group *tg, int cpu,
  1269. unsigned long sd_shares, unsigned long sd_rq_weight)
  1270. {
  1271. int boost = 0;
  1272. unsigned long shares;
  1273. unsigned long rq_weight;
  1274. if (!tg->se[cpu])
  1275. return;
  1276. rq_weight = tg->cfs_rq[cpu]->load.weight;
  1277. /*
  1278. * If there are currently no tasks on the cpu pretend there is one of
  1279. * average load so that when a new task gets to run here it will not
  1280. * get delayed by group starvation.
  1281. */
  1282. if (!rq_weight) {
  1283. boost = 1;
  1284. rq_weight = NICE_0_LOAD;
  1285. }
  1286. if (unlikely(rq_weight > sd_rq_weight))
  1287. rq_weight = sd_rq_weight;
  1288. /*
  1289. * \Sum shares * rq_weight
  1290. * shares = -----------------------
  1291. * \Sum rq_weight
  1292. *
  1293. */
  1294. shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
  1295. /*
  1296. * record the actual number of shares, not the boosted amount.
  1297. */
  1298. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1299. tg->cfs_rq[cpu]->rq_weight = rq_weight;
  1300. if (shares < MIN_SHARES)
  1301. shares = MIN_SHARES;
  1302. else if (shares > MAX_SHARES)
  1303. shares = MAX_SHARES;
  1304. __set_se_shares(tg->se[cpu], shares);
  1305. }
  1306. /*
  1307. * Re-compute the task group their per cpu shares over the given domain.
  1308. * This needs to be done in a bottom-up fashion because the rq weight of a
  1309. * parent group depends on the shares of its child groups.
  1310. */
  1311. static void
  1312. tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
  1313. {
  1314. unsigned long rq_weight = 0;
  1315. unsigned long shares = 0;
  1316. int i;
  1317. for_each_cpu_mask(i, sd->span) {
  1318. rq_weight += tg->cfs_rq[i]->load.weight;
  1319. shares += tg->cfs_rq[i]->shares;
  1320. }
  1321. if ((!shares && rq_weight) || shares > tg->shares)
  1322. shares = tg->shares;
  1323. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1324. shares = tg->shares;
  1325. if (!rq_weight)
  1326. rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
  1327. for_each_cpu_mask(i, sd->span) {
  1328. struct rq *rq = cpu_rq(i);
  1329. unsigned long flags;
  1330. spin_lock_irqsave(&rq->lock, flags);
  1331. __update_group_shares_cpu(tg, i, shares, rq_weight);
  1332. spin_unlock_irqrestore(&rq->lock, flags);
  1333. }
  1334. }
  1335. /*
  1336. * Compute the cpu's hierarchical load factor for each task group.
  1337. * This needs to be done in a top-down fashion because the load of a child
  1338. * group is a fraction of its parents load.
  1339. */
  1340. static void
  1341. tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
  1342. {
  1343. unsigned long load;
  1344. if (!tg->parent) {
  1345. load = cpu_rq(cpu)->load.weight;
  1346. } else {
  1347. load = tg->parent->cfs_rq[cpu]->h_load;
  1348. load *= tg->cfs_rq[cpu]->shares;
  1349. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1350. }
  1351. tg->cfs_rq[cpu]->h_load = load;
  1352. }
  1353. static void
  1354. tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
  1355. {
  1356. }
  1357. static void update_shares(struct sched_domain *sd)
  1358. {
  1359. u64 now = cpu_clock(raw_smp_processor_id());
  1360. s64 elapsed = now - sd->last_update;
  1361. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1362. sd->last_update = now;
  1363. walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
  1364. }
  1365. }
  1366. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1367. {
  1368. spin_unlock(&rq->lock);
  1369. update_shares(sd);
  1370. spin_lock(&rq->lock);
  1371. }
  1372. static void update_h_load(int cpu)
  1373. {
  1374. walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
  1375. }
  1376. #else
  1377. static inline void update_shares(struct sched_domain *sd)
  1378. {
  1379. }
  1380. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1381. {
  1382. }
  1383. #endif
  1384. #endif
  1385. #ifdef CONFIG_FAIR_GROUP_SCHED
  1386. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1387. {
  1388. #ifdef CONFIG_SMP
  1389. cfs_rq->shares = shares;
  1390. #endif
  1391. }
  1392. #endif
  1393. #include "sched_stats.h"
  1394. #include "sched_idletask.c"
  1395. #include "sched_fair.c"
  1396. #include "sched_rt.c"
  1397. #ifdef CONFIG_SCHED_DEBUG
  1398. # include "sched_debug.c"
  1399. #endif
  1400. #define sched_class_highest (&rt_sched_class)
  1401. #define for_each_class(class) \
  1402. for (class = sched_class_highest; class; class = class->next)
  1403. static void inc_nr_running(struct rq *rq)
  1404. {
  1405. rq->nr_running++;
  1406. }
  1407. static void dec_nr_running(struct rq *rq)
  1408. {
  1409. rq->nr_running--;
  1410. }
  1411. static void set_load_weight(struct task_struct *p)
  1412. {
  1413. if (task_has_rt_policy(p)) {
  1414. p->se.load.weight = prio_to_weight[0] * 2;
  1415. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1416. return;
  1417. }
  1418. /*
  1419. * SCHED_IDLE tasks get minimal weight:
  1420. */
  1421. if (p->policy == SCHED_IDLE) {
  1422. p->se.load.weight = WEIGHT_IDLEPRIO;
  1423. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1424. return;
  1425. }
  1426. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1427. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1428. }
  1429. static void update_avg(u64 *avg, u64 sample)
  1430. {
  1431. s64 diff = sample - *avg;
  1432. *avg += diff >> 3;
  1433. }
  1434. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1435. {
  1436. sched_info_queued(p);
  1437. p->sched_class->enqueue_task(rq, p, wakeup);
  1438. p->se.on_rq = 1;
  1439. }
  1440. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1441. {
  1442. if (sleep && p->se.last_wakeup) {
  1443. update_avg(&p->se.avg_overlap,
  1444. p->se.sum_exec_runtime - p->se.last_wakeup);
  1445. p->se.last_wakeup = 0;
  1446. }
  1447. sched_info_dequeued(p);
  1448. p->sched_class->dequeue_task(rq, p, sleep);
  1449. p->se.on_rq = 0;
  1450. }
  1451. /*
  1452. * __normal_prio - return the priority that is based on the static prio
  1453. */
  1454. static inline int __normal_prio(struct task_struct *p)
  1455. {
  1456. return p->static_prio;
  1457. }
  1458. /*
  1459. * Calculate the expected normal priority: i.e. priority
  1460. * without taking RT-inheritance into account. Might be
  1461. * boosted by interactivity modifiers. Changes upon fork,
  1462. * setprio syscalls, and whenever the interactivity
  1463. * estimator recalculates.
  1464. */
  1465. static inline int normal_prio(struct task_struct *p)
  1466. {
  1467. int prio;
  1468. if (task_has_rt_policy(p))
  1469. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1470. else
  1471. prio = __normal_prio(p);
  1472. return prio;
  1473. }
  1474. /*
  1475. * Calculate the current priority, i.e. the priority
  1476. * taken into account by the scheduler. This value might
  1477. * be boosted by RT tasks, or might be boosted by
  1478. * interactivity modifiers. Will be RT if the task got
  1479. * RT-boosted. If not then it returns p->normal_prio.
  1480. */
  1481. static int effective_prio(struct task_struct *p)
  1482. {
  1483. p->normal_prio = normal_prio(p);
  1484. /*
  1485. * If we are RT tasks or we were boosted to RT priority,
  1486. * keep the priority unchanged. Otherwise, update priority
  1487. * to the normal priority:
  1488. */
  1489. if (!rt_prio(p->prio))
  1490. return p->normal_prio;
  1491. return p->prio;
  1492. }
  1493. /*
  1494. * activate_task - move a task to the runqueue.
  1495. */
  1496. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1497. {
  1498. if (task_contributes_to_load(p))
  1499. rq->nr_uninterruptible--;
  1500. enqueue_task(rq, p, wakeup);
  1501. inc_nr_running(rq);
  1502. }
  1503. /*
  1504. * deactivate_task - remove a task from the runqueue.
  1505. */
  1506. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1507. {
  1508. if (task_contributes_to_load(p))
  1509. rq->nr_uninterruptible++;
  1510. dequeue_task(rq, p, sleep);
  1511. dec_nr_running(rq);
  1512. }
  1513. /**
  1514. * task_curr - is this task currently executing on a CPU?
  1515. * @p: the task in question.
  1516. */
  1517. inline int task_curr(const struct task_struct *p)
  1518. {
  1519. return cpu_curr(task_cpu(p)) == p;
  1520. }
  1521. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1522. {
  1523. set_task_rq(p, cpu);
  1524. #ifdef CONFIG_SMP
  1525. /*
  1526. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1527. * successfuly executed on another CPU. We must ensure that updates of
  1528. * per-task data have been completed by this moment.
  1529. */
  1530. smp_wmb();
  1531. task_thread_info(p)->cpu = cpu;
  1532. #endif
  1533. }
  1534. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1535. const struct sched_class *prev_class,
  1536. int oldprio, int running)
  1537. {
  1538. if (prev_class != p->sched_class) {
  1539. if (prev_class->switched_from)
  1540. prev_class->switched_from(rq, p, running);
  1541. p->sched_class->switched_to(rq, p, running);
  1542. } else
  1543. p->sched_class->prio_changed(rq, p, oldprio, running);
  1544. }
  1545. #ifdef CONFIG_SMP
  1546. /* Used instead of source_load when we know the type == 0 */
  1547. static unsigned long weighted_cpuload(const int cpu)
  1548. {
  1549. return cpu_rq(cpu)->load.weight;
  1550. }
  1551. /*
  1552. * Is this task likely cache-hot:
  1553. */
  1554. static int
  1555. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1556. {
  1557. s64 delta;
  1558. /*
  1559. * Buddy candidates are cache hot:
  1560. */
  1561. if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
  1562. return 1;
  1563. if (p->sched_class != &fair_sched_class)
  1564. return 0;
  1565. if (sysctl_sched_migration_cost == -1)
  1566. return 1;
  1567. if (sysctl_sched_migration_cost == 0)
  1568. return 0;
  1569. delta = now - p->se.exec_start;
  1570. return delta < (s64)sysctl_sched_migration_cost;
  1571. }
  1572. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1573. {
  1574. int old_cpu = task_cpu(p);
  1575. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1576. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1577. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1578. u64 clock_offset;
  1579. clock_offset = old_rq->clock - new_rq->clock;
  1580. #ifdef CONFIG_SCHEDSTATS
  1581. if (p->se.wait_start)
  1582. p->se.wait_start -= clock_offset;
  1583. if (p->se.sleep_start)
  1584. p->se.sleep_start -= clock_offset;
  1585. if (p->se.block_start)
  1586. p->se.block_start -= clock_offset;
  1587. if (old_cpu != new_cpu) {
  1588. schedstat_inc(p, se.nr_migrations);
  1589. if (task_hot(p, old_rq->clock, NULL))
  1590. schedstat_inc(p, se.nr_forced2_migrations);
  1591. }
  1592. #endif
  1593. p->se.vruntime -= old_cfsrq->min_vruntime -
  1594. new_cfsrq->min_vruntime;
  1595. __set_task_cpu(p, new_cpu);
  1596. }
  1597. struct migration_req {
  1598. struct list_head list;
  1599. struct task_struct *task;
  1600. int dest_cpu;
  1601. struct completion done;
  1602. };
  1603. /*
  1604. * The task's runqueue lock must be held.
  1605. * Returns true if you have to wait for migration thread.
  1606. */
  1607. static int
  1608. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1609. {
  1610. struct rq *rq = task_rq(p);
  1611. /*
  1612. * If the task is not on a runqueue (and not running), then
  1613. * it is sufficient to simply update the task's cpu field.
  1614. */
  1615. if (!p->se.on_rq && !task_running(rq, p)) {
  1616. set_task_cpu(p, dest_cpu);
  1617. return 0;
  1618. }
  1619. init_completion(&req->done);
  1620. req->task = p;
  1621. req->dest_cpu = dest_cpu;
  1622. list_add(&req->list, &rq->migration_queue);
  1623. return 1;
  1624. }
  1625. /*
  1626. * wait_task_inactive - wait for a thread to unschedule.
  1627. *
  1628. * The caller must ensure that the task *will* unschedule sometime soon,
  1629. * else this function might spin for a *long* time. This function can't
  1630. * be called with interrupts off, or it may introduce deadlock with
  1631. * smp_call_function() if an IPI is sent by the same process we are
  1632. * waiting to become inactive.
  1633. */
  1634. void wait_task_inactive(struct task_struct *p)
  1635. {
  1636. unsigned long flags;
  1637. int running, on_rq;
  1638. struct rq *rq;
  1639. for (;;) {
  1640. /*
  1641. * We do the initial early heuristics without holding
  1642. * any task-queue locks at all. We'll only try to get
  1643. * the runqueue lock when things look like they will
  1644. * work out!
  1645. */
  1646. rq = task_rq(p);
  1647. /*
  1648. * If the task is actively running on another CPU
  1649. * still, just relax and busy-wait without holding
  1650. * any locks.
  1651. *
  1652. * NOTE! Since we don't hold any locks, it's not
  1653. * even sure that "rq" stays as the right runqueue!
  1654. * But we don't care, since "task_running()" will
  1655. * return false if the runqueue has changed and p
  1656. * is actually now running somewhere else!
  1657. */
  1658. while (task_running(rq, p))
  1659. cpu_relax();
  1660. /*
  1661. * Ok, time to look more closely! We need the rq
  1662. * lock now, to be *sure*. If we're wrong, we'll
  1663. * just go back and repeat.
  1664. */
  1665. rq = task_rq_lock(p, &flags);
  1666. running = task_running(rq, p);
  1667. on_rq = p->se.on_rq;
  1668. task_rq_unlock(rq, &flags);
  1669. /*
  1670. * Was it really running after all now that we
  1671. * checked with the proper locks actually held?
  1672. *
  1673. * Oops. Go back and try again..
  1674. */
  1675. if (unlikely(running)) {
  1676. cpu_relax();
  1677. continue;
  1678. }
  1679. /*
  1680. * It's not enough that it's not actively running,
  1681. * it must be off the runqueue _entirely_, and not
  1682. * preempted!
  1683. *
  1684. * So if it wa still runnable (but just not actively
  1685. * running right now), it's preempted, and we should
  1686. * yield - it could be a while.
  1687. */
  1688. if (unlikely(on_rq)) {
  1689. schedule_timeout_uninterruptible(1);
  1690. continue;
  1691. }
  1692. /*
  1693. * Ahh, all good. It wasn't running, and it wasn't
  1694. * runnable, which means that it will never become
  1695. * running in the future either. We're all done!
  1696. */
  1697. break;
  1698. }
  1699. }
  1700. /***
  1701. * kick_process - kick a running thread to enter/exit the kernel
  1702. * @p: the to-be-kicked thread
  1703. *
  1704. * Cause a process which is running on another CPU to enter
  1705. * kernel-mode, without any delay. (to get signals handled.)
  1706. *
  1707. * NOTE: this function doesnt have to take the runqueue lock,
  1708. * because all it wants to ensure is that the remote task enters
  1709. * the kernel. If the IPI races and the task has been migrated
  1710. * to another CPU then no harm is done and the purpose has been
  1711. * achieved as well.
  1712. */
  1713. void kick_process(struct task_struct *p)
  1714. {
  1715. int cpu;
  1716. preempt_disable();
  1717. cpu = task_cpu(p);
  1718. if ((cpu != smp_processor_id()) && task_curr(p))
  1719. smp_send_reschedule(cpu);
  1720. preempt_enable();
  1721. }
  1722. /*
  1723. * Return a low guess at the load of a migration-source cpu weighted
  1724. * according to the scheduling class and "nice" value.
  1725. *
  1726. * We want to under-estimate the load of migration sources, to
  1727. * balance conservatively.
  1728. */
  1729. static unsigned long source_load(int cpu, int type)
  1730. {
  1731. struct rq *rq = cpu_rq(cpu);
  1732. unsigned long total = weighted_cpuload(cpu);
  1733. if (type == 0 || !sched_feat(LB_BIAS))
  1734. return total;
  1735. return min(rq->cpu_load[type-1], total);
  1736. }
  1737. /*
  1738. * Return a high guess at the load of a migration-target cpu weighted
  1739. * according to the scheduling class and "nice" value.
  1740. */
  1741. static unsigned long target_load(int cpu, int type)
  1742. {
  1743. struct rq *rq = cpu_rq(cpu);
  1744. unsigned long total = weighted_cpuload(cpu);
  1745. if (type == 0 || !sched_feat(LB_BIAS))
  1746. return total;
  1747. return max(rq->cpu_load[type-1], total);
  1748. }
  1749. /*
  1750. * find_idlest_group finds and returns the least busy CPU group within the
  1751. * domain.
  1752. */
  1753. static struct sched_group *
  1754. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1755. {
  1756. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1757. unsigned long min_load = ULONG_MAX, this_load = 0;
  1758. int load_idx = sd->forkexec_idx;
  1759. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1760. do {
  1761. unsigned long load, avg_load;
  1762. int local_group;
  1763. int i;
  1764. /* Skip over this group if it has no CPUs allowed */
  1765. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1766. continue;
  1767. local_group = cpu_isset(this_cpu, group->cpumask);
  1768. /* Tally up the load of all CPUs in the group */
  1769. avg_load = 0;
  1770. for_each_cpu_mask(i, group->cpumask) {
  1771. /* Bias balancing toward cpus of our domain */
  1772. if (local_group)
  1773. load = source_load(i, load_idx);
  1774. else
  1775. load = target_load(i, load_idx);
  1776. avg_load += load;
  1777. }
  1778. /* Adjust by relative CPU power of the group */
  1779. avg_load = sg_div_cpu_power(group,
  1780. avg_load * SCHED_LOAD_SCALE);
  1781. if (local_group) {
  1782. this_load = avg_load;
  1783. this = group;
  1784. } else if (avg_load < min_load) {
  1785. min_load = avg_load;
  1786. idlest = group;
  1787. }
  1788. } while (group = group->next, group != sd->groups);
  1789. if (!idlest || 100*this_load < imbalance*min_load)
  1790. return NULL;
  1791. return idlest;
  1792. }
  1793. /*
  1794. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1795. */
  1796. static int
  1797. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
  1798. cpumask_t *tmp)
  1799. {
  1800. unsigned long load, min_load = ULONG_MAX;
  1801. int idlest = -1;
  1802. int i;
  1803. /* Traverse only the allowed CPUs */
  1804. cpus_and(*tmp, group->cpumask, p->cpus_allowed);
  1805. for_each_cpu_mask(i, *tmp) {
  1806. load = weighted_cpuload(i);
  1807. if (load < min_load || (load == min_load && i == this_cpu)) {
  1808. min_load = load;
  1809. idlest = i;
  1810. }
  1811. }
  1812. return idlest;
  1813. }
  1814. /*
  1815. * sched_balance_self: balance the current task (running on cpu) in domains
  1816. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1817. * SD_BALANCE_EXEC.
  1818. *
  1819. * Balance, ie. select the least loaded group.
  1820. *
  1821. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1822. *
  1823. * preempt must be disabled.
  1824. */
  1825. static int sched_balance_self(int cpu, int flag)
  1826. {
  1827. struct task_struct *t = current;
  1828. struct sched_domain *tmp, *sd = NULL;
  1829. for_each_domain(cpu, tmp) {
  1830. /*
  1831. * If power savings logic is enabled for a domain, stop there.
  1832. */
  1833. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1834. break;
  1835. if (tmp->flags & flag)
  1836. sd = tmp;
  1837. }
  1838. if (sd)
  1839. update_shares(sd);
  1840. while (sd) {
  1841. cpumask_t span, tmpmask;
  1842. struct sched_group *group;
  1843. int new_cpu, weight;
  1844. if (!(sd->flags & flag)) {
  1845. sd = sd->child;
  1846. continue;
  1847. }
  1848. span = sd->span;
  1849. group = find_idlest_group(sd, t, cpu);
  1850. if (!group) {
  1851. sd = sd->child;
  1852. continue;
  1853. }
  1854. new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
  1855. if (new_cpu == -1 || new_cpu == cpu) {
  1856. /* Now try balancing at a lower domain level of cpu */
  1857. sd = sd->child;
  1858. continue;
  1859. }
  1860. /* Now try balancing at a lower domain level of new_cpu */
  1861. cpu = new_cpu;
  1862. sd = NULL;
  1863. weight = cpus_weight(span);
  1864. for_each_domain(cpu, tmp) {
  1865. if (weight <= cpus_weight(tmp->span))
  1866. break;
  1867. if (tmp->flags & flag)
  1868. sd = tmp;
  1869. }
  1870. /* while loop will break here if sd == NULL */
  1871. }
  1872. return cpu;
  1873. }
  1874. #endif /* CONFIG_SMP */
  1875. /***
  1876. * try_to_wake_up - wake up a thread
  1877. * @p: the to-be-woken-up thread
  1878. * @state: the mask of task states that can be woken
  1879. * @sync: do a synchronous wakeup?
  1880. *
  1881. * Put it on the run-queue if it's not already there. The "current"
  1882. * thread is always on the run-queue (except when the actual
  1883. * re-schedule is in progress), and as such you're allowed to do
  1884. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1885. * runnable without the overhead of this.
  1886. *
  1887. * returns failure only if the task is already active.
  1888. */
  1889. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1890. {
  1891. int cpu, orig_cpu, this_cpu, success = 0;
  1892. unsigned long flags;
  1893. long old_state;
  1894. struct rq *rq;
  1895. if (!sched_feat(SYNC_WAKEUPS))
  1896. sync = 0;
  1897. #ifdef CONFIG_SMP
  1898. if (sched_feat(LB_WAKEUP_UPDATE)) {
  1899. struct sched_domain *sd;
  1900. this_cpu = raw_smp_processor_id();
  1901. cpu = task_cpu(p);
  1902. for_each_domain(this_cpu, sd) {
  1903. if (cpu_isset(cpu, sd->span)) {
  1904. update_shares(sd);
  1905. break;
  1906. }
  1907. }
  1908. }
  1909. #endif
  1910. smp_wmb();
  1911. rq = task_rq_lock(p, &flags);
  1912. old_state = p->state;
  1913. if (!(old_state & state))
  1914. goto out;
  1915. if (p->se.on_rq)
  1916. goto out_running;
  1917. cpu = task_cpu(p);
  1918. orig_cpu = cpu;
  1919. this_cpu = smp_processor_id();
  1920. #ifdef CONFIG_SMP
  1921. if (unlikely(task_running(rq, p)))
  1922. goto out_activate;
  1923. cpu = p->sched_class->select_task_rq(p, sync);
  1924. if (cpu != orig_cpu) {
  1925. set_task_cpu(p, cpu);
  1926. task_rq_unlock(rq, &flags);
  1927. /* might preempt at this point */
  1928. rq = task_rq_lock(p, &flags);
  1929. old_state = p->state;
  1930. if (!(old_state & state))
  1931. goto out;
  1932. if (p->se.on_rq)
  1933. goto out_running;
  1934. this_cpu = smp_processor_id();
  1935. cpu = task_cpu(p);
  1936. }
  1937. #ifdef CONFIG_SCHEDSTATS
  1938. schedstat_inc(rq, ttwu_count);
  1939. if (cpu == this_cpu)
  1940. schedstat_inc(rq, ttwu_local);
  1941. else {
  1942. struct sched_domain *sd;
  1943. for_each_domain(this_cpu, sd) {
  1944. if (cpu_isset(cpu, sd->span)) {
  1945. schedstat_inc(sd, ttwu_wake_remote);
  1946. break;
  1947. }
  1948. }
  1949. }
  1950. #endif /* CONFIG_SCHEDSTATS */
  1951. out_activate:
  1952. #endif /* CONFIG_SMP */
  1953. schedstat_inc(p, se.nr_wakeups);
  1954. if (sync)
  1955. schedstat_inc(p, se.nr_wakeups_sync);
  1956. if (orig_cpu != cpu)
  1957. schedstat_inc(p, se.nr_wakeups_migrate);
  1958. if (cpu == this_cpu)
  1959. schedstat_inc(p, se.nr_wakeups_local);
  1960. else
  1961. schedstat_inc(p, se.nr_wakeups_remote);
  1962. update_rq_clock(rq);
  1963. activate_task(rq, p, 1);
  1964. success = 1;
  1965. out_running:
  1966. trace_mark(kernel_sched_wakeup,
  1967. "pid %d state %ld ## rq %p task %p rq->curr %p",
  1968. p->pid, p->state, rq, p, rq->curr);
  1969. check_preempt_curr(rq, p);
  1970. p->state = TASK_RUNNING;
  1971. #ifdef CONFIG_SMP
  1972. if (p->sched_class->task_wake_up)
  1973. p->sched_class->task_wake_up(rq, p);
  1974. #endif
  1975. out:
  1976. current->se.last_wakeup = current->se.sum_exec_runtime;
  1977. task_rq_unlock(rq, &flags);
  1978. return success;
  1979. }
  1980. int wake_up_process(struct task_struct *p)
  1981. {
  1982. return try_to_wake_up(p, TASK_ALL, 0);
  1983. }
  1984. EXPORT_SYMBOL(wake_up_process);
  1985. int wake_up_state(struct task_struct *p, unsigned int state)
  1986. {
  1987. return try_to_wake_up(p, state, 0);
  1988. }
  1989. /*
  1990. * Perform scheduler related setup for a newly forked process p.
  1991. * p is forked by current.
  1992. *
  1993. * __sched_fork() is basic setup used by init_idle() too:
  1994. */
  1995. static void __sched_fork(struct task_struct *p)
  1996. {
  1997. p->se.exec_start = 0;
  1998. p->se.sum_exec_runtime = 0;
  1999. p->se.prev_sum_exec_runtime = 0;
  2000. p->se.last_wakeup = 0;
  2001. p->se.avg_overlap = 0;
  2002. #ifdef CONFIG_SCHEDSTATS
  2003. p->se.wait_start = 0;
  2004. p->se.sum_sleep_runtime = 0;
  2005. p->se.sleep_start = 0;
  2006. p->se.block_start = 0;
  2007. p->se.sleep_max = 0;
  2008. p->se.block_max = 0;
  2009. p->se.exec_max = 0;
  2010. p->se.slice_max = 0;
  2011. p->se.wait_max = 0;
  2012. #endif
  2013. INIT_LIST_HEAD(&p->rt.run_list);
  2014. p->se.on_rq = 0;
  2015. INIT_LIST_HEAD(&p->se.group_node);
  2016. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2017. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2018. #endif
  2019. /*
  2020. * We mark the process as running here, but have not actually
  2021. * inserted it onto the runqueue yet. This guarantees that
  2022. * nobody will actually run it, and a signal or other external
  2023. * event cannot wake it up and insert it on the runqueue either.
  2024. */
  2025. p->state = TASK_RUNNING;
  2026. }
  2027. /*
  2028. * fork()/clone()-time setup:
  2029. */
  2030. void sched_fork(struct task_struct *p, int clone_flags)
  2031. {
  2032. int cpu = get_cpu();
  2033. __sched_fork(p);
  2034. #ifdef CONFIG_SMP
  2035. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2036. #endif
  2037. set_task_cpu(p, cpu);
  2038. /*
  2039. * Make sure we do not leak PI boosting priority to the child:
  2040. */
  2041. p->prio = current->normal_prio;
  2042. if (!rt_prio(p->prio))
  2043. p->sched_class = &fair_sched_class;
  2044. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2045. if (likely(sched_info_on()))
  2046. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2047. #endif
  2048. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2049. p->oncpu = 0;
  2050. #endif
  2051. #ifdef CONFIG_PREEMPT
  2052. /* Want to start with kernel preemption disabled. */
  2053. task_thread_info(p)->preempt_count = 1;
  2054. #endif
  2055. put_cpu();
  2056. }
  2057. /*
  2058. * wake_up_new_task - wake up a newly created task for the first time.
  2059. *
  2060. * This function will do some initial scheduler statistics housekeeping
  2061. * that must be done for every newly created context, then puts the task
  2062. * on the runqueue and wakes it.
  2063. */
  2064. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2065. {
  2066. unsigned long flags;
  2067. struct rq *rq;
  2068. rq = task_rq_lock(p, &flags);
  2069. BUG_ON(p->state != TASK_RUNNING);
  2070. update_rq_clock(rq);
  2071. p->prio = effective_prio(p);
  2072. if (!p->sched_class->task_new || !current->se.on_rq) {
  2073. activate_task(rq, p, 0);
  2074. } else {
  2075. /*
  2076. * Let the scheduling class do new task startup
  2077. * management (if any):
  2078. */
  2079. p->sched_class->task_new(rq, p);
  2080. inc_nr_running(rq);
  2081. }
  2082. trace_mark(kernel_sched_wakeup_new,
  2083. "pid %d state %ld ## rq %p task %p rq->curr %p",
  2084. p->pid, p->state, rq, p, rq->curr);
  2085. check_preempt_curr(rq, p);
  2086. #ifdef CONFIG_SMP
  2087. if (p->sched_class->task_wake_up)
  2088. p->sched_class->task_wake_up(rq, p);
  2089. #endif
  2090. task_rq_unlock(rq, &flags);
  2091. }
  2092. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2093. /**
  2094. * preempt_notifier_register - tell me when current is being being preempted & rescheduled
  2095. * @notifier: notifier struct to register
  2096. */
  2097. void preempt_notifier_register(struct preempt_notifier *notifier)
  2098. {
  2099. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2100. }
  2101. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2102. /**
  2103. * preempt_notifier_unregister - no longer interested in preemption notifications
  2104. * @notifier: notifier struct to unregister
  2105. *
  2106. * This is safe to call from within a preemption notifier.
  2107. */
  2108. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2109. {
  2110. hlist_del(&notifier->link);
  2111. }
  2112. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2113. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2114. {
  2115. struct preempt_notifier *notifier;
  2116. struct hlist_node *node;
  2117. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2118. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2119. }
  2120. static void
  2121. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2122. struct task_struct *next)
  2123. {
  2124. struct preempt_notifier *notifier;
  2125. struct hlist_node *node;
  2126. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2127. notifier->ops->sched_out(notifier, next);
  2128. }
  2129. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2130. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2131. {
  2132. }
  2133. static void
  2134. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2135. struct task_struct *next)
  2136. {
  2137. }
  2138. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2139. /**
  2140. * prepare_task_switch - prepare to switch tasks
  2141. * @rq: the runqueue preparing to switch
  2142. * @prev: the current task that is being switched out
  2143. * @next: the task we are going to switch to.
  2144. *
  2145. * This is called with the rq lock held and interrupts off. It must
  2146. * be paired with a subsequent finish_task_switch after the context
  2147. * switch.
  2148. *
  2149. * prepare_task_switch sets up locking and calls architecture specific
  2150. * hooks.
  2151. */
  2152. static inline void
  2153. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2154. struct task_struct *next)
  2155. {
  2156. fire_sched_out_preempt_notifiers(prev, next);
  2157. prepare_lock_switch(rq, next);
  2158. prepare_arch_switch(next);
  2159. }
  2160. /**
  2161. * finish_task_switch - clean up after a task-switch
  2162. * @rq: runqueue associated with task-switch
  2163. * @prev: the thread we just switched away from.
  2164. *
  2165. * finish_task_switch must be called after the context switch, paired
  2166. * with a prepare_task_switch call before the context switch.
  2167. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2168. * and do any other architecture-specific cleanup actions.
  2169. *
  2170. * Note that we may have delayed dropping an mm in context_switch(). If
  2171. * so, we finish that here outside of the runqueue lock. (Doing it
  2172. * with the lock held can cause deadlocks; see schedule() for
  2173. * details.)
  2174. */
  2175. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2176. __releases(rq->lock)
  2177. {
  2178. struct mm_struct *mm = rq->prev_mm;
  2179. long prev_state;
  2180. rq->prev_mm = NULL;
  2181. /*
  2182. * A task struct has one reference for the use as "current".
  2183. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2184. * schedule one last time. The schedule call will never return, and
  2185. * the scheduled task must drop that reference.
  2186. * The test for TASK_DEAD must occur while the runqueue locks are
  2187. * still held, otherwise prev could be scheduled on another cpu, die
  2188. * there before we look at prev->state, and then the reference would
  2189. * be dropped twice.
  2190. * Manfred Spraul <manfred@colorfullife.com>
  2191. */
  2192. prev_state = prev->state;
  2193. finish_arch_switch(prev);
  2194. finish_lock_switch(rq, prev);
  2195. #ifdef CONFIG_SMP
  2196. if (current->sched_class->post_schedule)
  2197. current->sched_class->post_schedule(rq);
  2198. #endif
  2199. fire_sched_in_preempt_notifiers(current);
  2200. if (mm)
  2201. mmdrop(mm);
  2202. if (unlikely(prev_state == TASK_DEAD)) {
  2203. /*
  2204. * Remove function-return probe instances associated with this
  2205. * task and put them back on the free list.
  2206. */
  2207. kprobe_flush_task(prev);
  2208. put_task_struct(prev);
  2209. }
  2210. }
  2211. /**
  2212. * schedule_tail - first thing a freshly forked thread must call.
  2213. * @prev: the thread we just switched away from.
  2214. */
  2215. asmlinkage void schedule_tail(struct task_struct *prev)
  2216. __releases(rq->lock)
  2217. {
  2218. struct rq *rq = this_rq();
  2219. finish_task_switch(rq, prev);
  2220. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2221. /* In this case, finish_task_switch does not reenable preemption */
  2222. preempt_enable();
  2223. #endif
  2224. if (current->set_child_tid)
  2225. put_user(task_pid_vnr(current), current->set_child_tid);
  2226. }
  2227. /*
  2228. * context_switch - switch to the new MM and the new
  2229. * thread's register state.
  2230. */
  2231. static inline void
  2232. context_switch(struct rq *rq, struct task_struct *prev,
  2233. struct task_struct *next)
  2234. {
  2235. struct mm_struct *mm, *oldmm;
  2236. prepare_task_switch(rq, prev, next);
  2237. trace_mark(kernel_sched_schedule,
  2238. "prev_pid %d next_pid %d prev_state %ld "
  2239. "## rq %p prev %p next %p",
  2240. prev->pid, next->pid, prev->state,
  2241. rq, prev, next);
  2242. mm = next->mm;
  2243. oldmm = prev->active_mm;
  2244. /*
  2245. * For paravirt, this is coupled with an exit in switch_to to
  2246. * combine the page table reload and the switch backend into
  2247. * one hypercall.
  2248. */
  2249. arch_enter_lazy_cpu_mode();
  2250. if (unlikely(!mm)) {
  2251. next->active_mm = oldmm;
  2252. atomic_inc(&oldmm->mm_count);
  2253. enter_lazy_tlb(oldmm, next);
  2254. } else
  2255. switch_mm(oldmm, mm, next);
  2256. if (unlikely(!prev->mm)) {
  2257. prev->active_mm = NULL;
  2258. rq->prev_mm = oldmm;
  2259. }
  2260. /*
  2261. * Since the runqueue lock will be released by the next
  2262. * task (which is an invalid locking op but in the case
  2263. * of the scheduler it's an obvious special-case), so we
  2264. * do an early lockdep release here:
  2265. */
  2266. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2267. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2268. #endif
  2269. /* Here we just switch the register state and the stack. */
  2270. switch_to(prev, next, prev);
  2271. barrier();
  2272. /*
  2273. * this_rq must be evaluated again because prev may have moved
  2274. * CPUs since it called schedule(), thus the 'rq' on its stack
  2275. * frame will be invalid.
  2276. */
  2277. finish_task_switch(this_rq(), prev);
  2278. }
  2279. /*
  2280. * nr_running, nr_uninterruptible and nr_context_switches:
  2281. *
  2282. * externally visible scheduler statistics: current number of runnable
  2283. * threads, current number of uninterruptible-sleeping threads, total
  2284. * number of context switches performed since bootup.
  2285. */
  2286. unsigned long nr_running(void)
  2287. {
  2288. unsigned long i, sum = 0;
  2289. for_each_online_cpu(i)
  2290. sum += cpu_rq(i)->nr_running;
  2291. return sum;
  2292. }
  2293. unsigned long nr_uninterruptible(void)
  2294. {
  2295. unsigned long i, sum = 0;
  2296. for_each_possible_cpu(i)
  2297. sum += cpu_rq(i)->nr_uninterruptible;
  2298. /*
  2299. * Since we read the counters lockless, it might be slightly
  2300. * inaccurate. Do not allow it to go below zero though:
  2301. */
  2302. if (unlikely((long)sum < 0))
  2303. sum = 0;
  2304. return sum;
  2305. }
  2306. unsigned long long nr_context_switches(void)
  2307. {
  2308. int i;
  2309. unsigned long long sum = 0;
  2310. for_each_possible_cpu(i)
  2311. sum += cpu_rq(i)->nr_switches;
  2312. return sum;
  2313. }
  2314. unsigned long nr_iowait(void)
  2315. {
  2316. unsigned long i, sum = 0;
  2317. for_each_possible_cpu(i)
  2318. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2319. return sum;
  2320. }
  2321. unsigned long nr_active(void)
  2322. {
  2323. unsigned long i, running = 0, uninterruptible = 0;
  2324. for_each_online_cpu(i) {
  2325. running += cpu_rq(i)->nr_running;
  2326. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  2327. }
  2328. if (unlikely((long)uninterruptible < 0))
  2329. uninterruptible = 0;
  2330. return running + uninterruptible;
  2331. }
  2332. /*
  2333. * Update rq->cpu_load[] statistics. This function is usually called every
  2334. * scheduler tick (TICK_NSEC).
  2335. */
  2336. static void update_cpu_load(struct rq *this_rq)
  2337. {
  2338. unsigned long this_load = this_rq->load.weight;
  2339. int i, scale;
  2340. this_rq->nr_load_updates++;
  2341. /* Update our load: */
  2342. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2343. unsigned long old_load, new_load;
  2344. /* scale is effectively 1 << i now, and >> i divides by scale */
  2345. old_load = this_rq->cpu_load[i];
  2346. new_load = this_load;
  2347. /*
  2348. * Round up the averaging division if load is increasing. This
  2349. * prevents us from getting stuck on 9 if the load is 10, for
  2350. * example.
  2351. */
  2352. if (new_load > old_load)
  2353. new_load += scale-1;
  2354. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2355. }
  2356. }
  2357. #ifdef CONFIG_SMP
  2358. /*
  2359. * double_rq_lock - safely lock two runqueues
  2360. *
  2361. * Note this does not disable interrupts like task_rq_lock,
  2362. * you need to do so manually before calling.
  2363. */
  2364. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2365. __acquires(rq1->lock)
  2366. __acquires(rq2->lock)
  2367. {
  2368. BUG_ON(!irqs_disabled());
  2369. if (rq1 == rq2) {
  2370. spin_lock(&rq1->lock);
  2371. __acquire(rq2->lock); /* Fake it out ;) */
  2372. } else {
  2373. if (rq1 < rq2) {
  2374. spin_lock(&rq1->lock);
  2375. spin_lock(&rq2->lock);
  2376. } else {
  2377. spin_lock(&rq2->lock);
  2378. spin_lock(&rq1->lock);
  2379. }
  2380. }
  2381. update_rq_clock(rq1);
  2382. update_rq_clock(rq2);
  2383. }
  2384. /*
  2385. * double_rq_unlock - safely unlock two runqueues
  2386. *
  2387. * Note this does not restore interrupts like task_rq_unlock,
  2388. * you need to do so manually after calling.
  2389. */
  2390. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2391. __releases(rq1->lock)
  2392. __releases(rq2->lock)
  2393. {
  2394. spin_unlock(&rq1->lock);
  2395. if (rq1 != rq2)
  2396. spin_unlock(&rq2->lock);
  2397. else
  2398. __release(rq2->lock);
  2399. }
  2400. /*
  2401. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  2402. */
  2403. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  2404. __releases(this_rq->lock)
  2405. __acquires(busiest->lock)
  2406. __acquires(this_rq->lock)
  2407. {
  2408. int ret = 0;
  2409. if (unlikely(!irqs_disabled())) {
  2410. /* printk() doesn't work good under rq->lock */
  2411. spin_unlock(&this_rq->lock);
  2412. BUG_ON(1);
  2413. }
  2414. if (unlikely(!spin_trylock(&busiest->lock))) {
  2415. if (busiest < this_rq) {
  2416. spin_unlock(&this_rq->lock);
  2417. spin_lock(&busiest->lock);
  2418. spin_lock(&this_rq->lock);
  2419. ret = 1;
  2420. } else
  2421. spin_lock(&busiest->lock);
  2422. }
  2423. return ret;
  2424. }
  2425. /*
  2426. * If dest_cpu is allowed for this process, migrate the task to it.
  2427. * This is accomplished by forcing the cpu_allowed mask to only
  2428. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2429. * the cpu_allowed mask is restored.
  2430. */
  2431. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2432. {
  2433. struct migration_req req;
  2434. unsigned long flags;
  2435. struct rq *rq;
  2436. rq = task_rq_lock(p, &flags);
  2437. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  2438. || unlikely(cpu_is_offline(dest_cpu)))
  2439. goto out;
  2440. /* force the process onto the specified CPU */
  2441. if (migrate_task(p, dest_cpu, &req)) {
  2442. /* Need to wait for migration thread (might exit: take ref). */
  2443. struct task_struct *mt = rq->migration_thread;
  2444. get_task_struct(mt);
  2445. task_rq_unlock(rq, &flags);
  2446. wake_up_process(mt);
  2447. put_task_struct(mt);
  2448. wait_for_completion(&req.done);
  2449. return;
  2450. }
  2451. out:
  2452. task_rq_unlock(rq, &flags);
  2453. }
  2454. /*
  2455. * sched_exec - execve() is a valuable balancing opportunity, because at
  2456. * this point the task has the smallest effective memory and cache footprint.
  2457. */
  2458. void sched_exec(void)
  2459. {
  2460. int new_cpu, this_cpu = get_cpu();
  2461. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2462. put_cpu();
  2463. if (new_cpu != this_cpu)
  2464. sched_migrate_task(current, new_cpu);
  2465. }
  2466. /*
  2467. * pull_task - move a task from a remote runqueue to the local runqueue.
  2468. * Both runqueues must be locked.
  2469. */
  2470. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2471. struct rq *this_rq, int this_cpu)
  2472. {
  2473. deactivate_task(src_rq, p, 0);
  2474. set_task_cpu(p, this_cpu);
  2475. activate_task(this_rq, p, 0);
  2476. /*
  2477. * Note that idle threads have a prio of MAX_PRIO, for this test
  2478. * to be always true for them.
  2479. */
  2480. check_preempt_curr(this_rq, p);
  2481. }
  2482. /*
  2483. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2484. */
  2485. static
  2486. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2487. struct sched_domain *sd, enum cpu_idle_type idle,
  2488. int *all_pinned)
  2489. {
  2490. /*
  2491. * We do not migrate tasks that are:
  2492. * 1) running (obviously), or
  2493. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2494. * 3) are cache-hot on their current CPU.
  2495. */
  2496. if (!cpu_isset(this_cpu, p->cpus_allowed)) {
  2497. schedstat_inc(p, se.nr_failed_migrations_affine);
  2498. return 0;
  2499. }
  2500. *all_pinned = 0;
  2501. if (task_running(rq, p)) {
  2502. schedstat_inc(p, se.nr_failed_migrations_running);
  2503. return 0;
  2504. }
  2505. /*
  2506. * Aggressive migration if:
  2507. * 1) task is cache cold, or
  2508. * 2) too many balance attempts have failed.
  2509. */
  2510. if (!task_hot(p, rq->clock, sd) ||
  2511. sd->nr_balance_failed > sd->cache_nice_tries) {
  2512. #ifdef CONFIG_SCHEDSTATS
  2513. if (task_hot(p, rq->clock, sd)) {
  2514. schedstat_inc(sd, lb_hot_gained[idle]);
  2515. schedstat_inc(p, se.nr_forced_migrations);
  2516. }
  2517. #endif
  2518. return 1;
  2519. }
  2520. if (task_hot(p, rq->clock, sd)) {
  2521. schedstat_inc(p, se.nr_failed_migrations_hot);
  2522. return 0;
  2523. }
  2524. return 1;
  2525. }
  2526. static unsigned long
  2527. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2528. unsigned long max_load_move, struct sched_domain *sd,
  2529. enum cpu_idle_type idle, int *all_pinned,
  2530. int *this_best_prio, struct rq_iterator *iterator)
  2531. {
  2532. int loops = 0, pulled = 0, pinned = 0;
  2533. struct task_struct *p;
  2534. long rem_load_move = max_load_move;
  2535. if (max_load_move == 0)
  2536. goto out;
  2537. pinned = 1;
  2538. /*
  2539. * Start the load-balancing iterator:
  2540. */
  2541. p = iterator->start(iterator->arg);
  2542. next:
  2543. if (!p || loops++ > sysctl_sched_nr_migrate)
  2544. goto out;
  2545. if ((p->se.load.weight >> 1) > rem_load_move ||
  2546. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2547. p = iterator->next(iterator->arg);
  2548. goto next;
  2549. }
  2550. pull_task(busiest, p, this_rq, this_cpu);
  2551. pulled++;
  2552. rem_load_move -= p->se.load.weight;
  2553. /*
  2554. * We only want to steal up to the prescribed amount of weighted load.
  2555. */
  2556. if (rem_load_move > 0) {
  2557. if (p->prio < *this_best_prio)
  2558. *this_best_prio = p->prio;
  2559. p = iterator->next(iterator->arg);
  2560. goto next;
  2561. }
  2562. out:
  2563. /*
  2564. * Right now, this is one of only two places pull_task() is called,
  2565. * so we can safely collect pull_task() stats here rather than
  2566. * inside pull_task().
  2567. */
  2568. schedstat_add(sd, lb_gained[idle], pulled);
  2569. if (all_pinned)
  2570. *all_pinned = pinned;
  2571. return max_load_move - rem_load_move;
  2572. }
  2573. /*
  2574. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2575. * this_rq, as part of a balancing operation within domain "sd".
  2576. * Returns 1 if successful and 0 otherwise.
  2577. *
  2578. * Called with both runqueues locked.
  2579. */
  2580. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2581. unsigned long max_load_move,
  2582. struct sched_domain *sd, enum cpu_idle_type idle,
  2583. int *all_pinned)
  2584. {
  2585. const struct sched_class *class = sched_class_highest;
  2586. unsigned long total_load_moved = 0;
  2587. int this_best_prio = this_rq->curr->prio;
  2588. do {
  2589. total_load_moved +=
  2590. class->load_balance(this_rq, this_cpu, busiest,
  2591. max_load_move - total_load_moved,
  2592. sd, idle, all_pinned, &this_best_prio);
  2593. class = class->next;
  2594. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2595. break;
  2596. } while (class && max_load_move > total_load_moved);
  2597. return total_load_moved > 0;
  2598. }
  2599. static int
  2600. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2601. struct sched_domain *sd, enum cpu_idle_type idle,
  2602. struct rq_iterator *iterator)
  2603. {
  2604. struct task_struct *p = iterator->start(iterator->arg);
  2605. int pinned = 0;
  2606. while (p) {
  2607. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2608. pull_task(busiest, p, this_rq, this_cpu);
  2609. /*
  2610. * Right now, this is only the second place pull_task()
  2611. * is called, so we can safely collect pull_task()
  2612. * stats here rather than inside pull_task().
  2613. */
  2614. schedstat_inc(sd, lb_gained[idle]);
  2615. return 1;
  2616. }
  2617. p = iterator->next(iterator->arg);
  2618. }
  2619. return 0;
  2620. }
  2621. /*
  2622. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2623. * part of active balancing operations within "domain".
  2624. * Returns 1 if successful and 0 otherwise.
  2625. *
  2626. * Called with both runqueues locked.
  2627. */
  2628. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2629. struct sched_domain *sd, enum cpu_idle_type idle)
  2630. {
  2631. const struct sched_class *class;
  2632. for (class = sched_class_highest; class; class = class->next)
  2633. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2634. return 1;
  2635. return 0;
  2636. }
  2637. /*
  2638. * find_busiest_group finds and returns the busiest CPU group within the
  2639. * domain. It calculates and returns the amount of weighted load which
  2640. * should be moved to restore balance via the imbalance parameter.
  2641. */
  2642. static struct sched_group *
  2643. find_busiest_group(struct sched_domain *sd, int this_cpu,
  2644. unsigned long *imbalance, enum cpu_idle_type idle,
  2645. int *sd_idle, const cpumask_t *cpus, int *balance)
  2646. {
  2647. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  2648. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  2649. unsigned long max_pull;
  2650. unsigned long busiest_load_per_task, busiest_nr_running;
  2651. unsigned long this_load_per_task, this_nr_running;
  2652. int load_idx, group_imb = 0;
  2653. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2654. int power_savings_balance = 1;
  2655. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  2656. unsigned long min_nr_running = ULONG_MAX;
  2657. struct sched_group *group_min = NULL, *group_leader = NULL;
  2658. #endif
  2659. max_load = this_load = total_load = total_pwr = 0;
  2660. busiest_load_per_task = busiest_nr_running = 0;
  2661. this_load_per_task = this_nr_running = 0;
  2662. if (idle == CPU_NOT_IDLE)
  2663. load_idx = sd->busy_idx;
  2664. else if (idle == CPU_NEWLY_IDLE)
  2665. load_idx = sd->newidle_idx;
  2666. else
  2667. load_idx = sd->idle_idx;
  2668. do {
  2669. unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
  2670. int local_group;
  2671. int i;
  2672. int __group_imb = 0;
  2673. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2674. unsigned long sum_nr_running, sum_weighted_load;
  2675. unsigned long sum_avg_load_per_task;
  2676. unsigned long avg_load_per_task;
  2677. local_group = cpu_isset(this_cpu, group->cpumask);
  2678. if (local_group)
  2679. balance_cpu = first_cpu(group->cpumask);
  2680. /* Tally up the load of all CPUs in the group */
  2681. sum_weighted_load = sum_nr_running = avg_load = 0;
  2682. sum_avg_load_per_task = avg_load_per_task = 0;
  2683. max_cpu_load = 0;
  2684. min_cpu_load = ~0UL;
  2685. for_each_cpu_mask(i, group->cpumask) {
  2686. struct rq *rq;
  2687. if (!cpu_isset(i, *cpus))
  2688. continue;
  2689. rq = cpu_rq(i);
  2690. if (*sd_idle && rq->nr_running)
  2691. *sd_idle = 0;
  2692. /* Bias balancing toward cpus of our domain */
  2693. if (local_group) {
  2694. if (idle_cpu(i) && !first_idle_cpu) {
  2695. first_idle_cpu = 1;
  2696. balance_cpu = i;
  2697. }
  2698. load = target_load(i, load_idx);
  2699. } else {
  2700. load = source_load(i, load_idx);
  2701. if (load > max_cpu_load)
  2702. max_cpu_load = load;
  2703. if (min_cpu_load > load)
  2704. min_cpu_load = load;
  2705. }
  2706. avg_load += load;
  2707. sum_nr_running += rq->nr_running;
  2708. sum_weighted_load += weighted_cpuload(i);
  2709. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  2710. }
  2711. /*
  2712. * First idle cpu or the first cpu(busiest) in this sched group
  2713. * is eligible for doing load balancing at this and above
  2714. * domains. In the newly idle case, we will allow all the cpu's
  2715. * to do the newly idle load balance.
  2716. */
  2717. if (idle != CPU_NEWLY_IDLE && local_group &&
  2718. balance_cpu != this_cpu && balance) {
  2719. *balance = 0;
  2720. goto ret;
  2721. }
  2722. total_load += avg_load;
  2723. total_pwr += group->__cpu_power;
  2724. /* Adjust by relative CPU power of the group */
  2725. avg_load = sg_div_cpu_power(group,
  2726. avg_load * SCHED_LOAD_SCALE);
  2727. /*
  2728. * Consider the group unbalanced when the imbalance is larger
  2729. * than the average weight of two tasks.
  2730. *
  2731. * APZ: with cgroup the avg task weight can vary wildly and
  2732. * might not be a suitable number - should we keep a
  2733. * normalized nr_running number somewhere that negates
  2734. * the hierarchy?
  2735. */
  2736. avg_load_per_task = sg_div_cpu_power(group,
  2737. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  2738. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  2739. __group_imb = 1;
  2740. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2741. if (local_group) {
  2742. this_load = avg_load;
  2743. this = group;
  2744. this_nr_running = sum_nr_running;
  2745. this_load_per_task = sum_weighted_load;
  2746. } else if (avg_load > max_load &&
  2747. (sum_nr_running > group_capacity || __group_imb)) {
  2748. max_load = avg_load;
  2749. busiest = group;
  2750. busiest_nr_running = sum_nr_running;
  2751. busiest_load_per_task = sum_weighted_load;
  2752. group_imb = __group_imb;
  2753. }
  2754. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2755. /*
  2756. * Busy processors will not participate in power savings
  2757. * balance.
  2758. */
  2759. if (idle == CPU_NOT_IDLE ||
  2760. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2761. goto group_next;
  2762. /*
  2763. * If the local group is idle or completely loaded
  2764. * no need to do power savings balance at this domain
  2765. */
  2766. if (local_group && (this_nr_running >= group_capacity ||
  2767. !this_nr_running))
  2768. power_savings_balance = 0;
  2769. /*
  2770. * If a group is already running at full capacity or idle,
  2771. * don't include that group in power savings calculations
  2772. */
  2773. if (!power_savings_balance || sum_nr_running >= group_capacity
  2774. || !sum_nr_running)
  2775. goto group_next;
  2776. /*
  2777. * Calculate the group which has the least non-idle load.
  2778. * This is the group from where we need to pick up the load
  2779. * for saving power
  2780. */
  2781. if ((sum_nr_running < min_nr_running) ||
  2782. (sum_nr_running == min_nr_running &&
  2783. first_cpu(group->cpumask) <
  2784. first_cpu(group_min->cpumask))) {
  2785. group_min = group;
  2786. min_nr_running = sum_nr_running;
  2787. min_load_per_task = sum_weighted_load /
  2788. sum_nr_running;
  2789. }
  2790. /*
  2791. * Calculate the group which is almost near its
  2792. * capacity but still has some space to pick up some load
  2793. * from other group and save more power
  2794. */
  2795. if (sum_nr_running <= group_capacity - 1) {
  2796. if (sum_nr_running > leader_nr_running ||
  2797. (sum_nr_running == leader_nr_running &&
  2798. first_cpu(group->cpumask) >
  2799. first_cpu(group_leader->cpumask))) {
  2800. group_leader = group;
  2801. leader_nr_running = sum_nr_running;
  2802. }
  2803. }
  2804. group_next:
  2805. #endif
  2806. group = group->next;
  2807. } while (group != sd->groups);
  2808. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2809. goto out_balanced;
  2810. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2811. if (this_load >= avg_load ||
  2812. 100*max_load <= sd->imbalance_pct*this_load)
  2813. goto out_balanced;
  2814. busiest_load_per_task /= busiest_nr_running;
  2815. if (group_imb)
  2816. busiest_load_per_task = min(busiest_load_per_task, avg_load);
  2817. /*
  2818. * We're trying to get all the cpus to the average_load, so we don't
  2819. * want to push ourselves above the average load, nor do we wish to
  2820. * reduce the max loaded cpu below the average load, as either of these
  2821. * actions would just result in more rebalancing later, and ping-pong
  2822. * tasks around. Thus we look for the minimum possible imbalance.
  2823. * Negative imbalances (*we* are more loaded than anyone else) will
  2824. * be counted as no imbalance for these purposes -- we can't fix that
  2825. * by pulling tasks to us. Be careful of negative numbers as they'll
  2826. * appear as very large values with unsigned longs.
  2827. */
  2828. if (max_load <= busiest_load_per_task)
  2829. goto out_balanced;
  2830. /*
  2831. * In the presence of smp nice balancing, certain scenarios can have
  2832. * max load less than avg load(as we skip the groups at or below
  2833. * its cpu_power, while calculating max_load..)
  2834. */
  2835. if (max_load < avg_load) {
  2836. *imbalance = 0;
  2837. goto small_imbalance;
  2838. }
  2839. /* Don't want to pull so many tasks that a group would go idle */
  2840. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2841. /* How much load to actually move to equalise the imbalance */
  2842. *imbalance = min(max_pull * busiest->__cpu_power,
  2843. (avg_load - this_load) * this->__cpu_power)
  2844. / SCHED_LOAD_SCALE;
  2845. /*
  2846. * if *imbalance is less than the average load per runnable task
  2847. * there is no gaurantee that any tasks will be moved so we'll have
  2848. * a think about bumping its value to force at least one task to be
  2849. * moved
  2850. */
  2851. if (*imbalance < busiest_load_per_task) {
  2852. unsigned long tmp, pwr_now, pwr_move;
  2853. unsigned int imbn;
  2854. small_imbalance:
  2855. pwr_move = pwr_now = 0;
  2856. imbn = 2;
  2857. if (this_nr_running) {
  2858. this_load_per_task /= this_nr_running;
  2859. if (busiest_load_per_task > this_load_per_task)
  2860. imbn = 1;
  2861. } else
  2862. this_load_per_task = cpu_avg_load_per_task(this_cpu);
  2863. if (max_load - this_load + 2*busiest_load_per_task >=
  2864. busiest_load_per_task * imbn) {
  2865. *imbalance = busiest_load_per_task;
  2866. return busiest;
  2867. }
  2868. /*
  2869. * OK, we don't have enough imbalance to justify moving tasks,
  2870. * however we may be able to increase total CPU power used by
  2871. * moving them.
  2872. */
  2873. pwr_now += busiest->__cpu_power *
  2874. min(busiest_load_per_task, max_load);
  2875. pwr_now += this->__cpu_power *
  2876. min(this_load_per_task, this_load);
  2877. pwr_now /= SCHED_LOAD_SCALE;
  2878. /* Amount of load we'd subtract */
  2879. tmp = sg_div_cpu_power(busiest,
  2880. busiest_load_per_task * SCHED_LOAD_SCALE);
  2881. if (max_load > tmp)
  2882. pwr_move += busiest->__cpu_power *
  2883. min(busiest_load_per_task, max_load - tmp);
  2884. /* Amount of load we'd add */
  2885. if (max_load * busiest->__cpu_power <
  2886. busiest_load_per_task * SCHED_LOAD_SCALE)
  2887. tmp = sg_div_cpu_power(this,
  2888. max_load * busiest->__cpu_power);
  2889. else
  2890. tmp = sg_div_cpu_power(this,
  2891. busiest_load_per_task * SCHED_LOAD_SCALE);
  2892. pwr_move += this->__cpu_power *
  2893. min(this_load_per_task, this_load + tmp);
  2894. pwr_move /= SCHED_LOAD_SCALE;
  2895. /* Move if we gain throughput */
  2896. if (pwr_move > pwr_now)
  2897. *imbalance = busiest_load_per_task;
  2898. }
  2899. return busiest;
  2900. out_balanced:
  2901. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2902. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2903. goto ret;
  2904. if (this == group_leader && group_leader != group_min) {
  2905. *imbalance = min_load_per_task;
  2906. return group_min;
  2907. }
  2908. #endif
  2909. ret:
  2910. *imbalance = 0;
  2911. return NULL;
  2912. }
  2913. /*
  2914. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2915. */
  2916. static struct rq *
  2917. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2918. unsigned long imbalance, const cpumask_t *cpus)
  2919. {
  2920. struct rq *busiest = NULL, *rq;
  2921. unsigned long max_load = 0;
  2922. int i;
  2923. for_each_cpu_mask(i, group->cpumask) {
  2924. unsigned long wl;
  2925. if (!cpu_isset(i, *cpus))
  2926. continue;
  2927. rq = cpu_rq(i);
  2928. wl = weighted_cpuload(i);
  2929. if (rq->nr_running == 1 && wl > imbalance)
  2930. continue;
  2931. if (wl > max_load) {
  2932. max_load = wl;
  2933. busiest = rq;
  2934. }
  2935. }
  2936. return busiest;
  2937. }
  2938. /*
  2939. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2940. * so long as it is large enough.
  2941. */
  2942. #define MAX_PINNED_INTERVAL 512
  2943. /*
  2944. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2945. * tasks if there is an imbalance.
  2946. */
  2947. static int load_balance(int this_cpu, struct rq *this_rq,
  2948. struct sched_domain *sd, enum cpu_idle_type idle,
  2949. int *balance, cpumask_t *cpus)
  2950. {
  2951. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2952. struct sched_group *group;
  2953. unsigned long imbalance;
  2954. struct rq *busiest;
  2955. unsigned long flags;
  2956. cpus_setall(*cpus);
  2957. /*
  2958. * When power savings policy is enabled for the parent domain, idle
  2959. * sibling can pick up load irrespective of busy siblings. In this case,
  2960. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2961. * portraying it as CPU_NOT_IDLE.
  2962. */
  2963. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2964. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2965. sd_idle = 1;
  2966. schedstat_inc(sd, lb_count[idle]);
  2967. redo:
  2968. update_shares(sd);
  2969. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2970. cpus, balance);
  2971. if (*balance == 0)
  2972. goto out_balanced;
  2973. if (!group) {
  2974. schedstat_inc(sd, lb_nobusyg[idle]);
  2975. goto out_balanced;
  2976. }
  2977. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  2978. if (!busiest) {
  2979. schedstat_inc(sd, lb_nobusyq[idle]);
  2980. goto out_balanced;
  2981. }
  2982. BUG_ON(busiest == this_rq);
  2983. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2984. ld_moved = 0;
  2985. if (busiest->nr_running > 1) {
  2986. /*
  2987. * Attempt to move tasks. If find_busiest_group has found
  2988. * an imbalance but busiest->nr_running <= 1, the group is
  2989. * still unbalanced. ld_moved simply stays zero, so it is
  2990. * correctly treated as an imbalance.
  2991. */
  2992. local_irq_save(flags);
  2993. double_rq_lock(this_rq, busiest);
  2994. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  2995. imbalance, sd, idle, &all_pinned);
  2996. double_rq_unlock(this_rq, busiest);
  2997. local_irq_restore(flags);
  2998. /*
  2999. * some other cpu did the load balance for us.
  3000. */
  3001. if (ld_moved && this_cpu != smp_processor_id())
  3002. resched_cpu(this_cpu);
  3003. /* All tasks on this runqueue were pinned by CPU affinity */
  3004. if (unlikely(all_pinned)) {
  3005. cpu_clear(cpu_of(busiest), *cpus);
  3006. if (!cpus_empty(*cpus))
  3007. goto redo;
  3008. goto out_balanced;
  3009. }
  3010. }
  3011. if (!ld_moved) {
  3012. schedstat_inc(sd, lb_failed[idle]);
  3013. sd->nr_balance_failed++;
  3014. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3015. spin_lock_irqsave(&busiest->lock, flags);
  3016. /* don't kick the migration_thread, if the curr
  3017. * task on busiest cpu can't be moved to this_cpu
  3018. */
  3019. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  3020. spin_unlock_irqrestore(&busiest->lock, flags);
  3021. all_pinned = 1;
  3022. goto out_one_pinned;
  3023. }
  3024. if (!busiest->active_balance) {
  3025. busiest->active_balance = 1;
  3026. busiest->push_cpu = this_cpu;
  3027. active_balance = 1;
  3028. }
  3029. spin_unlock_irqrestore(&busiest->lock, flags);
  3030. if (active_balance)
  3031. wake_up_process(busiest->migration_thread);
  3032. /*
  3033. * We've kicked active balancing, reset the failure
  3034. * counter.
  3035. */
  3036. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3037. }
  3038. } else
  3039. sd->nr_balance_failed = 0;
  3040. if (likely(!active_balance)) {
  3041. /* We were unbalanced, so reset the balancing interval */
  3042. sd->balance_interval = sd->min_interval;
  3043. } else {
  3044. /*
  3045. * If we've begun active balancing, start to back off. This
  3046. * case may not be covered by the all_pinned logic if there
  3047. * is only 1 task on the busy runqueue (because we don't call
  3048. * move_tasks).
  3049. */
  3050. if (sd->balance_interval < sd->max_interval)
  3051. sd->balance_interval *= 2;
  3052. }
  3053. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3054. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3055. ld_moved = -1;
  3056. goto out;
  3057. out_balanced:
  3058. schedstat_inc(sd, lb_balanced[idle]);
  3059. sd->nr_balance_failed = 0;
  3060. out_one_pinned:
  3061. /* tune up the balancing interval */
  3062. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3063. (sd->balance_interval < sd->max_interval))
  3064. sd->balance_interval *= 2;
  3065. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3066. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3067. ld_moved = -1;
  3068. else
  3069. ld_moved = 0;
  3070. out:
  3071. if (ld_moved)
  3072. update_shares(sd);
  3073. return ld_moved;
  3074. }
  3075. /*
  3076. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3077. * tasks if there is an imbalance.
  3078. *
  3079. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3080. * this_rq is locked.
  3081. */
  3082. static int
  3083. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
  3084. cpumask_t *cpus)
  3085. {
  3086. struct sched_group *group;
  3087. struct rq *busiest = NULL;
  3088. unsigned long imbalance;
  3089. int ld_moved = 0;
  3090. int sd_idle = 0;
  3091. int all_pinned = 0;
  3092. cpus_setall(*cpus);
  3093. /*
  3094. * When power savings policy is enabled for the parent domain, idle
  3095. * sibling can pick up load irrespective of busy siblings. In this case,
  3096. * let the state of idle sibling percolate up as IDLE, instead of
  3097. * portraying it as CPU_NOT_IDLE.
  3098. */
  3099. if (sd->flags & SD_SHARE_CPUPOWER &&
  3100. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3101. sd_idle = 1;
  3102. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3103. redo:
  3104. update_shares_locked(this_rq, sd);
  3105. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3106. &sd_idle, cpus, NULL);
  3107. if (!group) {
  3108. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3109. goto out_balanced;
  3110. }
  3111. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3112. if (!busiest) {
  3113. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3114. goto out_balanced;
  3115. }
  3116. BUG_ON(busiest == this_rq);
  3117. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3118. ld_moved = 0;
  3119. if (busiest->nr_running > 1) {
  3120. /* Attempt to move tasks */
  3121. double_lock_balance(this_rq, busiest);
  3122. /* this_rq->clock is already updated */
  3123. update_rq_clock(busiest);
  3124. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3125. imbalance, sd, CPU_NEWLY_IDLE,
  3126. &all_pinned);
  3127. spin_unlock(&busiest->lock);
  3128. if (unlikely(all_pinned)) {
  3129. cpu_clear(cpu_of(busiest), *cpus);
  3130. if (!cpus_empty(*cpus))
  3131. goto redo;
  3132. }
  3133. }
  3134. if (!ld_moved) {
  3135. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3136. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3137. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3138. return -1;
  3139. } else
  3140. sd->nr_balance_failed = 0;
  3141. update_shares_locked(this_rq, sd);
  3142. return ld_moved;
  3143. out_balanced:
  3144. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3145. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3146. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3147. return -1;
  3148. sd->nr_balance_failed = 0;
  3149. return 0;
  3150. }
  3151. /*
  3152. * idle_balance is called by schedule() if this_cpu is about to become
  3153. * idle. Attempts to pull tasks from other CPUs.
  3154. */
  3155. static void idle_balance(int this_cpu, struct rq *this_rq)
  3156. {
  3157. struct sched_domain *sd;
  3158. int pulled_task = -1;
  3159. unsigned long next_balance = jiffies + HZ;
  3160. cpumask_t tmpmask;
  3161. for_each_domain(this_cpu, sd) {
  3162. unsigned long interval;
  3163. if (!(sd->flags & SD_LOAD_BALANCE))
  3164. continue;
  3165. if (sd->flags & SD_BALANCE_NEWIDLE)
  3166. /* If we've pulled tasks over stop searching: */
  3167. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3168. sd, &tmpmask);
  3169. interval = msecs_to_jiffies(sd->balance_interval);
  3170. if (time_after(next_balance, sd->last_balance + interval))
  3171. next_balance = sd->last_balance + interval;
  3172. if (pulled_task)
  3173. break;
  3174. }
  3175. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3176. /*
  3177. * We are going idle. next_balance may be set based on
  3178. * a busy processor. So reset next_balance.
  3179. */
  3180. this_rq->next_balance = next_balance;
  3181. }
  3182. }
  3183. /*
  3184. * active_load_balance is run by migration threads. It pushes running tasks
  3185. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3186. * running on each physical CPU where possible, and avoids physical /
  3187. * logical imbalances.
  3188. *
  3189. * Called with busiest_rq locked.
  3190. */
  3191. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3192. {
  3193. int target_cpu = busiest_rq->push_cpu;
  3194. struct sched_domain *sd;
  3195. struct rq *target_rq;
  3196. /* Is there any task to move? */
  3197. if (busiest_rq->nr_running <= 1)
  3198. return;
  3199. target_rq = cpu_rq(target_cpu);
  3200. /*
  3201. * This condition is "impossible", if it occurs
  3202. * we need to fix it. Originally reported by
  3203. * Bjorn Helgaas on a 128-cpu setup.
  3204. */
  3205. BUG_ON(busiest_rq == target_rq);
  3206. /* move a task from busiest_rq to target_rq */
  3207. double_lock_balance(busiest_rq, target_rq);
  3208. update_rq_clock(busiest_rq);
  3209. update_rq_clock(target_rq);
  3210. /* Search for an sd spanning us and the target CPU. */
  3211. for_each_domain(target_cpu, sd) {
  3212. if ((sd->flags & SD_LOAD_BALANCE) &&
  3213. cpu_isset(busiest_cpu, sd->span))
  3214. break;
  3215. }
  3216. if (likely(sd)) {
  3217. schedstat_inc(sd, alb_count);
  3218. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3219. sd, CPU_IDLE))
  3220. schedstat_inc(sd, alb_pushed);
  3221. else
  3222. schedstat_inc(sd, alb_failed);
  3223. }
  3224. spin_unlock(&target_rq->lock);
  3225. }
  3226. #ifdef CONFIG_NO_HZ
  3227. static struct {
  3228. atomic_t load_balancer;
  3229. cpumask_t cpu_mask;
  3230. } nohz ____cacheline_aligned = {
  3231. .load_balancer = ATOMIC_INIT(-1),
  3232. .cpu_mask = CPU_MASK_NONE,
  3233. };
  3234. /*
  3235. * This routine will try to nominate the ilb (idle load balancing)
  3236. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3237. * load balancing on behalf of all those cpus. If all the cpus in the system
  3238. * go into this tickless mode, then there will be no ilb owner (as there is
  3239. * no need for one) and all the cpus will sleep till the next wakeup event
  3240. * arrives...
  3241. *
  3242. * For the ilb owner, tick is not stopped. And this tick will be used
  3243. * for idle load balancing. ilb owner will still be part of
  3244. * nohz.cpu_mask..
  3245. *
  3246. * While stopping the tick, this cpu will become the ilb owner if there
  3247. * is no other owner. And will be the owner till that cpu becomes busy
  3248. * or if all cpus in the system stop their ticks at which point
  3249. * there is no need for ilb owner.
  3250. *
  3251. * When the ilb owner becomes busy, it nominates another owner, during the
  3252. * next busy scheduler_tick()
  3253. */
  3254. int select_nohz_load_balancer(int stop_tick)
  3255. {
  3256. int cpu = smp_processor_id();
  3257. if (stop_tick) {
  3258. cpu_set(cpu, nohz.cpu_mask);
  3259. cpu_rq(cpu)->in_nohz_recently = 1;
  3260. /*
  3261. * If we are going offline and still the leader, give up!
  3262. */
  3263. if (cpu_is_offline(cpu) &&
  3264. atomic_read(&nohz.load_balancer) == cpu) {
  3265. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3266. BUG();
  3267. return 0;
  3268. }
  3269. /* time for ilb owner also to sleep */
  3270. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3271. if (atomic_read(&nohz.load_balancer) == cpu)
  3272. atomic_set(&nohz.load_balancer, -1);
  3273. return 0;
  3274. }
  3275. if (atomic_read(&nohz.load_balancer) == -1) {
  3276. /* make me the ilb owner */
  3277. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3278. return 1;
  3279. } else if (atomic_read(&nohz.load_balancer) == cpu)
  3280. return 1;
  3281. } else {
  3282. if (!cpu_isset(cpu, nohz.cpu_mask))
  3283. return 0;
  3284. cpu_clear(cpu, nohz.cpu_mask);
  3285. if (atomic_read(&nohz.load_balancer) == cpu)
  3286. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3287. BUG();
  3288. }
  3289. return 0;
  3290. }
  3291. #endif
  3292. static DEFINE_SPINLOCK(balancing);
  3293. /*
  3294. * It checks each scheduling domain to see if it is due to be balanced,
  3295. * and initiates a balancing operation if so.
  3296. *
  3297. * Balancing parameters are set up in arch_init_sched_domains.
  3298. */
  3299. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3300. {
  3301. int balance = 1;
  3302. struct rq *rq = cpu_rq(cpu);
  3303. unsigned long interval;
  3304. struct sched_domain *sd;
  3305. /* Earliest time when we have to do rebalance again */
  3306. unsigned long next_balance = jiffies + 60*HZ;
  3307. int update_next_balance = 0;
  3308. int need_serialize;
  3309. cpumask_t tmp;
  3310. for_each_domain(cpu, sd) {
  3311. if (!(sd->flags & SD_LOAD_BALANCE))
  3312. continue;
  3313. interval = sd->balance_interval;
  3314. if (idle != CPU_IDLE)
  3315. interval *= sd->busy_factor;
  3316. /* scale ms to jiffies */
  3317. interval = msecs_to_jiffies(interval);
  3318. if (unlikely(!interval))
  3319. interval = 1;
  3320. if (interval > HZ*NR_CPUS/10)
  3321. interval = HZ*NR_CPUS/10;
  3322. need_serialize = sd->flags & SD_SERIALIZE;
  3323. if (need_serialize) {
  3324. if (!spin_trylock(&balancing))
  3325. goto out;
  3326. }
  3327. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3328. if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
  3329. /*
  3330. * We've pulled tasks over so either we're no
  3331. * longer idle, or one of our SMT siblings is
  3332. * not idle.
  3333. */
  3334. idle = CPU_NOT_IDLE;
  3335. }
  3336. sd->last_balance = jiffies;
  3337. }
  3338. if (need_serialize)
  3339. spin_unlock(&balancing);
  3340. out:
  3341. if (time_after(next_balance, sd->last_balance + interval)) {
  3342. next_balance = sd->last_balance + interval;
  3343. update_next_balance = 1;
  3344. }
  3345. /*
  3346. * Stop the load balance at this level. There is another
  3347. * CPU in our sched group which is doing load balancing more
  3348. * actively.
  3349. */
  3350. if (!balance)
  3351. break;
  3352. }
  3353. /*
  3354. * next_balance will be updated only when there is a need.
  3355. * When the cpu is attached to null domain for ex, it will not be
  3356. * updated.
  3357. */
  3358. if (likely(update_next_balance))
  3359. rq->next_balance = next_balance;
  3360. }
  3361. /*
  3362. * run_rebalance_domains is triggered when needed from the scheduler tick.
  3363. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  3364. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3365. */
  3366. static void run_rebalance_domains(struct softirq_action *h)
  3367. {
  3368. int this_cpu = smp_processor_id();
  3369. struct rq *this_rq = cpu_rq(this_cpu);
  3370. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  3371. CPU_IDLE : CPU_NOT_IDLE;
  3372. rebalance_domains(this_cpu, idle);
  3373. #ifdef CONFIG_NO_HZ
  3374. /*
  3375. * If this cpu is the owner for idle load balancing, then do the
  3376. * balancing on behalf of the other idle cpus whose ticks are
  3377. * stopped.
  3378. */
  3379. if (this_rq->idle_at_tick &&
  3380. atomic_read(&nohz.load_balancer) == this_cpu) {
  3381. cpumask_t cpus = nohz.cpu_mask;
  3382. struct rq *rq;
  3383. int balance_cpu;
  3384. cpu_clear(this_cpu, cpus);
  3385. for_each_cpu_mask(balance_cpu, cpus) {
  3386. /*
  3387. * If this cpu gets work to do, stop the load balancing
  3388. * work being done for other cpus. Next load
  3389. * balancing owner will pick it up.
  3390. */
  3391. if (need_resched())
  3392. break;
  3393. rebalance_domains(balance_cpu, CPU_IDLE);
  3394. rq = cpu_rq(balance_cpu);
  3395. if (time_after(this_rq->next_balance, rq->next_balance))
  3396. this_rq->next_balance = rq->next_balance;
  3397. }
  3398. }
  3399. #endif
  3400. }
  3401. /*
  3402. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  3403. *
  3404. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  3405. * idle load balancing owner or decide to stop the periodic load balancing,
  3406. * if the whole system is idle.
  3407. */
  3408. static inline void trigger_load_balance(struct rq *rq, int cpu)
  3409. {
  3410. #ifdef CONFIG_NO_HZ
  3411. /*
  3412. * If we were in the nohz mode recently and busy at the current
  3413. * scheduler tick, then check if we need to nominate new idle
  3414. * load balancer.
  3415. */
  3416. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  3417. rq->in_nohz_recently = 0;
  3418. if (atomic_read(&nohz.load_balancer) == cpu) {
  3419. cpu_clear(cpu, nohz.cpu_mask);
  3420. atomic_set(&nohz.load_balancer, -1);
  3421. }
  3422. if (atomic_read(&nohz.load_balancer) == -1) {
  3423. /*
  3424. * simple selection for now: Nominate the
  3425. * first cpu in the nohz list to be the next
  3426. * ilb owner.
  3427. *
  3428. * TBD: Traverse the sched domains and nominate
  3429. * the nearest cpu in the nohz.cpu_mask.
  3430. */
  3431. int ilb = first_cpu(nohz.cpu_mask);
  3432. if (ilb < nr_cpu_ids)
  3433. resched_cpu(ilb);
  3434. }
  3435. }
  3436. /*
  3437. * If this cpu is idle and doing idle load balancing for all the
  3438. * cpus with ticks stopped, is it time for that to stop?
  3439. */
  3440. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  3441. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  3442. resched_cpu(cpu);
  3443. return;
  3444. }
  3445. /*
  3446. * If this cpu is idle and the idle load balancing is done by
  3447. * someone else, then no need raise the SCHED_SOFTIRQ
  3448. */
  3449. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  3450. cpu_isset(cpu, nohz.cpu_mask))
  3451. return;
  3452. #endif
  3453. if (time_after_eq(jiffies, rq->next_balance))
  3454. raise_softirq(SCHED_SOFTIRQ);
  3455. }
  3456. #else /* CONFIG_SMP */
  3457. /*
  3458. * on UP we do not need to balance between CPUs:
  3459. */
  3460. static inline void idle_balance(int cpu, struct rq *rq)
  3461. {
  3462. }
  3463. #endif
  3464. DEFINE_PER_CPU(struct kernel_stat, kstat);
  3465. EXPORT_PER_CPU_SYMBOL(kstat);
  3466. /*
  3467. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  3468. * that have not yet been banked in case the task is currently running.
  3469. */
  3470. unsigned long long task_sched_runtime(struct task_struct *p)
  3471. {
  3472. unsigned long flags;
  3473. u64 ns, delta_exec;
  3474. struct rq *rq;
  3475. rq = task_rq_lock(p, &flags);
  3476. ns = p->se.sum_exec_runtime;
  3477. if (task_current(rq, p)) {
  3478. update_rq_clock(rq);
  3479. delta_exec = rq->clock - p->se.exec_start;
  3480. if ((s64)delta_exec > 0)
  3481. ns += delta_exec;
  3482. }
  3483. task_rq_unlock(rq, &flags);
  3484. return ns;
  3485. }
  3486. /*
  3487. * Account user cpu time to a process.
  3488. * @p: the process that the cpu time gets accounted to
  3489. * @cputime: the cpu time spent in user space since the last update
  3490. */
  3491. void account_user_time(struct task_struct *p, cputime_t cputime)
  3492. {
  3493. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3494. cputime64_t tmp;
  3495. p->utime = cputime_add(p->utime, cputime);
  3496. /* Add user time to cpustat. */
  3497. tmp = cputime_to_cputime64(cputime);
  3498. if (TASK_NICE(p) > 0)
  3499. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  3500. else
  3501. cpustat->user = cputime64_add(cpustat->user, tmp);
  3502. }
  3503. /*
  3504. * Account guest cpu time to a process.
  3505. * @p: the process that the cpu time gets accounted to
  3506. * @cputime: the cpu time spent in virtual machine since the last update
  3507. */
  3508. static void account_guest_time(struct task_struct *p, cputime_t cputime)
  3509. {
  3510. cputime64_t tmp;
  3511. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3512. tmp = cputime_to_cputime64(cputime);
  3513. p->utime = cputime_add(p->utime, cputime);
  3514. p->gtime = cputime_add(p->gtime, cputime);
  3515. cpustat->user = cputime64_add(cpustat->user, tmp);
  3516. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  3517. }
  3518. /*
  3519. * Account scaled user cpu time to a process.
  3520. * @p: the process that the cpu time gets accounted to
  3521. * @cputime: the cpu time spent in user space since the last update
  3522. */
  3523. void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
  3524. {
  3525. p->utimescaled = cputime_add(p->utimescaled, cputime);
  3526. }
  3527. /*
  3528. * Account system cpu time to a process.
  3529. * @p: the process that the cpu time gets accounted to
  3530. * @hardirq_offset: the offset to subtract from hardirq_count()
  3531. * @cputime: the cpu time spent in kernel space since the last update
  3532. */
  3533. void account_system_time(struct task_struct *p, int hardirq_offset,
  3534. cputime_t cputime)
  3535. {
  3536. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3537. struct rq *rq = this_rq();
  3538. cputime64_t tmp;
  3539. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  3540. account_guest_time(p, cputime);
  3541. return;
  3542. }
  3543. p->stime = cputime_add(p->stime, cputime);
  3544. /* Add system time to cpustat. */
  3545. tmp = cputime_to_cputime64(cputime);
  3546. if (hardirq_count() - hardirq_offset)
  3547. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  3548. else if (softirq_count())
  3549. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  3550. else if (p != rq->idle)
  3551. cpustat->system = cputime64_add(cpustat->system, tmp);
  3552. else if (atomic_read(&rq->nr_iowait) > 0)
  3553. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3554. else
  3555. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3556. /* Account for system time used */
  3557. acct_update_integrals(p);
  3558. }
  3559. /*
  3560. * Account scaled system cpu time to a process.
  3561. * @p: the process that the cpu time gets accounted to
  3562. * @hardirq_offset: the offset to subtract from hardirq_count()
  3563. * @cputime: the cpu time spent in kernel space since the last update
  3564. */
  3565. void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
  3566. {
  3567. p->stimescaled = cputime_add(p->stimescaled, cputime);
  3568. }
  3569. /*
  3570. * Account for involuntary wait time.
  3571. * @p: the process from which the cpu time has been stolen
  3572. * @steal: the cpu time spent in involuntary wait
  3573. */
  3574. void account_steal_time(struct task_struct *p, cputime_t steal)
  3575. {
  3576. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  3577. cputime64_t tmp = cputime_to_cputime64(steal);
  3578. struct rq *rq = this_rq();
  3579. if (p == rq->idle) {
  3580. p->stime = cputime_add(p->stime, steal);
  3581. if (atomic_read(&rq->nr_iowait) > 0)
  3582. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  3583. else
  3584. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  3585. } else
  3586. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  3587. }
  3588. /*
  3589. * This function gets called by the timer code, with HZ frequency.
  3590. * We call it with interrupts disabled.
  3591. *
  3592. * It also gets called by the fork code, when changing the parent's
  3593. * timeslices.
  3594. */
  3595. void scheduler_tick(void)
  3596. {
  3597. int cpu = smp_processor_id();
  3598. struct rq *rq = cpu_rq(cpu);
  3599. struct task_struct *curr = rq->curr;
  3600. sched_clock_tick();
  3601. spin_lock(&rq->lock);
  3602. update_rq_clock(rq);
  3603. update_cpu_load(rq);
  3604. curr->sched_class->task_tick(rq, curr, 0);
  3605. spin_unlock(&rq->lock);
  3606. #ifdef CONFIG_SMP
  3607. rq->idle_at_tick = idle_cpu(cpu);
  3608. trigger_load_balance(rq, cpu);
  3609. #endif
  3610. }
  3611. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  3612. defined(CONFIG_PREEMPT_TRACER))
  3613. static inline unsigned long get_parent_ip(unsigned long addr)
  3614. {
  3615. if (in_lock_functions(addr)) {
  3616. addr = CALLER_ADDR2;
  3617. if (in_lock_functions(addr))
  3618. addr = CALLER_ADDR3;
  3619. }
  3620. return addr;
  3621. }
  3622. void __kprobes add_preempt_count(int val)
  3623. {
  3624. #ifdef CONFIG_DEBUG_PREEMPT
  3625. /*
  3626. * Underflow?
  3627. */
  3628. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  3629. return;
  3630. #endif
  3631. preempt_count() += val;
  3632. #ifdef CONFIG_DEBUG_PREEMPT
  3633. /*
  3634. * Spinlock count overflowing soon?
  3635. */
  3636. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3637. PREEMPT_MASK - 10);
  3638. #endif
  3639. if (preempt_count() == val)
  3640. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3641. }
  3642. EXPORT_SYMBOL(add_preempt_count);
  3643. void __kprobes sub_preempt_count(int val)
  3644. {
  3645. #ifdef CONFIG_DEBUG_PREEMPT
  3646. /*
  3647. * Underflow?
  3648. */
  3649. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3650. return;
  3651. /*
  3652. * Is the spinlock portion underflowing?
  3653. */
  3654. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3655. !(preempt_count() & PREEMPT_MASK)))
  3656. return;
  3657. #endif
  3658. if (preempt_count() == val)
  3659. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3660. preempt_count() -= val;
  3661. }
  3662. EXPORT_SYMBOL(sub_preempt_count);
  3663. #endif
  3664. /*
  3665. * Print scheduling while atomic bug:
  3666. */
  3667. static noinline void __schedule_bug(struct task_struct *prev)
  3668. {
  3669. struct pt_regs *regs = get_irq_regs();
  3670. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3671. prev->comm, prev->pid, preempt_count());
  3672. debug_show_held_locks(prev);
  3673. print_modules();
  3674. if (irqs_disabled())
  3675. print_irqtrace_events(prev);
  3676. if (regs)
  3677. show_regs(regs);
  3678. else
  3679. dump_stack();
  3680. }
  3681. /*
  3682. * Various schedule()-time debugging checks and statistics:
  3683. */
  3684. static inline void schedule_debug(struct task_struct *prev)
  3685. {
  3686. /*
  3687. * Test if we are atomic. Since do_exit() needs to call into
  3688. * schedule() atomically, we ignore that path for now.
  3689. * Otherwise, whine if we are scheduling when we should not be.
  3690. */
  3691. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3692. __schedule_bug(prev);
  3693. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3694. schedstat_inc(this_rq(), sched_count);
  3695. #ifdef CONFIG_SCHEDSTATS
  3696. if (unlikely(prev->lock_depth >= 0)) {
  3697. schedstat_inc(this_rq(), bkl_count);
  3698. schedstat_inc(prev, sched_info.bkl_count);
  3699. }
  3700. #endif
  3701. }
  3702. /*
  3703. * Pick up the highest-prio task:
  3704. */
  3705. static inline struct task_struct *
  3706. pick_next_task(struct rq *rq, struct task_struct *prev)
  3707. {
  3708. const struct sched_class *class;
  3709. struct task_struct *p;
  3710. /*
  3711. * Optimization: we know that if all tasks are in
  3712. * the fair class we can call that function directly:
  3713. */
  3714. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3715. p = fair_sched_class.pick_next_task(rq);
  3716. if (likely(p))
  3717. return p;
  3718. }
  3719. class = sched_class_highest;
  3720. for ( ; ; ) {
  3721. p = class->pick_next_task(rq);
  3722. if (p)
  3723. return p;
  3724. /*
  3725. * Will never be NULL as the idle class always
  3726. * returns a non-NULL p:
  3727. */
  3728. class = class->next;
  3729. }
  3730. }
  3731. /*
  3732. * schedule() is the main scheduler function.
  3733. */
  3734. asmlinkage void __sched schedule(void)
  3735. {
  3736. struct task_struct *prev, *next;
  3737. unsigned long *switch_count;
  3738. struct rq *rq;
  3739. int cpu, hrtick = sched_feat(HRTICK);
  3740. need_resched:
  3741. preempt_disable();
  3742. cpu = smp_processor_id();
  3743. rq = cpu_rq(cpu);
  3744. rcu_qsctr_inc(cpu);
  3745. prev = rq->curr;
  3746. switch_count = &prev->nivcsw;
  3747. release_kernel_lock(prev);
  3748. need_resched_nonpreemptible:
  3749. schedule_debug(prev);
  3750. if (hrtick)
  3751. hrtick_clear(rq);
  3752. /*
  3753. * Do the rq-clock update outside the rq lock:
  3754. */
  3755. local_irq_disable();
  3756. update_rq_clock(rq);
  3757. spin_lock(&rq->lock);
  3758. clear_tsk_need_resched(prev);
  3759. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3760. if (unlikely(signal_pending_state(prev->state, prev)))
  3761. prev->state = TASK_RUNNING;
  3762. else
  3763. deactivate_task(rq, prev, 1);
  3764. switch_count = &prev->nvcsw;
  3765. }
  3766. #ifdef CONFIG_SMP
  3767. if (prev->sched_class->pre_schedule)
  3768. prev->sched_class->pre_schedule(rq, prev);
  3769. #endif
  3770. if (unlikely(!rq->nr_running))
  3771. idle_balance(cpu, rq);
  3772. prev->sched_class->put_prev_task(rq, prev);
  3773. next = pick_next_task(rq, prev);
  3774. if (likely(prev != next)) {
  3775. sched_info_switch(prev, next);
  3776. rq->nr_switches++;
  3777. rq->curr = next;
  3778. ++*switch_count;
  3779. context_switch(rq, prev, next); /* unlocks the rq */
  3780. /*
  3781. * the context switch might have flipped the stack from under
  3782. * us, hence refresh the local variables.
  3783. */
  3784. cpu = smp_processor_id();
  3785. rq = cpu_rq(cpu);
  3786. } else
  3787. spin_unlock_irq(&rq->lock);
  3788. if (hrtick)
  3789. hrtick_set(rq);
  3790. if (unlikely(reacquire_kernel_lock(current) < 0))
  3791. goto need_resched_nonpreemptible;
  3792. preempt_enable_no_resched();
  3793. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3794. goto need_resched;
  3795. }
  3796. EXPORT_SYMBOL(schedule);
  3797. #ifdef CONFIG_PREEMPT
  3798. /*
  3799. * this is the entry point to schedule() from in-kernel preemption
  3800. * off of preempt_enable. Kernel preemptions off return from interrupt
  3801. * occur there and call schedule directly.
  3802. */
  3803. asmlinkage void __sched preempt_schedule(void)
  3804. {
  3805. struct thread_info *ti = current_thread_info();
  3806. /*
  3807. * If there is a non-zero preempt_count or interrupts are disabled,
  3808. * we do not want to preempt the current task. Just return..
  3809. */
  3810. if (likely(ti->preempt_count || irqs_disabled()))
  3811. return;
  3812. do {
  3813. add_preempt_count(PREEMPT_ACTIVE);
  3814. schedule();
  3815. sub_preempt_count(PREEMPT_ACTIVE);
  3816. /*
  3817. * Check again in case we missed a preemption opportunity
  3818. * between schedule and now.
  3819. */
  3820. barrier();
  3821. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3822. }
  3823. EXPORT_SYMBOL(preempt_schedule);
  3824. /*
  3825. * this is the entry point to schedule() from kernel preemption
  3826. * off of irq context.
  3827. * Note, that this is called and return with irqs disabled. This will
  3828. * protect us against recursive calling from irq.
  3829. */
  3830. asmlinkage void __sched preempt_schedule_irq(void)
  3831. {
  3832. struct thread_info *ti = current_thread_info();
  3833. /* Catch callers which need to be fixed */
  3834. BUG_ON(ti->preempt_count || !irqs_disabled());
  3835. do {
  3836. add_preempt_count(PREEMPT_ACTIVE);
  3837. local_irq_enable();
  3838. schedule();
  3839. local_irq_disable();
  3840. sub_preempt_count(PREEMPT_ACTIVE);
  3841. /*
  3842. * Check again in case we missed a preemption opportunity
  3843. * between schedule and now.
  3844. */
  3845. barrier();
  3846. } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
  3847. }
  3848. #endif /* CONFIG_PREEMPT */
  3849. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3850. void *key)
  3851. {
  3852. return try_to_wake_up(curr->private, mode, sync);
  3853. }
  3854. EXPORT_SYMBOL(default_wake_function);
  3855. /*
  3856. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3857. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3858. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3859. *
  3860. * There are circumstances in which we can try to wake a task which has already
  3861. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3862. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3863. */
  3864. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3865. int nr_exclusive, int sync, void *key)
  3866. {
  3867. wait_queue_t *curr, *next;
  3868. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3869. unsigned flags = curr->flags;
  3870. if (curr->func(curr, mode, sync, key) &&
  3871. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3872. break;
  3873. }
  3874. }
  3875. /**
  3876. * __wake_up - wake up threads blocked on a waitqueue.
  3877. * @q: the waitqueue
  3878. * @mode: which threads
  3879. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3880. * @key: is directly passed to the wakeup function
  3881. */
  3882. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3883. int nr_exclusive, void *key)
  3884. {
  3885. unsigned long flags;
  3886. spin_lock_irqsave(&q->lock, flags);
  3887. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3888. spin_unlock_irqrestore(&q->lock, flags);
  3889. }
  3890. EXPORT_SYMBOL(__wake_up);
  3891. /*
  3892. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3893. */
  3894. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3895. {
  3896. __wake_up_common(q, mode, 1, 0, NULL);
  3897. }
  3898. /**
  3899. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3900. * @q: the waitqueue
  3901. * @mode: which threads
  3902. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3903. *
  3904. * The sync wakeup differs that the waker knows that it will schedule
  3905. * away soon, so while the target thread will be woken up, it will not
  3906. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3907. * with each other. This can prevent needless bouncing between CPUs.
  3908. *
  3909. * On UP it can prevent extra preemption.
  3910. */
  3911. void
  3912. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3913. {
  3914. unsigned long flags;
  3915. int sync = 1;
  3916. if (unlikely(!q))
  3917. return;
  3918. if (unlikely(!nr_exclusive))
  3919. sync = 0;
  3920. spin_lock_irqsave(&q->lock, flags);
  3921. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3922. spin_unlock_irqrestore(&q->lock, flags);
  3923. }
  3924. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3925. void complete(struct completion *x)
  3926. {
  3927. unsigned long flags;
  3928. spin_lock_irqsave(&x->wait.lock, flags);
  3929. x->done++;
  3930. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3931. spin_unlock_irqrestore(&x->wait.lock, flags);
  3932. }
  3933. EXPORT_SYMBOL(complete);
  3934. void complete_all(struct completion *x)
  3935. {
  3936. unsigned long flags;
  3937. spin_lock_irqsave(&x->wait.lock, flags);
  3938. x->done += UINT_MAX/2;
  3939. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3940. spin_unlock_irqrestore(&x->wait.lock, flags);
  3941. }
  3942. EXPORT_SYMBOL(complete_all);
  3943. static inline long __sched
  3944. do_wait_for_common(struct completion *x, long timeout, int state)
  3945. {
  3946. if (!x->done) {
  3947. DECLARE_WAITQUEUE(wait, current);
  3948. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3949. __add_wait_queue_tail(&x->wait, &wait);
  3950. do {
  3951. if ((state == TASK_INTERRUPTIBLE &&
  3952. signal_pending(current)) ||
  3953. (state == TASK_KILLABLE &&
  3954. fatal_signal_pending(current))) {
  3955. timeout = -ERESTARTSYS;
  3956. break;
  3957. }
  3958. __set_current_state(state);
  3959. spin_unlock_irq(&x->wait.lock);
  3960. timeout = schedule_timeout(timeout);
  3961. spin_lock_irq(&x->wait.lock);
  3962. } while (!x->done && timeout);
  3963. __remove_wait_queue(&x->wait, &wait);
  3964. if (!x->done)
  3965. return timeout;
  3966. }
  3967. x->done--;
  3968. return timeout ?: 1;
  3969. }
  3970. static long __sched
  3971. wait_for_common(struct completion *x, long timeout, int state)
  3972. {
  3973. might_sleep();
  3974. spin_lock_irq(&x->wait.lock);
  3975. timeout = do_wait_for_common(x, timeout, state);
  3976. spin_unlock_irq(&x->wait.lock);
  3977. return timeout;
  3978. }
  3979. void __sched wait_for_completion(struct completion *x)
  3980. {
  3981. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3982. }
  3983. EXPORT_SYMBOL(wait_for_completion);
  3984. unsigned long __sched
  3985. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3986. {
  3987. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3988. }
  3989. EXPORT_SYMBOL(wait_for_completion_timeout);
  3990. int __sched wait_for_completion_interruptible(struct completion *x)
  3991. {
  3992. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3993. if (t == -ERESTARTSYS)
  3994. return t;
  3995. return 0;
  3996. }
  3997. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3998. unsigned long __sched
  3999. wait_for_completion_interruptible_timeout(struct completion *x,
  4000. unsigned long timeout)
  4001. {
  4002. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4003. }
  4004. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4005. int __sched wait_for_completion_killable(struct completion *x)
  4006. {
  4007. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4008. if (t == -ERESTARTSYS)
  4009. return t;
  4010. return 0;
  4011. }
  4012. EXPORT_SYMBOL(wait_for_completion_killable);
  4013. static long __sched
  4014. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4015. {
  4016. unsigned long flags;
  4017. wait_queue_t wait;
  4018. init_waitqueue_entry(&wait, current);
  4019. __set_current_state(state);
  4020. spin_lock_irqsave(&q->lock, flags);
  4021. __add_wait_queue(q, &wait);
  4022. spin_unlock(&q->lock);
  4023. timeout = schedule_timeout(timeout);
  4024. spin_lock_irq(&q->lock);
  4025. __remove_wait_queue(q, &wait);
  4026. spin_unlock_irqrestore(&q->lock, flags);
  4027. return timeout;
  4028. }
  4029. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4030. {
  4031. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4032. }
  4033. EXPORT_SYMBOL(interruptible_sleep_on);
  4034. long __sched
  4035. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4036. {
  4037. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4038. }
  4039. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4040. void __sched sleep_on(wait_queue_head_t *q)
  4041. {
  4042. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4043. }
  4044. EXPORT_SYMBOL(sleep_on);
  4045. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4046. {
  4047. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  4048. }
  4049. EXPORT_SYMBOL(sleep_on_timeout);
  4050. #ifdef CONFIG_RT_MUTEXES
  4051. /*
  4052. * rt_mutex_setprio - set the current priority of a task
  4053. * @p: task
  4054. * @prio: prio value (kernel-internal form)
  4055. *
  4056. * This function changes the 'effective' priority of a task. It does
  4057. * not touch ->normal_prio like __setscheduler().
  4058. *
  4059. * Used by the rt_mutex code to implement priority inheritance logic.
  4060. */
  4061. void rt_mutex_setprio(struct task_struct *p, int prio)
  4062. {
  4063. unsigned long flags;
  4064. int oldprio, on_rq, running;
  4065. struct rq *rq;
  4066. const struct sched_class *prev_class = p->sched_class;
  4067. BUG_ON(prio < 0 || prio > MAX_PRIO);
  4068. rq = task_rq_lock(p, &flags);
  4069. update_rq_clock(rq);
  4070. oldprio = p->prio;
  4071. on_rq = p->se.on_rq;
  4072. running = task_current(rq, p);
  4073. if (on_rq)
  4074. dequeue_task(rq, p, 0);
  4075. if (running)
  4076. p->sched_class->put_prev_task(rq, p);
  4077. if (rt_prio(prio))
  4078. p->sched_class = &rt_sched_class;
  4079. else
  4080. p->sched_class = &fair_sched_class;
  4081. p->prio = prio;
  4082. if (running)
  4083. p->sched_class->set_curr_task(rq);
  4084. if (on_rq) {
  4085. enqueue_task(rq, p, 0);
  4086. check_class_changed(rq, p, prev_class, oldprio, running);
  4087. }
  4088. task_rq_unlock(rq, &flags);
  4089. }
  4090. #endif
  4091. void set_user_nice(struct task_struct *p, long nice)
  4092. {
  4093. int old_prio, delta, on_rq;
  4094. unsigned long flags;
  4095. struct rq *rq;
  4096. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  4097. return;
  4098. /*
  4099. * We have to be careful, if called from sys_setpriority(),
  4100. * the task might be in the middle of scheduling on another CPU.
  4101. */
  4102. rq = task_rq_lock(p, &flags);
  4103. update_rq_clock(rq);
  4104. /*
  4105. * The RT priorities are set via sched_setscheduler(), but we still
  4106. * allow the 'normal' nice value to be set - but as expected
  4107. * it wont have any effect on scheduling until the task is
  4108. * SCHED_FIFO/SCHED_RR:
  4109. */
  4110. if (task_has_rt_policy(p)) {
  4111. p->static_prio = NICE_TO_PRIO(nice);
  4112. goto out_unlock;
  4113. }
  4114. on_rq = p->se.on_rq;
  4115. if (on_rq)
  4116. dequeue_task(rq, p, 0);
  4117. p->static_prio = NICE_TO_PRIO(nice);
  4118. set_load_weight(p);
  4119. old_prio = p->prio;
  4120. p->prio = effective_prio(p);
  4121. delta = p->prio - old_prio;
  4122. if (on_rq) {
  4123. enqueue_task(rq, p, 0);
  4124. /*
  4125. * If the task increased its priority or is running and
  4126. * lowered its priority, then reschedule its CPU:
  4127. */
  4128. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  4129. resched_task(rq->curr);
  4130. }
  4131. out_unlock:
  4132. task_rq_unlock(rq, &flags);
  4133. }
  4134. EXPORT_SYMBOL(set_user_nice);
  4135. /*
  4136. * can_nice - check if a task can reduce its nice value
  4137. * @p: task
  4138. * @nice: nice value
  4139. */
  4140. int can_nice(const struct task_struct *p, const int nice)
  4141. {
  4142. /* convert nice value [19,-20] to rlimit style value [1,40] */
  4143. int nice_rlim = 20 - nice;
  4144. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  4145. capable(CAP_SYS_NICE));
  4146. }
  4147. #ifdef __ARCH_WANT_SYS_NICE
  4148. /*
  4149. * sys_nice - change the priority of the current process.
  4150. * @increment: priority increment
  4151. *
  4152. * sys_setpriority is a more generic, but much slower function that
  4153. * does similar things.
  4154. */
  4155. asmlinkage long sys_nice(int increment)
  4156. {
  4157. long nice, retval;
  4158. /*
  4159. * Setpriority might change our priority at the same moment.
  4160. * We don't have to worry. Conceptually one call occurs first
  4161. * and we have a single winner.
  4162. */
  4163. if (increment < -40)
  4164. increment = -40;
  4165. if (increment > 40)
  4166. increment = 40;
  4167. nice = PRIO_TO_NICE(current->static_prio) + increment;
  4168. if (nice < -20)
  4169. nice = -20;
  4170. if (nice > 19)
  4171. nice = 19;
  4172. if (increment < 0 && !can_nice(current, nice))
  4173. return -EPERM;
  4174. retval = security_task_setnice(current, nice);
  4175. if (retval)
  4176. return retval;
  4177. set_user_nice(current, nice);
  4178. return 0;
  4179. }
  4180. #endif
  4181. /**
  4182. * task_prio - return the priority value of a given task.
  4183. * @p: the task in question.
  4184. *
  4185. * This is the priority value as seen by users in /proc.
  4186. * RT tasks are offset by -200. Normal tasks are centered
  4187. * around 0, value goes from -16 to +15.
  4188. */
  4189. int task_prio(const struct task_struct *p)
  4190. {
  4191. return p->prio - MAX_RT_PRIO;
  4192. }
  4193. /**
  4194. * task_nice - return the nice value of a given task.
  4195. * @p: the task in question.
  4196. */
  4197. int task_nice(const struct task_struct *p)
  4198. {
  4199. return TASK_NICE(p);
  4200. }
  4201. EXPORT_SYMBOL(task_nice);
  4202. /**
  4203. * idle_cpu - is a given cpu idle currently?
  4204. * @cpu: the processor in question.
  4205. */
  4206. int idle_cpu(int cpu)
  4207. {
  4208. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  4209. }
  4210. /**
  4211. * idle_task - return the idle task for a given cpu.
  4212. * @cpu: the processor in question.
  4213. */
  4214. struct task_struct *idle_task(int cpu)
  4215. {
  4216. return cpu_rq(cpu)->idle;
  4217. }
  4218. /**
  4219. * find_process_by_pid - find a process with a matching PID value.
  4220. * @pid: the pid in question.
  4221. */
  4222. static struct task_struct *find_process_by_pid(pid_t pid)
  4223. {
  4224. return pid ? find_task_by_vpid(pid) : current;
  4225. }
  4226. /* Actually do priority change: must hold rq lock. */
  4227. static void
  4228. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  4229. {
  4230. BUG_ON(p->se.on_rq);
  4231. p->policy = policy;
  4232. switch (p->policy) {
  4233. case SCHED_NORMAL:
  4234. case SCHED_BATCH:
  4235. case SCHED_IDLE:
  4236. p->sched_class = &fair_sched_class;
  4237. break;
  4238. case SCHED_FIFO:
  4239. case SCHED_RR:
  4240. p->sched_class = &rt_sched_class;
  4241. break;
  4242. }
  4243. p->rt_priority = prio;
  4244. p->normal_prio = normal_prio(p);
  4245. /* we are holding p->pi_lock already */
  4246. p->prio = rt_mutex_getprio(p);
  4247. set_load_weight(p);
  4248. }
  4249. static int __sched_setscheduler(struct task_struct *p, int policy,
  4250. struct sched_param *param, bool user)
  4251. {
  4252. int retval, oldprio, oldpolicy = -1, on_rq, running;
  4253. unsigned long flags;
  4254. const struct sched_class *prev_class = p->sched_class;
  4255. struct rq *rq;
  4256. /* may grab non-irq protected spin_locks */
  4257. BUG_ON(in_interrupt());
  4258. recheck:
  4259. /* double check policy once rq lock held */
  4260. if (policy < 0)
  4261. policy = oldpolicy = p->policy;
  4262. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  4263. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  4264. policy != SCHED_IDLE)
  4265. return -EINVAL;
  4266. /*
  4267. * Valid priorities for SCHED_FIFO and SCHED_RR are
  4268. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  4269. * SCHED_BATCH and SCHED_IDLE is 0.
  4270. */
  4271. if (param->sched_priority < 0 ||
  4272. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  4273. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  4274. return -EINVAL;
  4275. if (rt_policy(policy) != (param->sched_priority != 0))
  4276. return -EINVAL;
  4277. /*
  4278. * Allow unprivileged RT tasks to decrease priority:
  4279. */
  4280. if (user && !capable(CAP_SYS_NICE)) {
  4281. if (rt_policy(policy)) {
  4282. unsigned long rlim_rtprio;
  4283. if (!lock_task_sighand(p, &flags))
  4284. return -ESRCH;
  4285. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  4286. unlock_task_sighand(p, &flags);
  4287. /* can't set/change the rt policy */
  4288. if (policy != p->policy && !rlim_rtprio)
  4289. return -EPERM;
  4290. /* can't increase priority */
  4291. if (param->sched_priority > p->rt_priority &&
  4292. param->sched_priority > rlim_rtprio)
  4293. return -EPERM;
  4294. }
  4295. /*
  4296. * Like positive nice levels, dont allow tasks to
  4297. * move out of SCHED_IDLE either:
  4298. */
  4299. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  4300. return -EPERM;
  4301. /* can't change other user's priorities */
  4302. if ((current->euid != p->euid) &&
  4303. (current->euid != p->uid))
  4304. return -EPERM;
  4305. }
  4306. #ifdef CONFIG_RT_GROUP_SCHED
  4307. /*
  4308. * Do not allow realtime tasks into groups that have no runtime
  4309. * assigned.
  4310. */
  4311. if (user
  4312. && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
  4313. return -EPERM;
  4314. #endif
  4315. retval = security_task_setscheduler(p, policy, param);
  4316. if (retval)
  4317. return retval;
  4318. /*
  4319. * make sure no PI-waiters arrive (or leave) while we are
  4320. * changing the priority of the task:
  4321. */
  4322. spin_lock_irqsave(&p->pi_lock, flags);
  4323. /*
  4324. * To be able to change p->policy safely, the apropriate
  4325. * runqueue lock must be held.
  4326. */
  4327. rq = __task_rq_lock(p);
  4328. /* recheck policy now with rq lock held */
  4329. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  4330. policy = oldpolicy = -1;
  4331. __task_rq_unlock(rq);
  4332. spin_unlock_irqrestore(&p->pi_lock, flags);
  4333. goto recheck;
  4334. }
  4335. update_rq_clock(rq);
  4336. on_rq = p->se.on_rq;
  4337. running = task_current(rq, p);
  4338. if (on_rq)
  4339. deactivate_task(rq, p, 0);
  4340. if (running)
  4341. p->sched_class->put_prev_task(rq, p);
  4342. oldprio = p->prio;
  4343. __setscheduler(rq, p, policy, param->sched_priority);
  4344. if (running)
  4345. p->sched_class->set_curr_task(rq);
  4346. if (on_rq) {
  4347. activate_task(rq, p, 0);
  4348. check_class_changed(rq, p, prev_class, oldprio, running);
  4349. }
  4350. __task_rq_unlock(rq);
  4351. spin_unlock_irqrestore(&p->pi_lock, flags);
  4352. rt_mutex_adjust_pi(p);
  4353. return 0;
  4354. }
  4355. /**
  4356. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  4357. * @p: the task in question.
  4358. * @policy: new policy.
  4359. * @param: structure containing the new RT priority.
  4360. *
  4361. * NOTE that the task may be already dead.
  4362. */
  4363. int sched_setscheduler(struct task_struct *p, int policy,
  4364. struct sched_param *param)
  4365. {
  4366. return __sched_setscheduler(p, policy, param, true);
  4367. }
  4368. EXPORT_SYMBOL_GPL(sched_setscheduler);
  4369. /**
  4370. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  4371. * @p: the task in question.
  4372. * @policy: new policy.
  4373. * @param: structure containing the new RT priority.
  4374. *
  4375. * Just like sched_setscheduler, only don't bother checking if the
  4376. * current context has permission. For example, this is needed in
  4377. * stop_machine(): we create temporary high priority worker threads,
  4378. * but our caller might not have that capability.
  4379. */
  4380. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  4381. struct sched_param *param)
  4382. {
  4383. return __sched_setscheduler(p, policy, param, false);
  4384. }
  4385. static int
  4386. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4387. {
  4388. struct sched_param lparam;
  4389. struct task_struct *p;
  4390. int retval;
  4391. if (!param || pid < 0)
  4392. return -EINVAL;
  4393. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  4394. return -EFAULT;
  4395. rcu_read_lock();
  4396. retval = -ESRCH;
  4397. p = find_process_by_pid(pid);
  4398. if (p != NULL)
  4399. retval = sched_setscheduler(p, policy, &lparam);
  4400. rcu_read_unlock();
  4401. return retval;
  4402. }
  4403. /**
  4404. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  4405. * @pid: the pid in question.
  4406. * @policy: new policy.
  4407. * @param: structure containing the new RT priority.
  4408. */
  4409. asmlinkage long
  4410. sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  4411. {
  4412. /* negative values for policy are not valid */
  4413. if (policy < 0)
  4414. return -EINVAL;
  4415. return do_sched_setscheduler(pid, policy, param);
  4416. }
  4417. /**
  4418. * sys_sched_setparam - set/change the RT priority of a thread
  4419. * @pid: the pid in question.
  4420. * @param: structure containing the new RT priority.
  4421. */
  4422. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  4423. {
  4424. return do_sched_setscheduler(pid, -1, param);
  4425. }
  4426. /**
  4427. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4428. * @pid: the pid in question.
  4429. */
  4430. asmlinkage long sys_sched_getscheduler(pid_t pid)
  4431. {
  4432. struct task_struct *p;
  4433. int retval;
  4434. if (pid < 0)
  4435. return -EINVAL;
  4436. retval = -ESRCH;
  4437. read_lock(&tasklist_lock);
  4438. p = find_process_by_pid(pid);
  4439. if (p) {
  4440. retval = security_task_getscheduler(p);
  4441. if (!retval)
  4442. retval = p->policy;
  4443. }
  4444. read_unlock(&tasklist_lock);
  4445. return retval;
  4446. }
  4447. /**
  4448. * sys_sched_getscheduler - get the RT priority of a thread
  4449. * @pid: the pid in question.
  4450. * @param: structure containing the RT priority.
  4451. */
  4452. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  4453. {
  4454. struct sched_param lp;
  4455. struct task_struct *p;
  4456. int retval;
  4457. if (!param || pid < 0)
  4458. return -EINVAL;
  4459. read_lock(&tasklist_lock);
  4460. p = find_process_by_pid(pid);
  4461. retval = -ESRCH;
  4462. if (!p)
  4463. goto out_unlock;
  4464. retval = security_task_getscheduler(p);
  4465. if (retval)
  4466. goto out_unlock;
  4467. lp.sched_priority = p->rt_priority;
  4468. read_unlock(&tasklist_lock);
  4469. /*
  4470. * This one might sleep, we cannot do it with a spinlock held ...
  4471. */
  4472. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4473. return retval;
  4474. out_unlock:
  4475. read_unlock(&tasklist_lock);
  4476. return retval;
  4477. }
  4478. long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
  4479. {
  4480. cpumask_t cpus_allowed;
  4481. cpumask_t new_mask = *in_mask;
  4482. struct task_struct *p;
  4483. int retval;
  4484. get_online_cpus();
  4485. read_lock(&tasklist_lock);
  4486. p = find_process_by_pid(pid);
  4487. if (!p) {
  4488. read_unlock(&tasklist_lock);
  4489. put_online_cpus();
  4490. return -ESRCH;
  4491. }
  4492. /*
  4493. * It is not safe to call set_cpus_allowed with the
  4494. * tasklist_lock held. We will bump the task_struct's
  4495. * usage count and then drop tasklist_lock.
  4496. */
  4497. get_task_struct(p);
  4498. read_unlock(&tasklist_lock);
  4499. retval = -EPERM;
  4500. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  4501. !capable(CAP_SYS_NICE))
  4502. goto out_unlock;
  4503. retval = security_task_setscheduler(p, 0, NULL);
  4504. if (retval)
  4505. goto out_unlock;
  4506. cpuset_cpus_allowed(p, &cpus_allowed);
  4507. cpus_and(new_mask, new_mask, cpus_allowed);
  4508. again:
  4509. retval = set_cpus_allowed_ptr(p, &new_mask);
  4510. if (!retval) {
  4511. cpuset_cpus_allowed(p, &cpus_allowed);
  4512. if (!cpus_subset(new_mask, cpus_allowed)) {
  4513. /*
  4514. * We must have raced with a concurrent cpuset
  4515. * update. Just reset the cpus_allowed to the
  4516. * cpuset's cpus_allowed
  4517. */
  4518. new_mask = cpus_allowed;
  4519. goto again;
  4520. }
  4521. }
  4522. out_unlock:
  4523. put_task_struct(p);
  4524. put_online_cpus();
  4525. return retval;
  4526. }
  4527. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4528. cpumask_t *new_mask)
  4529. {
  4530. if (len < sizeof(cpumask_t)) {
  4531. memset(new_mask, 0, sizeof(cpumask_t));
  4532. } else if (len > sizeof(cpumask_t)) {
  4533. len = sizeof(cpumask_t);
  4534. }
  4535. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4536. }
  4537. /**
  4538. * sys_sched_setaffinity - set the cpu affinity of a process
  4539. * @pid: pid of the process
  4540. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4541. * @user_mask_ptr: user-space pointer to the new cpu mask
  4542. */
  4543. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  4544. unsigned long __user *user_mask_ptr)
  4545. {
  4546. cpumask_t new_mask;
  4547. int retval;
  4548. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  4549. if (retval)
  4550. return retval;
  4551. return sched_setaffinity(pid, &new_mask);
  4552. }
  4553. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  4554. {
  4555. struct task_struct *p;
  4556. int retval;
  4557. get_online_cpus();
  4558. read_lock(&tasklist_lock);
  4559. retval = -ESRCH;
  4560. p = find_process_by_pid(pid);
  4561. if (!p)
  4562. goto out_unlock;
  4563. retval = security_task_getscheduler(p);
  4564. if (retval)
  4565. goto out_unlock;
  4566. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  4567. out_unlock:
  4568. read_unlock(&tasklist_lock);
  4569. put_online_cpus();
  4570. return retval;
  4571. }
  4572. /**
  4573. * sys_sched_getaffinity - get the cpu affinity of a process
  4574. * @pid: pid of the process
  4575. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4576. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4577. */
  4578. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  4579. unsigned long __user *user_mask_ptr)
  4580. {
  4581. int ret;
  4582. cpumask_t mask;
  4583. if (len < sizeof(cpumask_t))
  4584. return -EINVAL;
  4585. ret = sched_getaffinity(pid, &mask);
  4586. if (ret < 0)
  4587. return ret;
  4588. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  4589. return -EFAULT;
  4590. return sizeof(cpumask_t);
  4591. }
  4592. /**
  4593. * sys_sched_yield - yield the current processor to other threads.
  4594. *
  4595. * This function yields the current CPU to other tasks. If there are no
  4596. * other threads running on this CPU then this function will return.
  4597. */
  4598. asmlinkage long sys_sched_yield(void)
  4599. {
  4600. struct rq *rq = this_rq_lock();
  4601. schedstat_inc(rq, yld_count);
  4602. current->sched_class->yield_task(rq);
  4603. /*
  4604. * Since we are going to call schedule() anyway, there's
  4605. * no need to preempt or enable interrupts:
  4606. */
  4607. __release(rq->lock);
  4608. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4609. _raw_spin_unlock(&rq->lock);
  4610. preempt_enable_no_resched();
  4611. schedule();
  4612. return 0;
  4613. }
  4614. static void __cond_resched(void)
  4615. {
  4616. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  4617. __might_sleep(__FILE__, __LINE__);
  4618. #endif
  4619. /*
  4620. * The BKS might be reacquired before we have dropped
  4621. * PREEMPT_ACTIVE, which could trigger a second
  4622. * cond_resched() call.
  4623. */
  4624. do {
  4625. add_preempt_count(PREEMPT_ACTIVE);
  4626. schedule();
  4627. sub_preempt_count(PREEMPT_ACTIVE);
  4628. } while (need_resched());
  4629. }
  4630. int __sched _cond_resched(void)
  4631. {
  4632. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  4633. system_state == SYSTEM_RUNNING) {
  4634. __cond_resched();
  4635. return 1;
  4636. }
  4637. return 0;
  4638. }
  4639. EXPORT_SYMBOL(_cond_resched);
  4640. /*
  4641. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4642. * call schedule, and on return reacquire the lock.
  4643. *
  4644. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4645. * operations here to prevent schedule() from being called twice (once via
  4646. * spin_unlock(), once by hand).
  4647. */
  4648. int cond_resched_lock(spinlock_t *lock)
  4649. {
  4650. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  4651. int ret = 0;
  4652. if (spin_needbreak(lock) || resched) {
  4653. spin_unlock(lock);
  4654. if (resched && need_resched())
  4655. __cond_resched();
  4656. else
  4657. cpu_relax();
  4658. ret = 1;
  4659. spin_lock(lock);
  4660. }
  4661. return ret;
  4662. }
  4663. EXPORT_SYMBOL(cond_resched_lock);
  4664. int __sched cond_resched_softirq(void)
  4665. {
  4666. BUG_ON(!in_softirq());
  4667. if (need_resched() && system_state == SYSTEM_RUNNING) {
  4668. local_bh_enable();
  4669. __cond_resched();
  4670. local_bh_disable();
  4671. return 1;
  4672. }
  4673. return 0;
  4674. }
  4675. EXPORT_SYMBOL(cond_resched_softirq);
  4676. /**
  4677. * yield - yield the current processor to other threads.
  4678. *
  4679. * This is a shortcut for kernel-space yielding - it marks the
  4680. * thread runnable and calls sys_sched_yield().
  4681. */
  4682. void __sched yield(void)
  4683. {
  4684. set_current_state(TASK_RUNNING);
  4685. sys_sched_yield();
  4686. }
  4687. EXPORT_SYMBOL(yield);
  4688. /*
  4689. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4690. * that process accounting knows that this is a task in IO wait state.
  4691. *
  4692. * But don't do that if it is a deliberate, throttling IO wait (this task
  4693. * has set its backing_dev_info: the queue against which it should throttle)
  4694. */
  4695. void __sched io_schedule(void)
  4696. {
  4697. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4698. delayacct_blkio_start();
  4699. atomic_inc(&rq->nr_iowait);
  4700. schedule();
  4701. atomic_dec(&rq->nr_iowait);
  4702. delayacct_blkio_end();
  4703. }
  4704. EXPORT_SYMBOL(io_schedule);
  4705. long __sched io_schedule_timeout(long timeout)
  4706. {
  4707. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4708. long ret;
  4709. delayacct_blkio_start();
  4710. atomic_inc(&rq->nr_iowait);
  4711. ret = schedule_timeout(timeout);
  4712. atomic_dec(&rq->nr_iowait);
  4713. delayacct_blkio_end();
  4714. return ret;
  4715. }
  4716. /**
  4717. * sys_sched_get_priority_max - return maximum RT priority.
  4718. * @policy: scheduling class.
  4719. *
  4720. * this syscall returns the maximum rt_priority that can be used
  4721. * by a given scheduling class.
  4722. */
  4723. asmlinkage long sys_sched_get_priority_max(int policy)
  4724. {
  4725. int ret = -EINVAL;
  4726. switch (policy) {
  4727. case SCHED_FIFO:
  4728. case SCHED_RR:
  4729. ret = MAX_USER_RT_PRIO-1;
  4730. break;
  4731. case SCHED_NORMAL:
  4732. case SCHED_BATCH:
  4733. case SCHED_IDLE:
  4734. ret = 0;
  4735. break;
  4736. }
  4737. return ret;
  4738. }
  4739. /**
  4740. * sys_sched_get_priority_min - return minimum RT priority.
  4741. * @policy: scheduling class.
  4742. *
  4743. * this syscall returns the minimum rt_priority that can be used
  4744. * by a given scheduling class.
  4745. */
  4746. asmlinkage long sys_sched_get_priority_min(int policy)
  4747. {
  4748. int ret = -EINVAL;
  4749. switch (policy) {
  4750. case SCHED_FIFO:
  4751. case SCHED_RR:
  4752. ret = 1;
  4753. break;
  4754. case SCHED_NORMAL:
  4755. case SCHED_BATCH:
  4756. case SCHED_IDLE:
  4757. ret = 0;
  4758. }
  4759. return ret;
  4760. }
  4761. /**
  4762. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4763. * @pid: pid of the process.
  4764. * @interval: userspace pointer to the timeslice value.
  4765. *
  4766. * this syscall writes the default timeslice value of a given process
  4767. * into the user-space timespec buffer. A value of '0' means infinity.
  4768. */
  4769. asmlinkage
  4770. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4771. {
  4772. struct task_struct *p;
  4773. unsigned int time_slice;
  4774. int retval;
  4775. struct timespec t;
  4776. if (pid < 0)
  4777. return -EINVAL;
  4778. retval = -ESRCH;
  4779. read_lock(&tasklist_lock);
  4780. p = find_process_by_pid(pid);
  4781. if (!p)
  4782. goto out_unlock;
  4783. retval = security_task_getscheduler(p);
  4784. if (retval)
  4785. goto out_unlock;
  4786. /*
  4787. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  4788. * tasks that are on an otherwise idle runqueue:
  4789. */
  4790. time_slice = 0;
  4791. if (p->policy == SCHED_RR) {
  4792. time_slice = DEF_TIMESLICE;
  4793. } else if (p->policy != SCHED_FIFO) {
  4794. struct sched_entity *se = &p->se;
  4795. unsigned long flags;
  4796. struct rq *rq;
  4797. rq = task_rq_lock(p, &flags);
  4798. if (rq->cfs.load.weight)
  4799. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4800. task_rq_unlock(rq, &flags);
  4801. }
  4802. read_unlock(&tasklist_lock);
  4803. jiffies_to_timespec(time_slice, &t);
  4804. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4805. return retval;
  4806. out_unlock:
  4807. read_unlock(&tasklist_lock);
  4808. return retval;
  4809. }
  4810. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4811. void sched_show_task(struct task_struct *p)
  4812. {
  4813. unsigned long free = 0;
  4814. unsigned state;
  4815. state = p->state ? __ffs(p->state) + 1 : 0;
  4816. printk(KERN_INFO "%-13.13s %c", p->comm,
  4817. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4818. #if BITS_PER_LONG == 32
  4819. if (state == TASK_RUNNING)
  4820. printk(KERN_CONT " running ");
  4821. else
  4822. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4823. #else
  4824. if (state == TASK_RUNNING)
  4825. printk(KERN_CONT " running task ");
  4826. else
  4827. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4828. #endif
  4829. #ifdef CONFIG_DEBUG_STACK_USAGE
  4830. {
  4831. unsigned long *n = end_of_stack(p);
  4832. while (!*n)
  4833. n++;
  4834. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4835. }
  4836. #endif
  4837. printk(KERN_CONT "%5lu %5d %6d\n", free,
  4838. task_pid_nr(p), task_pid_nr(p->real_parent));
  4839. show_stack(p, NULL);
  4840. }
  4841. void show_state_filter(unsigned long state_filter)
  4842. {
  4843. struct task_struct *g, *p;
  4844. #if BITS_PER_LONG == 32
  4845. printk(KERN_INFO
  4846. " task PC stack pid father\n");
  4847. #else
  4848. printk(KERN_INFO
  4849. " task PC stack pid father\n");
  4850. #endif
  4851. read_lock(&tasklist_lock);
  4852. do_each_thread(g, p) {
  4853. /*
  4854. * reset the NMI-timeout, listing all files on a slow
  4855. * console might take alot of time:
  4856. */
  4857. touch_nmi_watchdog();
  4858. if (!state_filter || (p->state & state_filter))
  4859. sched_show_task(p);
  4860. } while_each_thread(g, p);
  4861. touch_all_softlockup_watchdogs();
  4862. #ifdef CONFIG_SCHED_DEBUG
  4863. sysrq_sched_debug_show();
  4864. #endif
  4865. read_unlock(&tasklist_lock);
  4866. /*
  4867. * Only show locks if all tasks are dumped:
  4868. */
  4869. if (state_filter == -1)
  4870. debug_show_all_locks();
  4871. }
  4872. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4873. {
  4874. idle->sched_class = &idle_sched_class;
  4875. }
  4876. /**
  4877. * init_idle - set up an idle thread for a given CPU
  4878. * @idle: task in question
  4879. * @cpu: cpu the idle task belongs to
  4880. *
  4881. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4882. * flag, to make booting more robust.
  4883. */
  4884. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4885. {
  4886. struct rq *rq = cpu_rq(cpu);
  4887. unsigned long flags;
  4888. __sched_fork(idle);
  4889. idle->se.exec_start = sched_clock();
  4890. idle->prio = idle->normal_prio = MAX_PRIO;
  4891. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4892. __set_task_cpu(idle, cpu);
  4893. spin_lock_irqsave(&rq->lock, flags);
  4894. rq->curr = rq->idle = idle;
  4895. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4896. idle->oncpu = 1;
  4897. #endif
  4898. spin_unlock_irqrestore(&rq->lock, flags);
  4899. /* Set the preempt count _outside_ the spinlocks! */
  4900. #if defined(CONFIG_PREEMPT)
  4901. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4902. #else
  4903. task_thread_info(idle)->preempt_count = 0;
  4904. #endif
  4905. /*
  4906. * The idle tasks have their own, simple scheduling class:
  4907. */
  4908. idle->sched_class = &idle_sched_class;
  4909. }
  4910. /*
  4911. * In a system that switches off the HZ timer nohz_cpu_mask
  4912. * indicates which cpus entered this state. This is used
  4913. * in the rcu update to wait only for active cpus. For system
  4914. * which do not switch off the HZ timer nohz_cpu_mask should
  4915. * always be CPU_MASK_NONE.
  4916. */
  4917. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4918. /*
  4919. * Increase the granularity value when there are more CPUs,
  4920. * because with more CPUs the 'effective latency' as visible
  4921. * to users decreases. But the relationship is not linear,
  4922. * so pick a second-best guess by going with the log2 of the
  4923. * number of CPUs.
  4924. *
  4925. * This idea comes from the SD scheduler of Con Kolivas:
  4926. */
  4927. static inline void sched_init_granularity(void)
  4928. {
  4929. unsigned int factor = 1 + ilog2(num_online_cpus());
  4930. const unsigned long limit = 200000000;
  4931. sysctl_sched_min_granularity *= factor;
  4932. if (sysctl_sched_min_granularity > limit)
  4933. sysctl_sched_min_granularity = limit;
  4934. sysctl_sched_latency *= factor;
  4935. if (sysctl_sched_latency > limit)
  4936. sysctl_sched_latency = limit;
  4937. sysctl_sched_wakeup_granularity *= factor;
  4938. }
  4939. #ifdef CONFIG_SMP
  4940. /*
  4941. * This is how migration works:
  4942. *
  4943. * 1) we queue a struct migration_req structure in the source CPU's
  4944. * runqueue and wake up that CPU's migration thread.
  4945. * 2) we down() the locked semaphore => thread blocks.
  4946. * 3) migration thread wakes up (implicitly it forces the migrated
  4947. * thread off the CPU)
  4948. * 4) it gets the migration request and checks whether the migrated
  4949. * task is still in the wrong runqueue.
  4950. * 5) if it's in the wrong runqueue then the migration thread removes
  4951. * it and puts it into the right queue.
  4952. * 6) migration thread up()s the semaphore.
  4953. * 7) we wake up and the migration is done.
  4954. */
  4955. /*
  4956. * Change a given task's CPU affinity. Migrate the thread to a
  4957. * proper CPU and schedule it away if the CPU it's executing on
  4958. * is removed from the allowed bitmask.
  4959. *
  4960. * NOTE: the caller must have a valid reference to the task, the
  4961. * task must not exit() & deallocate itself prematurely. The
  4962. * call is not atomic; no spinlocks may be held.
  4963. */
  4964. int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
  4965. {
  4966. struct migration_req req;
  4967. unsigned long flags;
  4968. struct rq *rq;
  4969. int ret = 0;
  4970. rq = task_rq_lock(p, &flags);
  4971. if (!cpus_intersects(*new_mask, cpu_online_map)) {
  4972. ret = -EINVAL;
  4973. goto out;
  4974. }
  4975. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4976. !cpus_equal(p->cpus_allowed, *new_mask))) {
  4977. ret = -EINVAL;
  4978. goto out;
  4979. }
  4980. if (p->sched_class->set_cpus_allowed)
  4981. p->sched_class->set_cpus_allowed(p, new_mask);
  4982. else {
  4983. p->cpus_allowed = *new_mask;
  4984. p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
  4985. }
  4986. /* Can the task run on the task's current CPU? If so, we're done */
  4987. if (cpu_isset(task_cpu(p), *new_mask))
  4988. goto out;
  4989. if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
  4990. /* Need help from migration thread: drop lock and wait. */
  4991. task_rq_unlock(rq, &flags);
  4992. wake_up_process(rq->migration_thread);
  4993. wait_for_completion(&req.done);
  4994. tlb_migrate_finish(p->mm);
  4995. return 0;
  4996. }
  4997. out:
  4998. task_rq_unlock(rq, &flags);
  4999. return ret;
  5000. }
  5001. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  5002. /*
  5003. * Move (not current) task off this cpu, onto dest cpu. We're doing
  5004. * this because either it can't run here any more (set_cpus_allowed()
  5005. * away from this CPU, or CPU going down), or because we're
  5006. * attempting to rebalance this task on exec (sched_exec).
  5007. *
  5008. * So we race with normal scheduler movements, but that's OK, as long
  5009. * as the task is no longer on this CPU.
  5010. *
  5011. * Returns non-zero if task was successfully migrated.
  5012. */
  5013. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  5014. {
  5015. struct rq *rq_dest, *rq_src;
  5016. int ret = 0, on_rq;
  5017. if (unlikely(cpu_is_offline(dest_cpu)))
  5018. return ret;
  5019. rq_src = cpu_rq(src_cpu);
  5020. rq_dest = cpu_rq(dest_cpu);
  5021. double_rq_lock(rq_src, rq_dest);
  5022. /* Already moved. */
  5023. if (task_cpu(p) != src_cpu)
  5024. goto done;
  5025. /* Affinity changed (again). */
  5026. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  5027. goto fail;
  5028. on_rq = p->se.on_rq;
  5029. if (on_rq)
  5030. deactivate_task(rq_src, p, 0);
  5031. set_task_cpu(p, dest_cpu);
  5032. if (on_rq) {
  5033. activate_task(rq_dest, p, 0);
  5034. check_preempt_curr(rq_dest, p);
  5035. }
  5036. done:
  5037. ret = 1;
  5038. fail:
  5039. double_rq_unlock(rq_src, rq_dest);
  5040. return ret;
  5041. }
  5042. /*
  5043. * migration_thread - this is a highprio system thread that performs
  5044. * thread migration by bumping thread off CPU then 'pushing' onto
  5045. * another runqueue.
  5046. */
  5047. static int migration_thread(void *data)
  5048. {
  5049. int cpu = (long)data;
  5050. struct rq *rq;
  5051. rq = cpu_rq(cpu);
  5052. BUG_ON(rq->migration_thread != current);
  5053. set_current_state(TASK_INTERRUPTIBLE);
  5054. while (!kthread_should_stop()) {
  5055. struct migration_req *req;
  5056. struct list_head *head;
  5057. spin_lock_irq(&rq->lock);
  5058. if (cpu_is_offline(cpu)) {
  5059. spin_unlock_irq(&rq->lock);
  5060. goto wait_to_die;
  5061. }
  5062. if (rq->active_balance) {
  5063. active_load_balance(rq, cpu);
  5064. rq->active_balance = 0;
  5065. }
  5066. head = &rq->migration_queue;
  5067. if (list_empty(head)) {
  5068. spin_unlock_irq(&rq->lock);
  5069. schedule();
  5070. set_current_state(TASK_INTERRUPTIBLE);
  5071. continue;
  5072. }
  5073. req = list_entry(head->next, struct migration_req, list);
  5074. list_del_init(head->next);
  5075. spin_unlock(&rq->lock);
  5076. __migrate_task(req->task, cpu, req->dest_cpu);
  5077. local_irq_enable();
  5078. complete(&req->done);
  5079. }
  5080. __set_current_state(TASK_RUNNING);
  5081. return 0;
  5082. wait_to_die:
  5083. /* Wait for kthread_stop */
  5084. set_current_state(TASK_INTERRUPTIBLE);
  5085. while (!kthread_should_stop()) {
  5086. schedule();
  5087. set_current_state(TASK_INTERRUPTIBLE);
  5088. }
  5089. __set_current_state(TASK_RUNNING);
  5090. return 0;
  5091. }
  5092. #ifdef CONFIG_HOTPLUG_CPU
  5093. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  5094. {
  5095. int ret;
  5096. local_irq_disable();
  5097. ret = __migrate_task(p, src_cpu, dest_cpu);
  5098. local_irq_enable();
  5099. return ret;
  5100. }
  5101. /*
  5102. * Figure out where task on dead CPU should go, use force if necessary.
  5103. * NOTE: interrupts should be disabled by the caller
  5104. */
  5105. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  5106. {
  5107. unsigned long flags;
  5108. cpumask_t mask;
  5109. struct rq *rq;
  5110. int dest_cpu;
  5111. do {
  5112. /* On same node? */
  5113. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  5114. cpus_and(mask, mask, p->cpus_allowed);
  5115. dest_cpu = any_online_cpu(mask);
  5116. /* On any allowed CPU? */
  5117. if (dest_cpu >= nr_cpu_ids)
  5118. dest_cpu = any_online_cpu(p->cpus_allowed);
  5119. /* No more Mr. Nice Guy. */
  5120. if (dest_cpu >= nr_cpu_ids) {
  5121. cpumask_t cpus_allowed;
  5122. cpuset_cpus_allowed_locked(p, &cpus_allowed);
  5123. /*
  5124. * Try to stay on the same cpuset, where the
  5125. * current cpuset may be a subset of all cpus.
  5126. * The cpuset_cpus_allowed_locked() variant of
  5127. * cpuset_cpus_allowed() will not block. It must be
  5128. * called within calls to cpuset_lock/cpuset_unlock.
  5129. */
  5130. rq = task_rq_lock(p, &flags);
  5131. p->cpus_allowed = cpus_allowed;
  5132. dest_cpu = any_online_cpu(p->cpus_allowed);
  5133. task_rq_unlock(rq, &flags);
  5134. /*
  5135. * Don't tell them about moving exiting tasks or
  5136. * kernel threads (both mm NULL), since they never
  5137. * leave kernel.
  5138. */
  5139. if (p->mm && printk_ratelimit()) {
  5140. printk(KERN_INFO "process %d (%s) no "
  5141. "longer affine to cpu%d\n",
  5142. task_pid_nr(p), p->comm, dead_cpu);
  5143. }
  5144. }
  5145. } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
  5146. }
  5147. /*
  5148. * While a dead CPU has no uninterruptible tasks queued at this point,
  5149. * it might still have a nonzero ->nr_uninterruptible counter, because
  5150. * for performance reasons the counter is not stricly tracking tasks to
  5151. * their home CPUs. So we just add the counter to another CPU's counter,
  5152. * to keep the global sum constant after CPU-down:
  5153. */
  5154. static void migrate_nr_uninterruptible(struct rq *rq_src)
  5155. {
  5156. struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
  5157. unsigned long flags;
  5158. local_irq_save(flags);
  5159. double_rq_lock(rq_src, rq_dest);
  5160. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  5161. rq_src->nr_uninterruptible = 0;
  5162. double_rq_unlock(rq_src, rq_dest);
  5163. local_irq_restore(flags);
  5164. }
  5165. /* Run through task list and migrate tasks from the dead cpu. */
  5166. static void migrate_live_tasks(int src_cpu)
  5167. {
  5168. struct task_struct *p, *t;
  5169. read_lock(&tasklist_lock);
  5170. do_each_thread(t, p) {
  5171. if (p == current)
  5172. continue;
  5173. if (task_cpu(p) == src_cpu)
  5174. move_task_off_dead_cpu(src_cpu, p);
  5175. } while_each_thread(t, p);
  5176. read_unlock(&tasklist_lock);
  5177. }
  5178. /*
  5179. * Schedules idle task to be the next runnable task on current CPU.
  5180. * It does so by boosting its priority to highest possible.
  5181. * Used by CPU offline code.
  5182. */
  5183. void sched_idle_next(void)
  5184. {
  5185. int this_cpu = smp_processor_id();
  5186. struct rq *rq = cpu_rq(this_cpu);
  5187. struct task_struct *p = rq->idle;
  5188. unsigned long flags;
  5189. /* cpu has to be offline */
  5190. BUG_ON(cpu_online(this_cpu));
  5191. /*
  5192. * Strictly not necessary since rest of the CPUs are stopped by now
  5193. * and interrupts disabled on the current cpu.
  5194. */
  5195. spin_lock_irqsave(&rq->lock, flags);
  5196. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5197. update_rq_clock(rq);
  5198. activate_task(rq, p, 0);
  5199. spin_unlock_irqrestore(&rq->lock, flags);
  5200. }
  5201. /*
  5202. * Ensures that the idle task is using init_mm right before its cpu goes
  5203. * offline.
  5204. */
  5205. void idle_task_exit(void)
  5206. {
  5207. struct mm_struct *mm = current->active_mm;
  5208. BUG_ON(cpu_online(smp_processor_id()));
  5209. if (mm != &init_mm)
  5210. switch_mm(mm, &init_mm, current);
  5211. mmdrop(mm);
  5212. }
  5213. /* called under rq->lock with disabled interrupts */
  5214. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  5215. {
  5216. struct rq *rq = cpu_rq(dead_cpu);
  5217. /* Must be exiting, otherwise would be on tasklist. */
  5218. BUG_ON(!p->exit_state);
  5219. /* Cannot have done final schedule yet: would have vanished. */
  5220. BUG_ON(p->state == TASK_DEAD);
  5221. get_task_struct(p);
  5222. /*
  5223. * Drop lock around migration; if someone else moves it,
  5224. * that's OK. No task can be added to this CPU, so iteration is
  5225. * fine.
  5226. */
  5227. spin_unlock_irq(&rq->lock);
  5228. move_task_off_dead_cpu(dead_cpu, p);
  5229. spin_lock_irq(&rq->lock);
  5230. put_task_struct(p);
  5231. }
  5232. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  5233. static void migrate_dead_tasks(unsigned int dead_cpu)
  5234. {
  5235. struct rq *rq = cpu_rq(dead_cpu);
  5236. struct task_struct *next;
  5237. for ( ; ; ) {
  5238. if (!rq->nr_running)
  5239. break;
  5240. update_rq_clock(rq);
  5241. next = pick_next_task(rq, rq->curr);
  5242. if (!next)
  5243. break;
  5244. next->sched_class->put_prev_task(rq, next);
  5245. migrate_dead(dead_cpu, next);
  5246. }
  5247. }
  5248. #endif /* CONFIG_HOTPLUG_CPU */
  5249. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  5250. static struct ctl_table sd_ctl_dir[] = {
  5251. {
  5252. .procname = "sched_domain",
  5253. .mode = 0555,
  5254. },
  5255. {0, },
  5256. };
  5257. static struct ctl_table sd_ctl_root[] = {
  5258. {
  5259. .ctl_name = CTL_KERN,
  5260. .procname = "kernel",
  5261. .mode = 0555,
  5262. .child = sd_ctl_dir,
  5263. },
  5264. {0, },
  5265. };
  5266. static struct ctl_table *sd_alloc_ctl_entry(int n)
  5267. {
  5268. struct ctl_table *entry =
  5269. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  5270. return entry;
  5271. }
  5272. static void sd_free_ctl_entry(struct ctl_table **tablep)
  5273. {
  5274. struct ctl_table *entry;
  5275. /*
  5276. * In the intermediate directories, both the child directory and
  5277. * procname are dynamically allocated and could fail but the mode
  5278. * will always be set. In the lowest directory the names are
  5279. * static strings and all have proc handlers.
  5280. */
  5281. for (entry = *tablep; entry->mode; entry++) {
  5282. if (entry->child)
  5283. sd_free_ctl_entry(&entry->child);
  5284. if (entry->proc_handler == NULL)
  5285. kfree(entry->procname);
  5286. }
  5287. kfree(*tablep);
  5288. *tablep = NULL;
  5289. }
  5290. static void
  5291. set_table_entry(struct ctl_table *entry,
  5292. const char *procname, void *data, int maxlen,
  5293. mode_t mode, proc_handler *proc_handler)
  5294. {
  5295. entry->procname = procname;
  5296. entry->data = data;
  5297. entry->maxlen = maxlen;
  5298. entry->mode = mode;
  5299. entry->proc_handler = proc_handler;
  5300. }
  5301. static struct ctl_table *
  5302. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  5303. {
  5304. struct ctl_table *table = sd_alloc_ctl_entry(12);
  5305. if (table == NULL)
  5306. return NULL;
  5307. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  5308. sizeof(long), 0644, proc_doulongvec_minmax);
  5309. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  5310. sizeof(long), 0644, proc_doulongvec_minmax);
  5311. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  5312. sizeof(int), 0644, proc_dointvec_minmax);
  5313. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  5314. sizeof(int), 0644, proc_dointvec_minmax);
  5315. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  5316. sizeof(int), 0644, proc_dointvec_minmax);
  5317. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  5318. sizeof(int), 0644, proc_dointvec_minmax);
  5319. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  5320. sizeof(int), 0644, proc_dointvec_minmax);
  5321. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  5322. sizeof(int), 0644, proc_dointvec_minmax);
  5323. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  5324. sizeof(int), 0644, proc_dointvec_minmax);
  5325. set_table_entry(&table[9], "cache_nice_tries",
  5326. &sd->cache_nice_tries,
  5327. sizeof(int), 0644, proc_dointvec_minmax);
  5328. set_table_entry(&table[10], "flags", &sd->flags,
  5329. sizeof(int), 0644, proc_dointvec_minmax);
  5330. /* &table[11] is terminator */
  5331. return table;
  5332. }
  5333. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  5334. {
  5335. struct ctl_table *entry, *table;
  5336. struct sched_domain *sd;
  5337. int domain_num = 0, i;
  5338. char buf[32];
  5339. for_each_domain(cpu, sd)
  5340. domain_num++;
  5341. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  5342. if (table == NULL)
  5343. return NULL;
  5344. i = 0;
  5345. for_each_domain(cpu, sd) {
  5346. snprintf(buf, 32, "domain%d", i);
  5347. entry->procname = kstrdup(buf, GFP_KERNEL);
  5348. entry->mode = 0555;
  5349. entry->child = sd_alloc_ctl_domain_table(sd);
  5350. entry++;
  5351. i++;
  5352. }
  5353. return table;
  5354. }
  5355. static struct ctl_table_header *sd_sysctl_header;
  5356. static void register_sched_domain_sysctl(void)
  5357. {
  5358. int i, cpu_num = num_online_cpus();
  5359. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  5360. char buf[32];
  5361. WARN_ON(sd_ctl_dir[0].child);
  5362. sd_ctl_dir[0].child = entry;
  5363. if (entry == NULL)
  5364. return;
  5365. for_each_online_cpu(i) {
  5366. snprintf(buf, 32, "cpu%d", i);
  5367. entry->procname = kstrdup(buf, GFP_KERNEL);
  5368. entry->mode = 0555;
  5369. entry->child = sd_alloc_ctl_cpu_table(i);
  5370. entry++;
  5371. }
  5372. WARN_ON(sd_sysctl_header);
  5373. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  5374. }
  5375. /* may be called multiple times per register */
  5376. static void unregister_sched_domain_sysctl(void)
  5377. {
  5378. if (sd_sysctl_header)
  5379. unregister_sysctl_table(sd_sysctl_header);
  5380. sd_sysctl_header = NULL;
  5381. if (sd_ctl_dir[0].child)
  5382. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  5383. }
  5384. #else
  5385. static void register_sched_domain_sysctl(void)
  5386. {
  5387. }
  5388. static void unregister_sched_domain_sysctl(void)
  5389. {
  5390. }
  5391. #endif
  5392. static void set_rq_online(struct rq *rq)
  5393. {
  5394. if (!rq->online) {
  5395. const struct sched_class *class;
  5396. cpu_set(rq->cpu, rq->rd->online);
  5397. rq->online = 1;
  5398. for_each_class(class) {
  5399. if (class->rq_online)
  5400. class->rq_online(rq);
  5401. }
  5402. }
  5403. }
  5404. static void set_rq_offline(struct rq *rq)
  5405. {
  5406. if (rq->online) {
  5407. const struct sched_class *class;
  5408. for_each_class(class) {
  5409. if (class->rq_offline)
  5410. class->rq_offline(rq);
  5411. }
  5412. cpu_clear(rq->cpu, rq->rd->online);
  5413. rq->online = 0;
  5414. }
  5415. }
  5416. /*
  5417. * migration_call - callback that gets triggered when a CPU is added.
  5418. * Here we can start up the necessary migration thread for the new CPU.
  5419. */
  5420. static int __cpuinit
  5421. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5422. {
  5423. struct task_struct *p;
  5424. int cpu = (long)hcpu;
  5425. unsigned long flags;
  5426. struct rq *rq;
  5427. switch (action) {
  5428. case CPU_UP_PREPARE:
  5429. case CPU_UP_PREPARE_FROZEN:
  5430. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5431. if (IS_ERR(p))
  5432. return NOTIFY_BAD;
  5433. kthread_bind(p, cpu);
  5434. /* Must be high prio: stop_machine expects to yield to it. */
  5435. rq = task_rq_lock(p, &flags);
  5436. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5437. task_rq_unlock(rq, &flags);
  5438. cpu_rq(cpu)->migration_thread = p;
  5439. break;
  5440. case CPU_ONLINE:
  5441. case CPU_ONLINE_FROZEN:
  5442. /* Strictly unnecessary, as first user will wake it. */
  5443. wake_up_process(cpu_rq(cpu)->migration_thread);
  5444. /* Update our root-domain */
  5445. rq = cpu_rq(cpu);
  5446. spin_lock_irqsave(&rq->lock, flags);
  5447. if (rq->rd) {
  5448. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5449. set_rq_online(rq);
  5450. }
  5451. spin_unlock_irqrestore(&rq->lock, flags);
  5452. break;
  5453. #ifdef CONFIG_HOTPLUG_CPU
  5454. case CPU_UP_CANCELED:
  5455. case CPU_UP_CANCELED_FROZEN:
  5456. if (!cpu_rq(cpu)->migration_thread)
  5457. break;
  5458. /* Unbind it from offline cpu so it can run. Fall thru. */
  5459. kthread_bind(cpu_rq(cpu)->migration_thread,
  5460. any_online_cpu(cpu_online_map));
  5461. kthread_stop(cpu_rq(cpu)->migration_thread);
  5462. cpu_rq(cpu)->migration_thread = NULL;
  5463. break;
  5464. case CPU_DEAD:
  5465. case CPU_DEAD_FROZEN:
  5466. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5467. migrate_live_tasks(cpu);
  5468. rq = cpu_rq(cpu);
  5469. kthread_stop(rq->migration_thread);
  5470. rq->migration_thread = NULL;
  5471. /* Idle task back to normal (off runqueue, low prio) */
  5472. spin_lock_irq(&rq->lock);
  5473. update_rq_clock(rq);
  5474. deactivate_task(rq, rq->idle, 0);
  5475. rq->idle->static_prio = MAX_PRIO;
  5476. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5477. rq->idle->sched_class = &idle_sched_class;
  5478. migrate_dead_tasks(cpu);
  5479. spin_unlock_irq(&rq->lock);
  5480. cpuset_unlock();
  5481. migrate_nr_uninterruptible(rq);
  5482. BUG_ON(rq->nr_running != 0);
  5483. /*
  5484. * No need to migrate the tasks: it was best-effort if
  5485. * they didn't take sched_hotcpu_mutex. Just wake up
  5486. * the requestors.
  5487. */
  5488. spin_lock_irq(&rq->lock);
  5489. while (!list_empty(&rq->migration_queue)) {
  5490. struct migration_req *req;
  5491. req = list_entry(rq->migration_queue.next,
  5492. struct migration_req, list);
  5493. list_del_init(&req->list);
  5494. complete(&req->done);
  5495. }
  5496. spin_unlock_irq(&rq->lock);
  5497. break;
  5498. case CPU_DYING:
  5499. case CPU_DYING_FROZEN:
  5500. /* Update our root-domain */
  5501. rq = cpu_rq(cpu);
  5502. spin_lock_irqsave(&rq->lock, flags);
  5503. if (rq->rd) {
  5504. BUG_ON(!cpu_isset(cpu, rq->rd->span));
  5505. set_rq_offline(rq);
  5506. }
  5507. spin_unlock_irqrestore(&rq->lock, flags);
  5508. break;
  5509. #endif
  5510. }
  5511. return NOTIFY_OK;
  5512. }
  5513. /* Register at highest priority so that task migration (migrate_all_tasks)
  5514. * happens before everything else.
  5515. */
  5516. static struct notifier_block __cpuinitdata migration_notifier = {
  5517. .notifier_call = migration_call,
  5518. .priority = 10
  5519. };
  5520. void __init migration_init(void)
  5521. {
  5522. void *cpu = (void *)(long)smp_processor_id();
  5523. int err;
  5524. /* Start one for the boot CPU: */
  5525. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5526. BUG_ON(err == NOTIFY_BAD);
  5527. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5528. register_cpu_notifier(&migration_notifier);
  5529. }
  5530. #endif
  5531. #ifdef CONFIG_SMP
  5532. #ifdef CONFIG_SCHED_DEBUG
  5533. static inline const char *sd_level_to_string(enum sched_domain_level lvl)
  5534. {
  5535. switch (lvl) {
  5536. case SD_LV_NONE:
  5537. return "NONE";
  5538. case SD_LV_SIBLING:
  5539. return "SIBLING";
  5540. case SD_LV_MC:
  5541. return "MC";
  5542. case SD_LV_CPU:
  5543. return "CPU";
  5544. case SD_LV_NODE:
  5545. return "NODE";
  5546. case SD_LV_ALLNODES:
  5547. return "ALLNODES";
  5548. case SD_LV_MAX:
  5549. return "MAX";
  5550. }
  5551. return "MAX";
  5552. }
  5553. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5554. cpumask_t *groupmask)
  5555. {
  5556. struct sched_group *group = sd->groups;
  5557. char str[256];
  5558. cpulist_scnprintf(str, sizeof(str), sd->span);
  5559. cpus_clear(*groupmask);
  5560. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5561. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5562. printk("does not load-balance\n");
  5563. if (sd->parent)
  5564. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5565. " has parent");
  5566. return -1;
  5567. }
  5568. printk(KERN_CONT "span %s level %s\n",
  5569. str, sd_level_to_string(sd->level));
  5570. if (!cpu_isset(cpu, sd->span)) {
  5571. printk(KERN_ERR "ERROR: domain->span does not contain "
  5572. "CPU%d\n", cpu);
  5573. }
  5574. if (!cpu_isset(cpu, group->cpumask)) {
  5575. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5576. " CPU%d\n", cpu);
  5577. }
  5578. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5579. do {
  5580. if (!group) {
  5581. printk("\n");
  5582. printk(KERN_ERR "ERROR: group is NULL\n");
  5583. break;
  5584. }
  5585. if (!group->__cpu_power) {
  5586. printk(KERN_CONT "\n");
  5587. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5588. "set\n");
  5589. break;
  5590. }
  5591. if (!cpus_weight(group->cpumask)) {
  5592. printk(KERN_CONT "\n");
  5593. printk(KERN_ERR "ERROR: empty group\n");
  5594. break;
  5595. }
  5596. if (cpus_intersects(*groupmask, group->cpumask)) {
  5597. printk(KERN_CONT "\n");
  5598. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5599. break;
  5600. }
  5601. cpus_or(*groupmask, *groupmask, group->cpumask);
  5602. cpulist_scnprintf(str, sizeof(str), group->cpumask);
  5603. printk(KERN_CONT " %s", str);
  5604. group = group->next;
  5605. } while (group != sd->groups);
  5606. printk(KERN_CONT "\n");
  5607. if (!cpus_equal(sd->span, *groupmask))
  5608. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5609. if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
  5610. printk(KERN_ERR "ERROR: parent span is not a superset "
  5611. "of domain->span\n");
  5612. return 0;
  5613. }
  5614. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5615. {
  5616. cpumask_t *groupmask;
  5617. int level = 0;
  5618. if (!sd) {
  5619. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5620. return;
  5621. }
  5622. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5623. groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  5624. if (!groupmask) {
  5625. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5626. return;
  5627. }
  5628. for (;;) {
  5629. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5630. break;
  5631. level++;
  5632. sd = sd->parent;
  5633. if (!sd)
  5634. break;
  5635. }
  5636. kfree(groupmask);
  5637. }
  5638. #else /* !CONFIG_SCHED_DEBUG */
  5639. # define sched_domain_debug(sd, cpu) do { } while (0)
  5640. #endif /* CONFIG_SCHED_DEBUG */
  5641. static int sd_degenerate(struct sched_domain *sd)
  5642. {
  5643. if (cpus_weight(sd->span) == 1)
  5644. return 1;
  5645. /* Following flags need at least 2 groups */
  5646. if (sd->flags & (SD_LOAD_BALANCE |
  5647. SD_BALANCE_NEWIDLE |
  5648. SD_BALANCE_FORK |
  5649. SD_BALANCE_EXEC |
  5650. SD_SHARE_CPUPOWER |
  5651. SD_SHARE_PKG_RESOURCES)) {
  5652. if (sd->groups != sd->groups->next)
  5653. return 0;
  5654. }
  5655. /* Following flags don't use groups */
  5656. if (sd->flags & (SD_WAKE_IDLE |
  5657. SD_WAKE_AFFINE |
  5658. SD_WAKE_BALANCE))
  5659. return 0;
  5660. return 1;
  5661. }
  5662. static int
  5663. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5664. {
  5665. unsigned long cflags = sd->flags, pflags = parent->flags;
  5666. if (sd_degenerate(parent))
  5667. return 1;
  5668. if (!cpus_equal(sd->span, parent->span))
  5669. return 0;
  5670. /* Does parent contain flags not in child? */
  5671. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  5672. if (cflags & SD_WAKE_AFFINE)
  5673. pflags &= ~SD_WAKE_BALANCE;
  5674. /* Flags needing groups don't count if only 1 group in parent */
  5675. if (parent->groups == parent->groups->next) {
  5676. pflags &= ~(SD_LOAD_BALANCE |
  5677. SD_BALANCE_NEWIDLE |
  5678. SD_BALANCE_FORK |
  5679. SD_BALANCE_EXEC |
  5680. SD_SHARE_CPUPOWER |
  5681. SD_SHARE_PKG_RESOURCES);
  5682. }
  5683. if (~cflags & pflags)
  5684. return 0;
  5685. return 1;
  5686. }
  5687. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5688. {
  5689. unsigned long flags;
  5690. spin_lock_irqsave(&rq->lock, flags);
  5691. if (rq->rd) {
  5692. struct root_domain *old_rd = rq->rd;
  5693. if (cpu_isset(rq->cpu, old_rd->online))
  5694. set_rq_offline(rq);
  5695. cpu_clear(rq->cpu, old_rd->span);
  5696. if (atomic_dec_and_test(&old_rd->refcount))
  5697. kfree(old_rd);
  5698. }
  5699. atomic_inc(&rd->refcount);
  5700. rq->rd = rd;
  5701. cpu_set(rq->cpu, rd->span);
  5702. if (cpu_isset(rq->cpu, cpu_online_map))
  5703. set_rq_online(rq);
  5704. spin_unlock_irqrestore(&rq->lock, flags);
  5705. }
  5706. static void init_rootdomain(struct root_domain *rd)
  5707. {
  5708. memset(rd, 0, sizeof(*rd));
  5709. cpus_clear(rd->span);
  5710. cpus_clear(rd->online);
  5711. cpupri_init(&rd->cpupri);
  5712. }
  5713. static void init_defrootdomain(void)
  5714. {
  5715. init_rootdomain(&def_root_domain);
  5716. atomic_set(&def_root_domain.refcount, 1);
  5717. }
  5718. static struct root_domain *alloc_rootdomain(void)
  5719. {
  5720. struct root_domain *rd;
  5721. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5722. if (!rd)
  5723. return NULL;
  5724. init_rootdomain(rd);
  5725. return rd;
  5726. }
  5727. /*
  5728. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5729. * hold the hotplug lock.
  5730. */
  5731. static void
  5732. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5733. {
  5734. struct rq *rq = cpu_rq(cpu);
  5735. struct sched_domain *tmp;
  5736. /* Remove the sched domains which do not contribute to scheduling. */
  5737. for (tmp = sd; tmp; tmp = tmp->parent) {
  5738. struct sched_domain *parent = tmp->parent;
  5739. if (!parent)
  5740. break;
  5741. if (sd_parent_degenerate(tmp, parent)) {
  5742. tmp->parent = parent->parent;
  5743. if (parent->parent)
  5744. parent->parent->child = tmp;
  5745. }
  5746. }
  5747. if (sd && sd_degenerate(sd)) {
  5748. sd = sd->parent;
  5749. if (sd)
  5750. sd->child = NULL;
  5751. }
  5752. sched_domain_debug(sd, cpu);
  5753. rq_attach_root(rq, rd);
  5754. rcu_assign_pointer(rq->sd, sd);
  5755. }
  5756. /* cpus with isolated domains */
  5757. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  5758. /* Setup the mask of cpus configured for isolated domains */
  5759. static int __init isolated_cpu_setup(char *str)
  5760. {
  5761. int ints[NR_CPUS], i;
  5762. str = get_options(str, ARRAY_SIZE(ints), ints);
  5763. cpus_clear(cpu_isolated_map);
  5764. for (i = 1; i <= ints[0]; i++)
  5765. if (ints[i] < NR_CPUS)
  5766. cpu_set(ints[i], cpu_isolated_map);
  5767. return 1;
  5768. }
  5769. __setup("isolcpus=", isolated_cpu_setup);
  5770. /*
  5771. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5772. * to a function which identifies what group(along with sched group) a CPU
  5773. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  5774. * (due to the fact that we keep track of groups covered with a cpumask_t).
  5775. *
  5776. * init_sched_build_groups will build a circular linked list of the groups
  5777. * covered by the given span, and will set each group's ->cpumask correctly,
  5778. * and ->cpu_power to 0.
  5779. */
  5780. static void
  5781. init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
  5782. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  5783. struct sched_group **sg,
  5784. cpumask_t *tmpmask),
  5785. cpumask_t *covered, cpumask_t *tmpmask)
  5786. {
  5787. struct sched_group *first = NULL, *last = NULL;
  5788. int i;
  5789. cpus_clear(*covered);
  5790. for_each_cpu_mask(i, *span) {
  5791. struct sched_group *sg;
  5792. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5793. int j;
  5794. if (cpu_isset(i, *covered))
  5795. continue;
  5796. cpus_clear(sg->cpumask);
  5797. sg->__cpu_power = 0;
  5798. for_each_cpu_mask(j, *span) {
  5799. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5800. continue;
  5801. cpu_set(j, *covered);
  5802. cpu_set(j, sg->cpumask);
  5803. }
  5804. if (!first)
  5805. first = sg;
  5806. if (last)
  5807. last->next = sg;
  5808. last = sg;
  5809. }
  5810. last->next = first;
  5811. }
  5812. #define SD_NODES_PER_DOMAIN 16
  5813. #ifdef CONFIG_NUMA
  5814. /**
  5815. * find_next_best_node - find the next node to include in a sched_domain
  5816. * @node: node whose sched_domain we're building
  5817. * @used_nodes: nodes already in the sched_domain
  5818. *
  5819. * Find the next node to include in a given scheduling domain. Simply
  5820. * finds the closest node not already in the @used_nodes map.
  5821. *
  5822. * Should use nodemask_t.
  5823. */
  5824. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5825. {
  5826. int i, n, val, min_val, best_node = 0;
  5827. min_val = INT_MAX;
  5828. for (i = 0; i < nr_node_ids; i++) {
  5829. /* Start at @node */
  5830. n = (node + i) % nr_node_ids;
  5831. if (!nr_cpus_node(n))
  5832. continue;
  5833. /* Skip already used nodes */
  5834. if (node_isset(n, *used_nodes))
  5835. continue;
  5836. /* Simple min distance search */
  5837. val = node_distance(node, n);
  5838. if (val < min_val) {
  5839. min_val = val;
  5840. best_node = n;
  5841. }
  5842. }
  5843. node_set(best_node, *used_nodes);
  5844. return best_node;
  5845. }
  5846. /**
  5847. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5848. * @node: node whose cpumask we're constructing
  5849. * @span: resulting cpumask
  5850. *
  5851. * Given a node, construct a good cpumask for its sched_domain to span. It
  5852. * should be one that prevents unnecessary balancing, but also spreads tasks
  5853. * out optimally.
  5854. */
  5855. static void sched_domain_node_span(int node, cpumask_t *span)
  5856. {
  5857. nodemask_t used_nodes;
  5858. node_to_cpumask_ptr(nodemask, node);
  5859. int i;
  5860. cpus_clear(*span);
  5861. nodes_clear(used_nodes);
  5862. cpus_or(*span, *span, *nodemask);
  5863. node_set(node, used_nodes);
  5864. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5865. int next_node = find_next_best_node(node, &used_nodes);
  5866. node_to_cpumask_ptr_next(nodemask, next_node);
  5867. cpus_or(*span, *span, *nodemask);
  5868. }
  5869. }
  5870. #endif /* CONFIG_NUMA */
  5871. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5872. /*
  5873. * SMT sched-domains:
  5874. */
  5875. #ifdef CONFIG_SCHED_SMT
  5876. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5877. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  5878. static int
  5879. cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5880. cpumask_t *unused)
  5881. {
  5882. if (sg)
  5883. *sg = &per_cpu(sched_group_cpus, cpu);
  5884. return cpu;
  5885. }
  5886. #endif /* CONFIG_SCHED_SMT */
  5887. /*
  5888. * multi-core sched-domains:
  5889. */
  5890. #ifdef CONFIG_SCHED_MC
  5891. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5892. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  5893. #endif /* CONFIG_SCHED_MC */
  5894. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5895. static int
  5896. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5897. cpumask_t *mask)
  5898. {
  5899. int group;
  5900. *mask = per_cpu(cpu_sibling_map, cpu);
  5901. cpus_and(*mask, *mask, *cpu_map);
  5902. group = first_cpu(*mask);
  5903. if (sg)
  5904. *sg = &per_cpu(sched_group_core, group);
  5905. return group;
  5906. }
  5907. #elif defined(CONFIG_SCHED_MC)
  5908. static int
  5909. cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5910. cpumask_t *unused)
  5911. {
  5912. if (sg)
  5913. *sg = &per_cpu(sched_group_core, cpu);
  5914. return cpu;
  5915. }
  5916. #endif
  5917. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5918. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  5919. static int
  5920. cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
  5921. cpumask_t *mask)
  5922. {
  5923. int group;
  5924. #ifdef CONFIG_SCHED_MC
  5925. *mask = cpu_coregroup_map(cpu);
  5926. cpus_and(*mask, *mask, *cpu_map);
  5927. group = first_cpu(*mask);
  5928. #elif defined(CONFIG_SCHED_SMT)
  5929. *mask = per_cpu(cpu_sibling_map, cpu);
  5930. cpus_and(*mask, *mask, *cpu_map);
  5931. group = first_cpu(*mask);
  5932. #else
  5933. group = cpu;
  5934. #endif
  5935. if (sg)
  5936. *sg = &per_cpu(sched_group_phys, group);
  5937. return group;
  5938. }
  5939. #ifdef CONFIG_NUMA
  5940. /*
  5941. * The init_sched_build_groups can't handle what we want to do with node
  5942. * groups, so roll our own. Now each node has its own list of groups which
  5943. * gets dynamically allocated.
  5944. */
  5945. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5946. static struct sched_group ***sched_group_nodes_bycpu;
  5947. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5948. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  5949. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  5950. struct sched_group **sg, cpumask_t *nodemask)
  5951. {
  5952. int group;
  5953. *nodemask = node_to_cpumask(cpu_to_node(cpu));
  5954. cpus_and(*nodemask, *nodemask, *cpu_map);
  5955. group = first_cpu(*nodemask);
  5956. if (sg)
  5957. *sg = &per_cpu(sched_group_allnodes, group);
  5958. return group;
  5959. }
  5960. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5961. {
  5962. struct sched_group *sg = group_head;
  5963. int j;
  5964. if (!sg)
  5965. return;
  5966. do {
  5967. for_each_cpu_mask(j, sg->cpumask) {
  5968. struct sched_domain *sd;
  5969. sd = &per_cpu(phys_domains, j);
  5970. if (j != first_cpu(sd->groups->cpumask)) {
  5971. /*
  5972. * Only add "power" once for each
  5973. * physical package.
  5974. */
  5975. continue;
  5976. }
  5977. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  5978. }
  5979. sg = sg->next;
  5980. } while (sg != group_head);
  5981. }
  5982. #endif /* CONFIG_NUMA */
  5983. #ifdef CONFIG_NUMA
  5984. /* Free memory allocated for various sched_group structures */
  5985. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  5986. {
  5987. int cpu, i;
  5988. for_each_cpu_mask(cpu, *cpu_map) {
  5989. struct sched_group **sched_group_nodes
  5990. = sched_group_nodes_bycpu[cpu];
  5991. if (!sched_group_nodes)
  5992. continue;
  5993. for (i = 0; i < nr_node_ids; i++) {
  5994. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5995. *nodemask = node_to_cpumask(i);
  5996. cpus_and(*nodemask, *nodemask, *cpu_map);
  5997. if (cpus_empty(*nodemask))
  5998. continue;
  5999. if (sg == NULL)
  6000. continue;
  6001. sg = sg->next;
  6002. next_sg:
  6003. oldsg = sg;
  6004. sg = sg->next;
  6005. kfree(oldsg);
  6006. if (oldsg != sched_group_nodes[i])
  6007. goto next_sg;
  6008. }
  6009. kfree(sched_group_nodes);
  6010. sched_group_nodes_bycpu[cpu] = NULL;
  6011. }
  6012. }
  6013. #else /* !CONFIG_NUMA */
  6014. static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
  6015. {
  6016. }
  6017. #endif /* CONFIG_NUMA */
  6018. /*
  6019. * Initialize sched groups cpu_power.
  6020. *
  6021. * cpu_power indicates the capacity of sched group, which is used while
  6022. * distributing the load between different sched groups in a sched domain.
  6023. * Typically cpu_power for all the groups in a sched domain will be same unless
  6024. * there are asymmetries in the topology. If there are asymmetries, group
  6025. * having more cpu_power will pickup more load compared to the group having
  6026. * less cpu_power.
  6027. *
  6028. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  6029. * the maximum number of tasks a group can handle in the presence of other idle
  6030. * or lightly loaded groups in the same sched domain.
  6031. */
  6032. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  6033. {
  6034. struct sched_domain *child;
  6035. struct sched_group *group;
  6036. WARN_ON(!sd || !sd->groups);
  6037. if (cpu != first_cpu(sd->groups->cpumask))
  6038. return;
  6039. child = sd->child;
  6040. sd->groups->__cpu_power = 0;
  6041. /*
  6042. * For perf policy, if the groups in child domain share resources
  6043. * (for example cores sharing some portions of the cache hierarchy
  6044. * or SMT), then set this domain groups cpu_power such that each group
  6045. * can handle only one task, when there are other idle groups in the
  6046. * same sched domain.
  6047. */
  6048. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  6049. (child->flags &
  6050. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  6051. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  6052. return;
  6053. }
  6054. /*
  6055. * add cpu_power of each child group to this groups cpu_power
  6056. */
  6057. group = child->groups;
  6058. do {
  6059. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  6060. group = group->next;
  6061. } while (group != child->groups);
  6062. }
  6063. /*
  6064. * Initializers for schedule domains
  6065. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  6066. */
  6067. #define SD_INIT(sd, type) sd_init_##type(sd)
  6068. #define SD_INIT_FUNC(type) \
  6069. static noinline void sd_init_##type(struct sched_domain *sd) \
  6070. { \
  6071. memset(sd, 0, sizeof(*sd)); \
  6072. *sd = SD_##type##_INIT; \
  6073. sd->level = SD_LV_##type; \
  6074. }
  6075. SD_INIT_FUNC(CPU)
  6076. #ifdef CONFIG_NUMA
  6077. SD_INIT_FUNC(ALLNODES)
  6078. SD_INIT_FUNC(NODE)
  6079. #endif
  6080. #ifdef CONFIG_SCHED_SMT
  6081. SD_INIT_FUNC(SIBLING)
  6082. #endif
  6083. #ifdef CONFIG_SCHED_MC
  6084. SD_INIT_FUNC(MC)
  6085. #endif
  6086. /*
  6087. * To minimize stack usage kmalloc room for cpumasks and share the
  6088. * space as the usage in build_sched_domains() dictates. Used only
  6089. * if the amount of space is significant.
  6090. */
  6091. struct allmasks {
  6092. cpumask_t tmpmask; /* make this one first */
  6093. union {
  6094. cpumask_t nodemask;
  6095. cpumask_t this_sibling_map;
  6096. cpumask_t this_core_map;
  6097. };
  6098. cpumask_t send_covered;
  6099. #ifdef CONFIG_NUMA
  6100. cpumask_t domainspan;
  6101. cpumask_t covered;
  6102. cpumask_t notcovered;
  6103. #endif
  6104. };
  6105. #if NR_CPUS > 128
  6106. #define SCHED_CPUMASK_ALLOC 1
  6107. #define SCHED_CPUMASK_FREE(v) kfree(v)
  6108. #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
  6109. #else
  6110. #define SCHED_CPUMASK_ALLOC 0
  6111. #define SCHED_CPUMASK_FREE(v)
  6112. #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
  6113. #endif
  6114. #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
  6115. ((unsigned long)(a) + offsetof(struct allmasks, v))
  6116. static int default_relax_domain_level = -1;
  6117. static int __init setup_relax_domain_level(char *str)
  6118. {
  6119. unsigned long val;
  6120. val = simple_strtoul(str, NULL, 0);
  6121. if (val < SD_LV_MAX)
  6122. default_relax_domain_level = val;
  6123. return 1;
  6124. }
  6125. __setup("relax_domain_level=", setup_relax_domain_level);
  6126. static void set_domain_attribute(struct sched_domain *sd,
  6127. struct sched_domain_attr *attr)
  6128. {
  6129. int request;
  6130. if (!attr || attr->relax_domain_level < 0) {
  6131. if (default_relax_domain_level < 0)
  6132. return;
  6133. else
  6134. request = default_relax_domain_level;
  6135. } else
  6136. request = attr->relax_domain_level;
  6137. if (request < sd->level) {
  6138. /* turn off idle balance on this domain */
  6139. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  6140. } else {
  6141. /* turn on idle balance on this domain */
  6142. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  6143. }
  6144. }
  6145. /*
  6146. * Build sched domains for a given set of cpus and attach the sched domains
  6147. * to the individual cpus
  6148. */
  6149. static int __build_sched_domains(const cpumask_t *cpu_map,
  6150. struct sched_domain_attr *attr)
  6151. {
  6152. int i;
  6153. struct root_domain *rd;
  6154. SCHED_CPUMASK_DECLARE(allmasks);
  6155. cpumask_t *tmpmask;
  6156. #ifdef CONFIG_NUMA
  6157. struct sched_group **sched_group_nodes = NULL;
  6158. int sd_allnodes = 0;
  6159. /*
  6160. * Allocate the per-node list of sched groups
  6161. */
  6162. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  6163. GFP_KERNEL);
  6164. if (!sched_group_nodes) {
  6165. printk(KERN_WARNING "Can not alloc sched group node list\n");
  6166. return -ENOMEM;
  6167. }
  6168. #endif
  6169. rd = alloc_rootdomain();
  6170. if (!rd) {
  6171. printk(KERN_WARNING "Cannot alloc root domain\n");
  6172. #ifdef CONFIG_NUMA
  6173. kfree(sched_group_nodes);
  6174. #endif
  6175. return -ENOMEM;
  6176. }
  6177. #if SCHED_CPUMASK_ALLOC
  6178. /* get space for all scratch cpumask variables */
  6179. allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
  6180. if (!allmasks) {
  6181. printk(KERN_WARNING "Cannot alloc cpumask array\n");
  6182. kfree(rd);
  6183. #ifdef CONFIG_NUMA
  6184. kfree(sched_group_nodes);
  6185. #endif
  6186. return -ENOMEM;
  6187. }
  6188. #endif
  6189. tmpmask = (cpumask_t *)allmasks;
  6190. #ifdef CONFIG_NUMA
  6191. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  6192. #endif
  6193. /*
  6194. * Set up domains for cpus specified by the cpu_map.
  6195. */
  6196. for_each_cpu_mask(i, *cpu_map) {
  6197. struct sched_domain *sd = NULL, *p;
  6198. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6199. *nodemask = node_to_cpumask(cpu_to_node(i));
  6200. cpus_and(*nodemask, *nodemask, *cpu_map);
  6201. #ifdef CONFIG_NUMA
  6202. if (cpus_weight(*cpu_map) >
  6203. SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
  6204. sd = &per_cpu(allnodes_domains, i);
  6205. SD_INIT(sd, ALLNODES);
  6206. set_domain_attribute(sd, attr);
  6207. sd->span = *cpu_map;
  6208. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  6209. p = sd;
  6210. sd_allnodes = 1;
  6211. } else
  6212. p = NULL;
  6213. sd = &per_cpu(node_domains, i);
  6214. SD_INIT(sd, NODE);
  6215. set_domain_attribute(sd, attr);
  6216. sched_domain_node_span(cpu_to_node(i), &sd->span);
  6217. sd->parent = p;
  6218. if (p)
  6219. p->child = sd;
  6220. cpus_and(sd->span, sd->span, *cpu_map);
  6221. #endif
  6222. p = sd;
  6223. sd = &per_cpu(phys_domains, i);
  6224. SD_INIT(sd, CPU);
  6225. set_domain_attribute(sd, attr);
  6226. sd->span = *nodemask;
  6227. sd->parent = p;
  6228. if (p)
  6229. p->child = sd;
  6230. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  6231. #ifdef CONFIG_SCHED_MC
  6232. p = sd;
  6233. sd = &per_cpu(core_domains, i);
  6234. SD_INIT(sd, MC);
  6235. set_domain_attribute(sd, attr);
  6236. sd->span = cpu_coregroup_map(i);
  6237. cpus_and(sd->span, sd->span, *cpu_map);
  6238. sd->parent = p;
  6239. p->child = sd;
  6240. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  6241. #endif
  6242. #ifdef CONFIG_SCHED_SMT
  6243. p = sd;
  6244. sd = &per_cpu(cpu_domains, i);
  6245. SD_INIT(sd, SIBLING);
  6246. set_domain_attribute(sd, attr);
  6247. sd->span = per_cpu(cpu_sibling_map, i);
  6248. cpus_and(sd->span, sd->span, *cpu_map);
  6249. sd->parent = p;
  6250. p->child = sd;
  6251. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  6252. #endif
  6253. }
  6254. #ifdef CONFIG_SCHED_SMT
  6255. /* Set up CPU (sibling) groups */
  6256. for_each_cpu_mask(i, *cpu_map) {
  6257. SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
  6258. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6259. *this_sibling_map = per_cpu(cpu_sibling_map, i);
  6260. cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
  6261. if (i != first_cpu(*this_sibling_map))
  6262. continue;
  6263. init_sched_build_groups(this_sibling_map, cpu_map,
  6264. &cpu_to_cpu_group,
  6265. send_covered, tmpmask);
  6266. }
  6267. #endif
  6268. #ifdef CONFIG_SCHED_MC
  6269. /* Set up multi-core groups */
  6270. for_each_cpu_mask(i, *cpu_map) {
  6271. SCHED_CPUMASK_VAR(this_core_map, allmasks);
  6272. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6273. *this_core_map = cpu_coregroup_map(i);
  6274. cpus_and(*this_core_map, *this_core_map, *cpu_map);
  6275. if (i != first_cpu(*this_core_map))
  6276. continue;
  6277. init_sched_build_groups(this_core_map, cpu_map,
  6278. &cpu_to_core_group,
  6279. send_covered, tmpmask);
  6280. }
  6281. #endif
  6282. /* Set up physical groups */
  6283. for (i = 0; i < nr_node_ids; i++) {
  6284. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6285. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6286. *nodemask = node_to_cpumask(i);
  6287. cpus_and(*nodemask, *nodemask, *cpu_map);
  6288. if (cpus_empty(*nodemask))
  6289. continue;
  6290. init_sched_build_groups(nodemask, cpu_map,
  6291. &cpu_to_phys_group,
  6292. send_covered, tmpmask);
  6293. }
  6294. #ifdef CONFIG_NUMA
  6295. /* Set up node groups */
  6296. if (sd_allnodes) {
  6297. SCHED_CPUMASK_VAR(send_covered, allmasks);
  6298. init_sched_build_groups(cpu_map, cpu_map,
  6299. &cpu_to_allnodes_group,
  6300. send_covered, tmpmask);
  6301. }
  6302. for (i = 0; i < nr_node_ids; i++) {
  6303. /* Set up node groups */
  6304. struct sched_group *sg, *prev;
  6305. SCHED_CPUMASK_VAR(nodemask, allmasks);
  6306. SCHED_CPUMASK_VAR(domainspan, allmasks);
  6307. SCHED_CPUMASK_VAR(covered, allmasks);
  6308. int j;
  6309. *nodemask = node_to_cpumask(i);
  6310. cpus_clear(*covered);
  6311. cpus_and(*nodemask, *nodemask, *cpu_map);
  6312. if (cpus_empty(*nodemask)) {
  6313. sched_group_nodes[i] = NULL;
  6314. continue;
  6315. }
  6316. sched_domain_node_span(i, domainspan);
  6317. cpus_and(*domainspan, *domainspan, *cpu_map);
  6318. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  6319. if (!sg) {
  6320. printk(KERN_WARNING "Can not alloc domain group for "
  6321. "node %d\n", i);
  6322. goto error;
  6323. }
  6324. sched_group_nodes[i] = sg;
  6325. for_each_cpu_mask(j, *nodemask) {
  6326. struct sched_domain *sd;
  6327. sd = &per_cpu(node_domains, j);
  6328. sd->groups = sg;
  6329. }
  6330. sg->__cpu_power = 0;
  6331. sg->cpumask = *nodemask;
  6332. sg->next = sg;
  6333. cpus_or(*covered, *covered, *nodemask);
  6334. prev = sg;
  6335. for (j = 0; j < nr_node_ids; j++) {
  6336. SCHED_CPUMASK_VAR(notcovered, allmasks);
  6337. int n = (i + j) % nr_node_ids;
  6338. node_to_cpumask_ptr(pnodemask, n);
  6339. cpus_complement(*notcovered, *covered);
  6340. cpus_and(*tmpmask, *notcovered, *cpu_map);
  6341. cpus_and(*tmpmask, *tmpmask, *domainspan);
  6342. if (cpus_empty(*tmpmask))
  6343. break;
  6344. cpus_and(*tmpmask, *tmpmask, *pnodemask);
  6345. if (cpus_empty(*tmpmask))
  6346. continue;
  6347. sg = kmalloc_node(sizeof(struct sched_group),
  6348. GFP_KERNEL, i);
  6349. if (!sg) {
  6350. printk(KERN_WARNING
  6351. "Can not alloc domain group for node %d\n", j);
  6352. goto error;
  6353. }
  6354. sg->__cpu_power = 0;
  6355. sg->cpumask = *tmpmask;
  6356. sg->next = prev->next;
  6357. cpus_or(*covered, *covered, *tmpmask);
  6358. prev->next = sg;
  6359. prev = sg;
  6360. }
  6361. }
  6362. #endif
  6363. /* Calculate CPU power for physical packages and nodes */
  6364. #ifdef CONFIG_SCHED_SMT
  6365. for_each_cpu_mask(i, *cpu_map) {
  6366. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  6367. init_sched_groups_power(i, sd);
  6368. }
  6369. #endif
  6370. #ifdef CONFIG_SCHED_MC
  6371. for_each_cpu_mask(i, *cpu_map) {
  6372. struct sched_domain *sd = &per_cpu(core_domains, i);
  6373. init_sched_groups_power(i, sd);
  6374. }
  6375. #endif
  6376. for_each_cpu_mask(i, *cpu_map) {
  6377. struct sched_domain *sd = &per_cpu(phys_domains, i);
  6378. init_sched_groups_power(i, sd);
  6379. }
  6380. #ifdef CONFIG_NUMA
  6381. for (i = 0; i < nr_node_ids; i++)
  6382. init_numa_sched_groups_power(sched_group_nodes[i]);
  6383. if (sd_allnodes) {
  6384. struct sched_group *sg;
  6385. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
  6386. tmpmask);
  6387. init_numa_sched_groups_power(sg);
  6388. }
  6389. #endif
  6390. /* Attach the domains */
  6391. for_each_cpu_mask(i, *cpu_map) {
  6392. struct sched_domain *sd;
  6393. #ifdef CONFIG_SCHED_SMT
  6394. sd = &per_cpu(cpu_domains, i);
  6395. #elif defined(CONFIG_SCHED_MC)
  6396. sd = &per_cpu(core_domains, i);
  6397. #else
  6398. sd = &per_cpu(phys_domains, i);
  6399. #endif
  6400. cpu_attach_domain(sd, rd, i);
  6401. }
  6402. SCHED_CPUMASK_FREE((void *)allmasks);
  6403. return 0;
  6404. #ifdef CONFIG_NUMA
  6405. error:
  6406. free_sched_groups(cpu_map, tmpmask);
  6407. SCHED_CPUMASK_FREE((void *)allmasks);
  6408. return -ENOMEM;
  6409. #endif
  6410. }
  6411. static int build_sched_domains(const cpumask_t *cpu_map)
  6412. {
  6413. return __build_sched_domains(cpu_map, NULL);
  6414. }
  6415. static cpumask_t *doms_cur; /* current sched domains */
  6416. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6417. static struct sched_domain_attr *dattr_cur;
  6418. /* attribues of custom domains in 'doms_cur' */
  6419. /*
  6420. * Special case: If a kmalloc of a doms_cur partition (array of
  6421. * cpumask_t) fails, then fallback to a single sched domain,
  6422. * as determined by the single cpumask_t fallback_doms.
  6423. */
  6424. static cpumask_t fallback_doms;
  6425. void __attribute__((weak)) arch_update_cpu_topology(void)
  6426. {
  6427. }
  6428. /*
  6429. * Free current domain masks.
  6430. * Called after all cpus are attached to NULL domain.
  6431. */
  6432. static void free_sched_domains(void)
  6433. {
  6434. ndoms_cur = 0;
  6435. if (doms_cur != &fallback_doms)
  6436. kfree(doms_cur);
  6437. doms_cur = &fallback_doms;
  6438. }
  6439. /*
  6440. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6441. * For now this just excludes isolated cpus, but could be used to
  6442. * exclude other special cases in the future.
  6443. */
  6444. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  6445. {
  6446. int err;
  6447. arch_update_cpu_topology();
  6448. ndoms_cur = 1;
  6449. doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  6450. if (!doms_cur)
  6451. doms_cur = &fallback_doms;
  6452. cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
  6453. dattr_cur = NULL;
  6454. err = build_sched_domains(doms_cur);
  6455. register_sched_domain_sysctl();
  6456. return err;
  6457. }
  6458. static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
  6459. cpumask_t *tmpmask)
  6460. {
  6461. free_sched_groups(cpu_map, tmpmask);
  6462. }
  6463. /*
  6464. * Detach sched domains from a group of cpus specified in cpu_map
  6465. * These cpus will now be attached to the NULL domain
  6466. */
  6467. static void detach_destroy_domains(const cpumask_t *cpu_map)
  6468. {
  6469. cpumask_t tmpmask;
  6470. int i;
  6471. unregister_sched_domain_sysctl();
  6472. for_each_cpu_mask(i, *cpu_map)
  6473. cpu_attach_domain(NULL, &def_root_domain, i);
  6474. synchronize_sched();
  6475. arch_destroy_sched_domains(cpu_map, &tmpmask);
  6476. }
  6477. /* handle null as "default" */
  6478. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6479. struct sched_domain_attr *new, int idx_new)
  6480. {
  6481. struct sched_domain_attr tmp;
  6482. /* fast path */
  6483. if (!new && !cur)
  6484. return 1;
  6485. tmp = SD_ATTR_INIT;
  6486. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6487. new ? (new + idx_new) : &tmp,
  6488. sizeof(struct sched_domain_attr));
  6489. }
  6490. /*
  6491. * Partition sched domains as specified by the 'ndoms_new'
  6492. * cpumasks in the array doms_new[] of cpumasks. This compares
  6493. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6494. * It destroys each deleted domain and builds each new domain.
  6495. *
  6496. * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
  6497. * The masks don't intersect (don't overlap.) We should setup one
  6498. * sched domain for each mask. CPUs not in any of the cpumasks will
  6499. * not be load balanced. If the same cpumask appears both in the
  6500. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6501. * it as it is.
  6502. *
  6503. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  6504. * ownership of it and will kfree it when done with it. If the caller
  6505. * failed the kmalloc call, then it can pass in doms_new == NULL,
  6506. * and partition_sched_domains() will fallback to the single partition
  6507. * 'fallback_doms'.
  6508. *
  6509. * Call with hotplug lock held
  6510. */
  6511. void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
  6512. struct sched_domain_attr *dattr_new)
  6513. {
  6514. int i, j;
  6515. mutex_lock(&sched_domains_mutex);
  6516. /* always unregister in case we don't destroy any domains */
  6517. unregister_sched_domain_sysctl();
  6518. if (doms_new == NULL) {
  6519. ndoms_new = 1;
  6520. doms_new = &fallback_doms;
  6521. cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
  6522. dattr_new = NULL;
  6523. }
  6524. /* Destroy deleted domains */
  6525. for (i = 0; i < ndoms_cur; i++) {
  6526. for (j = 0; j < ndoms_new; j++) {
  6527. if (cpus_equal(doms_cur[i], doms_new[j])
  6528. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6529. goto match1;
  6530. }
  6531. /* no match - a current sched domain not in new doms_new[] */
  6532. detach_destroy_domains(doms_cur + i);
  6533. match1:
  6534. ;
  6535. }
  6536. /* Build new domains */
  6537. for (i = 0; i < ndoms_new; i++) {
  6538. for (j = 0; j < ndoms_cur; j++) {
  6539. if (cpus_equal(doms_new[i], doms_cur[j])
  6540. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6541. goto match2;
  6542. }
  6543. /* no match - add a new doms_new */
  6544. __build_sched_domains(doms_new + i,
  6545. dattr_new ? dattr_new + i : NULL);
  6546. match2:
  6547. ;
  6548. }
  6549. /* Remember the new sched domains */
  6550. if (doms_cur != &fallback_doms)
  6551. kfree(doms_cur);
  6552. kfree(dattr_cur); /* kfree(NULL) is safe */
  6553. doms_cur = doms_new;
  6554. dattr_cur = dattr_new;
  6555. ndoms_cur = ndoms_new;
  6556. register_sched_domain_sysctl();
  6557. mutex_unlock(&sched_domains_mutex);
  6558. }
  6559. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6560. int arch_reinit_sched_domains(void)
  6561. {
  6562. int err;
  6563. get_online_cpus();
  6564. mutex_lock(&sched_domains_mutex);
  6565. detach_destroy_domains(&cpu_online_map);
  6566. free_sched_domains();
  6567. err = arch_init_sched_domains(&cpu_online_map);
  6568. mutex_unlock(&sched_domains_mutex);
  6569. put_online_cpus();
  6570. return err;
  6571. }
  6572. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6573. {
  6574. int ret;
  6575. if (buf[0] != '0' && buf[0] != '1')
  6576. return -EINVAL;
  6577. if (smt)
  6578. sched_smt_power_savings = (buf[0] == '1');
  6579. else
  6580. sched_mc_power_savings = (buf[0] == '1');
  6581. ret = arch_reinit_sched_domains();
  6582. return ret ? ret : count;
  6583. }
  6584. #ifdef CONFIG_SCHED_MC
  6585. static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
  6586. struct sysdev_attribute *attr, char *page)
  6587. {
  6588. return sprintf(page, "%u\n", sched_mc_power_savings);
  6589. }
  6590. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  6591. struct sysdev_attribute *attr,
  6592. const char *buf, size_t count)
  6593. {
  6594. return sched_power_savings_store(buf, count, 0);
  6595. }
  6596. static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  6597. sched_mc_power_savings_store);
  6598. #endif
  6599. #ifdef CONFIG_SCHED_SMT
  6600. static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
  6601. struct sysdev_attribute *attr, char *page)
  6602. {
  6603. return sprintf(page, "%u\n", sched_smt_power_savings);
  6604. }
  6605. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  6606. struct sysdev_attribute *attr,
  6607. const char *buf, size_t count)
  6608. {
  6609. return sched_power_savings_store(buf, count, 1);
  6610. }
  6611. static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  6612. sched_smt_power_savings_store);
  6613. #endif
  6614. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6615. {
  6616. int err = 0;
  6617. #ifdef CONFIG_SCHED_SMT
  6618. if (smt_capable())
  6619. err = sysfs_create_file(&cls->kset.kobj,
  6620. &attr_sched_smt_power_savings.attr);
  6621. #endif
  6622. #ifdef CONFIG_SCHED_MC
  6623. if (!err && mc_capable())
  6624. err = sysfs_create_file(&cls->kset.kobj,
  6625. &attr_sched_mc_power_savings.attr);
  6626. #endif
  6627. return err;
  6628. }
  6629. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6630. /*
  6631. * Force a reinitialization of the sched domains hierarchy. The domains
  6632. * and groups cannot be updated in place without racing with the balancing
  6633. * code, so we temporarily attach all running cpus to the NULL domain
  6634. * which will prevent rebalancing while the sched domains are recalculated.
  6635. */
  6636. static int update_sched_domains(struct notifier_block *nfb,
  6637. unsigned long action, void *hcpu)
  6638. {
  6639. int cpu = (int)(long)hcpu;
  6640. switch (action) {
  6641. case CPU_DOWN_PREPARE:
  6642. case CPU_DOWN_PREPARE_FROZEN:
  6643. disable_runtime(cpu_rq(cpu));
  6644. /* fall-through */
  6645. case CPU_UP_PREPARE:
  6646. case CPU_UP_PREPARE_FROZEN:
  6647. detach_destroy_domains(&cpu_online_map);
  6648. free_sched_domains();
  6649. return NOTIFY_OK;
  6650. case CPU_DOWN_FAILED:
  6651. case CPU_DOWN_FAILED_FROZEN:
  6652. case CPU_ONLINE:
  6653. case CPU_ONLINE_FROZEN:
  6654. enable_runtime(cpu_rq(cpu));
  6655. /* fall-through */
  6656. case CPU_UP_CANCELED:
  6657. case CPU_UP_CANCELED_FROZEN:
  6658. case CPU_DEAD:
  6659. case CPU_DEAD_FROZEN:
  6660. /*
  6661. * Fall through and re-initialise the domains.
  6662. */
  6663. break;
  6664. default:
  6665. return NOTIFY_DONE;
  6666. }
  6667. #ifndef CONFIG_CPUSETS
  6668. /*
  6669. * Create default domain partitioning if cpusets are disabled.
  6670. * Otherwise we let cpusets rebuild the domains based on the
  6671. * current setup.
  6672. */
  6673. /* The hotplug lock is already held by cpu_up/cpu_down */
  6674. arch_init_sched_domains(&cpu_online_map);
  6675. #endif
  6676. return NOTIFY_OK;
  6677. }
  6678. void __init sched_init_smp(void)
  6679. {
  6680. cpumask_t non_isolated_cpus;
  6681. #if defined(CONFIG_NUMA)
  6682. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6683. GFP_KERNEL);
  6684. BUG_ON(sched_group_nodes_bycpu == NULL);
  6685. #endif
  6686. get_online_cpus();
  6687. mutex_lock(&sched_domains_mutex);
  6688. arch_init_sched_domains(&cpu_online_map);
  6689. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  6690. if (cpus_empty(non_isolated_cpus))
  6691. cpu_set(smp_processor_id(), non_isolated_cpus);
  6692. mutex_unlock(&sched_domains_mutex);
  6693. put_online_cpus();
  6694. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6695. hotcpu_notifier(update_sched_domains, 0);
  6696. init_hrtick();
  6697. /* Move init over to a non-isolated CPU */
  6698. if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
  6699. BUG();
  6700. sched_init_granularity();
  6701. }
  6702. #else
  6703. void __init sched_init_smp(void)
  6704. {
  6705. sched_init_granularity();
  6706. }
  6707. #endif /* CONFIG_SMP */
  6708. int in_sched_functions(unsigned long addr)
  6709. {
  6710. return in_lock_functions(addr) ||
  6711. (addr >= (unsigned long)__sched_text_start
  6712. && addr < (unsigned long)__sched_text_end);
  6713. }
  6714. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6715. {
  6716. cfs_rq->tasks_timeline = RB_ROOT;
  6717. INIT_LIST_HEAD(&cfs_rq->tasks);
  6718. #ifdef CONFIG_FAIR_GROUP_SCHED
  6719. cfs_rq->rq = rq;
  6720. #endif
  6721. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6722. }
  6723. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6724. {
  6725. struct rt_prio_array *array;
  6726. int i;
  6727. array = &rt_rq->active;
  6728. for (i = 0; i < MAX_RT_PRIO; i++) {
  6729. INIT_LIST_HEAD(array->queue + i);
  6730. __clear_bit(i, array->bitmap);
  6731. }
  6732. /* delimiter for bitsearch: */
  6733. __set_bit(MAX_RT_PRIO, array->bitmap);
  6734. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6735. rt_rq->highest_prio = MAX_RT_PRIO;
  6736. #endif
  6737. #ifdef CONFIG_SMP
  6738. rt_rq->rt_nr_migratory = 0;
  6739. rt_rq->overloaded = 0;
  6740. #endif
  6741. rt_rq->rt_time = 0;
  6742. rt_rq->rt_throttled = 0;
  6743. rt_rq->rt_runtime = 0;
  6744. spin_lock_init(&rt_rq->rt_runtime_lock);
  6745. #ifdef CONFIG_RT_GROUP_SCHED
  6746. rt_rq->rt_nr_boosted = 0;
  6747. rt_rq->rq = rq;
  6748. #endif
  6749. }
  6750. #ifdef CONFIG_FAIR_GROUP_SCHED
  6751. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6752. struct sched_entity *se, int cpu, int add,
  6753. struct sched_entity *parent)
  6754. {
  6755. struct rq *rq = cpu_rq(cpu);
  6756. tg->cfs_rq[cpu] = cfs_rq;
  6757. init_cfs_rq(cfs_rq, rq);
  6758. cfs_rq->tg = tg;
  6759. if (add)
  6760. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6761. tg->se[cpu] = se;
  6762. /* se could be NULL for init_task_group */
  6763. if (!se)
  6764. return;
  6765. if (!parent)
  6766. se->cfs_rq = &rq->cfs;
  6767. else
  6768. se->cfs_rq = parent->my_q;
  6769. se->my_q = cfs_rq;
  6770. se->load.weight = tg->shares;
  6771. se->load.inv_weight = 0;
  6772. se->parent = parent;
  6773. }
  6774. #endif
  6775. #ifdef CONFIG_RT_GROUP_SCHED
  6776. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6777. struct sched_rt_entity *rt_se, int cpu, int add,
  6778. struct sched_rt_entity *parent)
  6779. {
  6780. struct rq *rq = cpu_rq(cpu);
  6781. tg->rt_rq[cpu] = rt_rq;
  6782. init_rt_rq(rt_rq, rq);
  6783. rt_rq->tg = tg;
  6784. rt_rq->rt_se = rt_se;
  6785. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6786. if (add)
  6787. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6788. tg->rt_se[cpu] = rt_se;
  6789. if (!rt_se)
  6790. return;
  6791. if (!parent)
  6792. rt_se->rt_rq = &rq->rt;
  6793. else
  6794. rt_se->rt_rq = parent->my_q;
  6795. rt_se->my_q = rt_rq;
  6796. rt_se->parent = parent;
  6797. INIT_LIST_HEAD(&rt_se->run_list);
  6798. }
  6799. #endif
  6800. void __init sched_init(void)
  6801. {
  6802. int i, j;
  6803. unsigned long alloc_size = 0, ptr;
  6804. #ifdef CONFIG_FAIR_GROUP_SCHED
  6805. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6806. #endif
  6807. #ifdef CONFIG_RT_GROUP_SCHED
  6808. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6809. #endif
  6810. #ifdef CONFIG_USER_SCHED
  6811. alloc_size *= 2;
  6812. #endif
  6813. /*
  6814. * As sched_init() is called before page_alloc is setup,
  6815. * we use alloc_bootmem().
  6816. */
  6817. if (alloc_size) {
  6818. ptr = (unsigned long)alloc_bootmem(alloc_size);
  6819. #ifdef CONFIG_FAIR_GROUP_SCHED
  6820. init_task_group.se = (struct sched_entity **)ptr;
  6821. ptr += nr_cpu_ids * sizeof(void **);
  6822. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6823. ptr += nr_cpu_ids * sizeof(void **);
  6824. #ifdef CONFIG_USER_SCHED
  6825. root_task_group.se = (struct sched_entity **)ptr;
  6826. ptr += nr_cpu_ids * sizeof(void **);
  6827. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6828. ptr += nr_cpu_ids * sizeof(void **);
  6829. #endif /* CONFIG_USER_SCHED */
  6830. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6831. #ifdef CONFIG_RT_GROUP_SCHED
  6832. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6833. ptr += nr_cpu_ids * sizeof(void **);
  6834. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6835. ptr += nr_cpu_ids * sizeof(void **);
  6836. #ifdef CONFIG_USER_SCHED
  6837. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6838. ptr += nr_cpu_ids * sizeof(void **);
  6839. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6840. ptr += nr_cpu_ids * sizeof(void **);
  6841. #endif /* CONFIG_USER_SCHED */
  6842. #endif /* CONFIG_RT_GROUP_SCHED */
  6843. }
  6844. #ifdef CONFIG_SMP
  6845. init_defrootdomain();
  6846. #endif
  6847. init_rt_bandwidth(&def_rt_bandwidth,
  6848. global_rt_period(), global_rt_runtime());
  6849. #ifdef CONFIG_RT_GROUP_SCHED
  6850. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6851. global_rt_period(), global_rt_runtime());
  6852. #ifdef CONFIG_USER_SCHED
  6853. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6854. global_rt_period(), RUNTIME_INF);
  6855. #endif /* CONFIG_USER_SCHED */
  6856. #endif /* CONFIG_RT_GROUP_SCHED */
  6857. #ifdef CONFIG_GROUP_SCHED
  6858. list_add(&init_task_group.list, &task_groups);
  6859. INIT_LIST_HEAD(&init_task_group.children);
  6860. #ifdef CONFIG_USER_SCHED
  6861. INIT_LIST_HEAD(&root_task_group.children);
  6862. init_task_group.parent = &root_task_group;
  6863. list_add(&init_task_group.siblings, &root_task_group.children);
  6864. #endif /* CONFIG_USER_SCHED */
  6865. #endif /* CONFIG_GROUP_SCHED */
  6866. for_each_possible_cpu(i) {
  6867. struct rq *rq;
  6868. rq = cpu_rq(i);
  6869. spin_lock_init(&rq->lock);
  6870. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  6871. rq->nr_running = 0;
  6872. init_cfs_rq(&rq->cfs, rq);
  6873. init_rt_rq(&rq->rt, rq);
  6874. #ifdef CONFIG_FAIR_GROUP_SCHED
  6875. init_task_group.shares = init_task_group_load;
  6876. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6877. #ifdef CONFIG_CGROUP_SCHED
  6878. /*
  6879. * How much cpu bandwidth does init_task_group get?
  6880. *
  6881. * In case of task-groups formed thr' the cgroup filesystem, it
  6882. * gets 100% of the cpu resources in the system. This overall
  6883. * system cpu resource is divided among the tasks of
  6884. * init_task_group and its child task-groups in a fair manner,
  6885. * based on each entity's (task or task-group's) weight
  6886. * (se->load.weight).
  6887. *
  6888. * In other words, if init_task_group has 10 tasks of weight
  6889. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6890. * then A0's share of the cpu resource is:
  6891. *
  6892. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6893. *
  6894. * We achieve this by letting init_task_group's tasks sit
  6895. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6896. */
  6897. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6898. #elif defined CONFIG_USER_SCHED
  6899. root_task_group.shares = NICE_0_LOAD;
  6900. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  6901. /*
  6902. * In case of task-groups formed thr' the user id of tasks,
  6903. * init_task_group represents tasks belonging to root user.
  6904. * Hence it forms a sibling of all subsequent groups formed.
  6905. * In this case, init_task_group gets only a fraction of overall
  6906. * system cpu resource, based on the weight assigned to root
  6907. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  6908. * by letting tasks of init_task_group sit in a separate cfs_rq
  6909. * (init_cfs_rq) and having one entity represent this group of
  6910. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  6911. */
  6912. init_tg_cfs_entry(&init_task_group,
  6913. &per_cpu(init_cfs_rq, i),
  6914. &per_cpu(init_sched_entity, i), i, 1,
  6915. root_task_group.se[i]);
  6916. #endif
  6917. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6918. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6919. #ifdef CONFIG_RT_GROUP_SCHED
  6920. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6921. #ifdef CONFIG_CGROUP_SCHED
  6922. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6923. #elif defined CONFIG_USER_SCHED
  6924. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  6925. init_tg_rt_entry(&init_task_group,
  6926. &per_cpu(init_rt_rq, i),
  6927. &per_cpu(init_sched_rt_entity, i), i, 1,
  6928. root_task_group.rt_se[i]);
  6929. #endif
  6930. #endif
  6931. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6932. rq->cpu_load[j] = 0;
  6933. #ifdef CONFIG_SMP
  6934. rq->sd = NULL;
  6935. rq->rd = NULL;
  6936. rq->active_balance = 0;
  6937. rq->next_balance = jiffies;
  6938. rq->push_cpu = 0;
  6939. rq->cpu = i;
  6940. rq->online = 0;
  6941. rq->migration_thread = NULL;
  6942. INIT_LIST_HEAD(&rq->migration_queue);
  6943. rq_attach_root(rq, &def_root_domain);
  6944. #endif
  6945. init_rq_hrtick(rq);
  6946. atomic_set(&rq->nr_iowait, 0);
  6947. }
  6948. set_load_weight(&init_task);
  6949. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6950. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6951. #endif
  6952. #ifdef CONFIG_SMP
  6953. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6954. #endif
  6955. #ifdef CONFIG_RT_MUTEXES
  6956. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  6957. #endif
  6958. /*
  6959. * The boot idle thread does lazy MMU switching as well:
  6960. */
  6961. atomic_inc(&init_mm.mm_count);
  6962. enter_lazy_tlb(&init_mm, current);
  6963. /*
  6964. * Make us the idle thread. Technically, schedule() should not be
  6965. * called from this thread, however somewhere below it might be,
  6966. * but because we are the idle thread, we just pick up running again
  6967. * when this runqueue becomes "idle".
  6968. */
  6969. init_idle(current, smp_processor_id());
  6970. /*
  6971. * During early bootup we pretend to be a normal task:
  6972. */
  6973. current->sched_class = &fair_sched_class;
  6974. scheduler_running = 1;
  6975. }
  6976. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6977. void __might_sleep(char *file, int line)
  6978. {
  6979. #ifdef in_atomic
  6980. static unsigned long prev_jiffy; /* ratelimiting */
  6981. if ((in_atomic() || irqs_disabled()) &&
  6982. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  6983. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6984. return;
  6985. prev_jiffy = jiffies;
  6986. printk(KERN_ERR "BUG: sleeping function called from invalid"
  6987. " context at %s:%d\n", file, line);
  6988. printk("in_atomic():%d, irqs_disabled():%d\n",
  6989. in_atomic(), irqs_disabled());
  6990. debug_show_held_locks(current);
  6991. if (irqs_disabled())
  6992. print_irqtrace_events(current);
  6993. dump_stack();
  6994. }
  6995. #endif
  6996. }
  6997. EXPORT_SYMBOL(__might_sleep);
  6998. #endif
  6999. #ifdef CONFIG_MAGIC_SYSRQ
  7000. static void normalize_task(struct rq *rq, struct task_struct *p)
  7001. {
  7002. int on_rq;
  7003. update_rq_clock(rq);
  7004. on_rq = p->se.on_rq;
  7005. if (on_rq)
  7006. deactivate_task(rq, p, 0);
  7007. __setscheduler(rq, p, SCHED_NORMAL, 0);
  7008. if (on_rq) {
  7009. activate_task(rq, p, 0);
  7010. resched_task(rq->curr);
  7011. }
  7012. }
  7013. void normalize_rt_tasks(void)
  7014. {
  7015. struct task_struct *g, *p;
  7016. unsigned long flags;
  7017. struct rq *rq;
  7018. read_lock_irqsave(&tasklist_lock, flags);
  7019. do_each_thread(g, p) {
  7020. /*
  7021. * Only normalize user tasks:
  7022. */
  7023. if (!p->mm)
  7024. continue;
  7025. p->se.exec_start = 0;
  7026. #ifdef CONFIG_SCHEDSTATS
  7027. p->se.wait_start = 0;
  7028. p->se.sleep_start = 0;
  7029. p->se.block_start = 0;
  7030. #endif
  7031. if (!rt_task(p)) {
  7032. /*
  7033. * Renice negative nice level userspace
  7034. * tasks back to 0:
  7035. */
  7036. if (TASK_NICE(p) < 0 && p->mm)
  7037. set_user_nice(p, 0);
  7038. continue;
  7039. }
  7040. spin_lock(&p->pi_lock);
  7041. rq = __task_rq_lock(p);
  7042. normalize_task(rq, p);
  7043. __task_rq_unlock(rq);
  7044. spin_unlock(&p->pi_lock);
  7045. } while_each_thread(g, p);
  7046. read_unlock_irqrestore(&tasklist_lock, flags);
  7047. }
  7048. #endif /* CONFIG_MAGIC_SYSRQ */
  7049. #ifdef CONFIG_IA64
  7050. /*
  7051. * These functions are only useful for the IA64 MCA handling.
  7052. *
  7053. * They can only be called when the whole system has been
  7054. * stopped - every CPU needs to be quiescent, and no scheduling
  7055. * activity can take place. Using them for anything else would
  7056. * be a serious bug, and as a result, they aren't even visible
  7057. * under any other configuration.
  7058. */
  7059. /**
  7060. * curr_task - return the current task for a given cpu.
  7061. * @cpu: the processor in question.
  7062. *
  7063. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7064. */
  7065. struct task_struct *curr_task(int cpu)
  7066. {
  7067. return cpu_curr(cpu);
  7068. }
  7069. /**
  7070. * set_curr_task - set the current task for a given cpu.
  7071. * @cpu: the processor in question.
  7072. * @p: the task pointer to set.
  7073. *
  7074. * Description: This function must only be used when non-maskable interrupts
  7075. * are serviced on a separate stack. It allows the architecture to switch the
  7076. * notion of the current task on a cpu in a non-blocking manner. This function
  7077. * must be called with all CPU's synchronized, and interrupts disabled, the
  7078. * and caller must save the original value of the current task (see
  7079. * curr_task() above) and restore that value before reenabling interrupts and
  7080. * re-starting the system.
  7081. *
  7082. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  7083. */
  7084. void set_curr_task(int cpu, struct task_struct *p)
  7085. {
  7086. cpu_curr(cpu) = p;
  7087. }
  7088. #endif
  7089. #ifdef CONFIG_FAIR_GROUP_SCHED
  7090. static void free_fair_sched_group(struct task_group *tg)
  7091. {
  7092. int i;
  7093. for_each_possible_cpu(i) {
  7094. if (tg->cfs_rq)
  7095. kfree(tg->cfs_rq[i]);
  7096. if (tg->se)
  7097. kfree(tg->se[i]);
  7098. }
  7099. kfree(tg->cfs_rq);
  7100. kfree(tg->se);
  7101. }
  7102. static
  7103. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7104. {
  7105. struct cfs_rq *cfs_rq;
  7106. struct sched_entity *se, *parent_se;
  7107. struct rq *rq;
  7108. int i;
  7109. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  7110. if (!tg->cfs_rq)
  7111. goto err;
  7112. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  7113. if (!tg->se)
  7114. goto err;
  7115. tg->shares = NICE_0_LOAD;
  7116. for_each_possible_cpu(i) {
  7117. rq = cpu_rq(i);
  7118. cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
  7119. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7120. if (!cfs_rq)
  7121. goto err;
  7122. se = kmalloc_node(sizeof(struct sched_entity),
  7123. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7124. if (!se)
  7125. goto err;
  7126. parent_se = parent ? parent->se[i] : NULL;
  7127. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
  7128. }
  7129. return 1;
  7130. err:
  7131. return 0;
  7132. }
  7133. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7134. {
  7135. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  7136. &cpu_rq(cpu)->leaf_cfs_rq_list);
  7137. }
  7138. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7139. {
  7140. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  7141. }
  7142. #else /* !CONFG_FAIR_GROUP_SCHED */
  7143. static inline void free_fair_sched_group(struct task_group *tg)
  7144. {
  7145. }
  7146. static inline
  7147. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  7148. {
  7149. return 1;
  7150. }
  7151. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  7152. {
  7153. }
  7154. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  7155. {
  7156. }
  7157. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7158. #ifdef CONFIG_RT_GROUP_SCHED
  7159. static void free_rt_sched_group(struct task_group *tg)
  7160. {
  7161. int i;
  7162. destroy_rt_bandwidth(&tg->rt_bandwidth);
  7163. for_each_possible_cpu(i) {
  7164. if (tg->rt_rq)
  7165. kfree(tg->rt_rq[i]);
  7166. if (tg->rt_se)
  7167. kfree(tg->rt_se[i]);
  7168. }
  7169. kfree(tg->rt_rq);
  7170. kfree(tg->rt_se);
  7171. }
  7172. static
  7173. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7174. {
  7175. struct rt_rq *rt_rq;
  7176. struct sched_rt_entity *rt_se, *parent_se;
  7177. struct rq *rq;
  7178. int i;
  7179. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  7180. if (!tg->rt_rq)
  7181. goto err;
  7182. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  7183. if (!tg->rt_se)
  7184. goto err;
  7185. init_rt_bandwidth(&tg->rt_bandwidth,
  7186. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  7187. for_each_possible_cpu(i) {
  7188. rq = cpu_rq(i);
  7189. rt_rq = kmalloc_node(sizeof(struct rt_rq),
  7190. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7191. if (!rt_rq)
  7192. goto err;
  7193. rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
  7194. GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
  7195. if (!rt_se)
  7196. goto err;
  7197. parent_se = parent ? parent->rt_se[i] : NULL;
  7198. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
  7199. }
  7200. return 1;
  7201. err:
  7202. return 0;
  7203. }
  7204. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7205. {
  7206. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  7207. &cpu_rq(cpu)->leaf_rt_rq_list);
  7208. }
  7209. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7210. {
  7211. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  7212. }
  7213. #else /* !CONFIG_RT_GROUP_SCHED */
  7214. static inline void free_rt_sched_group(struct task_group *tg)
  7215. {
  7216. }
  7217. static inline
  7218. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  7219. {
  7220. return 1;
  7221. }
  7222. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  7223. {
  7224. }
  7225. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  7226. {
  7227. }
  7228. #endif /* CONFIG_RT_GROUP_SCHED */
  7229. #ifdef CONFIG_GROUP_SCHED
  7230. static void free_sched_group(struct task_group *tg)
  7231. {
  7232. free_fair_sched_group(tg);
  7233. free_rt_sched_group(tg);
  7234. kfree(tg);
  7235. }
  7236. /* allocate runqueue etc for a new task group */
  7237. struct task_group *sched_create_group(struct task_group *parent)
  7238. {
  7239. struct task_group *tg;
  7240. unsigned long flags;
  7241. int i;
  7242. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  7243. if (!tg)
  7244. return ERR_PTR(-ENOMEM);
  7245. if (!alloc_fair_sched_group(tg, parent))
  7246. goto err;
  7247. if (!alloc_rt_sched_group(tg, parent))
  7248. goto err;
  7249. spin_lock_irqsave(&task_group_lock, flags);
  7250. for_each_possible_cpu(i) {
  7251. register_fair_sched_group(tg, i);
  7252. register_rt_sched_group(tg, i);
  7253. }
  7254. list_add_rcu(&tg->list, &task_groups);
  7255. WARN_ON(!parent); /* root should already exist */
  7256. tg->parent = parent;
  7257. list_add_rcu(&tg->siblings, &parent->children);
  7258. INIT_LIST_HEAD(&tg->children);
  7259. spin_unlock_irqrestore(&task_group_lock, flags);
  7260. return tg;
  7261. err:
  7262. free_sched_group(tg);
  7263. return ERR_PTR(-ENOMEM);
  7264. }
  7265. /* rcu callback to free various structures associated with a task group */
  7266. static void free_sched_group_rcu(struct rcu_head *rhp)
  7267. {
  7268. /* now it should be safe to free those cfs_rqs */
  7269. free_sched_group(container_of(rhp, struct task_group, rcu));
  7270. }
  7271. /* Destroy runqueue etc associated with a task group */
  7272. void sched_destroy_group(struct task_group *tg)
  7273. {
  7274. unsigned long flags;
  7275. int i;
  7276. spin_lock_irqsave(&task_group_lock, flags);
  7277. for_each_possible_cpu(i) {
  7278. unregister_fair_sched_group(tg, i);
  7279. unregister_rt_sched_group(tg, i);
  7280. }
  7281. list_del_rcu(&tg->list);
  7282. list_del_rcu(&tg->siblings);
  7283. spin_unlock_irqrestore(&task_group_lock, flags);
  7284. /* wait for possible concurrent references to cfs_rqs complete */
  7285. call_rcu(&tg->rcu, free_sched_group_rcu);
  7286. }
  7287. /* change task's runqueue when it moves between groups.
  7288. * The caller of this function should have put the task in its new group
  7289. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7290. * reflect its new group.
  7291. */
  7292. void sched_move_task(struct task_struct *tsk)
  7293. {
  7294. int on_rq, running;
  7295. unsigned long flags;
  7296. struct rq *rq;
  7297. rq = task_rq_lock(tsk, &flags);
  7298. update_rq_clock(rq);
  7299. running = task_current(rq, tsk);
  7300. on_rq = tsk->se.on_rq;
  7301. if (on_rq)
  7302. dequeue_task(rq, tsk, 0);
  7303. if (unlikely(running))
  7304. tsk->sched_class->put_prev_task(rq, tsk);
  7305. set_task_rq(tsk, task_cpu(tsk));
  7306. #ifdef CONFIG_FAIR_GROUP_SCHED
  7307. if (tsk->sched_class->moved_group)
  7308. tsk->sched_class->moved_group(tsk);
  7309. #endif
  7310. if (unlikely(running))
  7311. tsk->sched_class->set_curr_task(rq);
  7312. if (on_rq)
  7313. enqueue_task(rq, tsk, 0);
  7314. task_rq_unlock(rq, &flags);
  7315. }
  7316. #endif /* CONFIG_GROUP_SCHED */
  7317. #ifdef CONFIG_FAIR_GROUP_SCHED
  7318. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7319. {
  7320. struct cfs_rq *cfs_rq = se->cfs_rq;
  7321. int on_rq;
  7322. on_rq = se->on_rq;
  7323. if (on_rq)
  7324. dequeue_entity(cfs_rq, se, 0);
  7325. se->load.weight = shares;
  7326. se->load.inv_weight = 0;
  7327. if (on_rq)
  7328. enqueue_entity(cfs_rq, se, 0);
  7329. }
  7330. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7331. {
  7332. struct cfs_rq *cfs_rq = se->cfs_rq;
  7333. struct rq *rq = cfs_rq->rq;
  7334. unsigned long flags;
  7335. spin_lock_irqsave(&rq->lock, flags);
  7336. __set_se_shares(se, shares);
  7337. spin_unlock_irqrestore(&rq->lock, flags);
  7338. }
  7339. static DEFINE_MUTEX(shares_mutex);
  7340. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7341. {
  7342. int i;
  7343. unsigned long flags;
  7344. /*
  7345. * We can't change the weight of the root cgroup.
  7346. */
  7347. if (!tg->se[0])
  7348. return -EINVAL;
  7349. if (shares < MIN_SHARES)
  7350. shares = MIN_SHARES;
  7351. else if (shares > MAX_SHARES)
  7352. shares = MAX_SHARES;
  7353. mutex_lock(&shares_mutex);
  7354. if (tg->shares == shares)
  7355. goto done;
  7356. spin_lock_irqsave(&task_group_lock, flags);
  7357. for_each_possible_cpu(i)
  7358. unregister_fair_sched_group(tg, i);
  7359. list_del_rcu(&tg->siblings);
  7360. spin_unlock_irqrestore(&task_group_lock, flags);
  7361. /* wait for any ongoing reference to this group to finish */
  7362. synchronize_sched();
  7363. /*
  7364. * Now we are free to modify the group's share on each cpu
  7365. * w/o tripping rebalance_share or load_balance_fair.
  7366. */
  7367. tg->shares = shares;
  7368. for_each_possible_cpu(i) {
  7369. /*
  7370. * force a rebalance
  7371. */
  7372. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7373. set_se_shares(tg->se[i], shares);
  7374. }
  7375. /*
  7376. * Enable load balance activity on this group, by inserting it back on
  7377. * each cpu's rq->leaf_cfs_rq_list.
  7378. */
  7379. spin_lock_irqsave(&task_group_lock, flags);
  7380. for_each_possible_cpu(i)
  7381. register_fair_sched_group(tg, i);
  7382. list_add_rcu(&tg->siblings, &tg->parent->children);
  7383. spin_unlock_irqrestore(&task_group_lock, flags);
  7384. done:
  7385. mutex_unlock(&shares_mutex);
  7386. return 0;
  7387. }
  7388. unsigned long sched_group_shares(struct task_group *tg)
  7389. {
  7390. return tg->shares;
  7391. }
  7392. #endif
  7393. #ifdef CONFIG_RT_GROUP_SCHED
  7394. /*
  7395. * Ensure that the real time constraints are schedulable.
  7396. */
  7397. static DEFINE_MUTEX(rt_constraints_mutex);
  7398. static unsigned long to_ratio(u64 period, u64 runtime)
  7399. {
  7400. if (runtime == RUNTIME_INF)
  7401. return 1ULL << 16;
  7402. return div64_u64(runtime << 16, period);
  7403. }
  7404. #ifdef CONFIG_CGROUP_SCHED
  7405. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7406. {
  7407. struct task_group *tgi, *parent = tg->parent;
  7408. unsigned long total = 0;
  7409. if (!parent) {
  7410. if (global_rt_period() < period)
  7411. return 0;
  7412. return to_ratio(period, runtime) <
  7413. to_ratio(global_rt_period(), global_rt_runtime());
  7414. }
  7415. if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
  7416. return 0;
  7417. rcu_read_lock();
  7418. list_for_each_entry_rcu(tgi, &parent->children, siblings) {
  7419. if (tgi == tg)
  7420. continue;
  7421. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7422. tgi->rt_bandwidth.rt_runtime);
  7423. }
  7424. rcu_read_unlock();
  7425. return total + to_ratio(period, runtime) <=
  7426. to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
  7427. parent->rt_bandwidth.rt_runtime);
  7428. }
  7429. #elif defined CONFIG_USER_SCHED
  7430. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7431. {
  7432. struct task_group *tgi;
  7433. unsigned long total = 0;
  7434. unsigned long global_ratio =
  7435. to_ratio(global_rt_period(), global_rt_runtime());
  7436. rcu_read_lock();
  7437. list_for_each_entry_rcu(tgi, &task_groups, list) {
  7438. if (tgi == tg)
  7439. continue;
  7440. total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
  7441. tgi->rt_bandwidth.rt_runtime);
  7442. }
  7443. rcu_read_unlock();
  7444. return total + to_ratio(period, runtime) < global_ratio;
  7445. }
  7446. #endif
  7447. /* Must be called with tasklist_lock held */
  7448. static inline int tg_has_rt_tasks(struct task_group *tg)
  7449. {
  7450. struct task_struct *g, *p;
  7451. do_each_thread(g, p) {
  7452. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7453. return 1;
  7454. } while_each_thread(g, p);
  7455. return 0;
  7456. }
  7457. static int tg_set_bandwidth(struct task_group *tg,
  7458. u64 rt_period, u64 rt_runtime)
  7459. {
  7460. int i, err = 0;
  7461. mutex_lock(&rt_constraints_mutex);
  7462. read_lock(&tasklist_lock);
  7463. if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
  7464. err = -EBUSY;
  7465. goto unlock;
  7466. }
  7467. if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
  7468. err = -EINVAL;
  7469. goto unlock;
  7470. }
  7471. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7472. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7473. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7474. for_each_possible_cpu(i) {
  7475. struct rt_rq *rt_rq = tg->rt_rq[i];
  7476. spin_lock(&rt_rq->rt_runtime_lock);
  7477. rt_rq->rt_runtime = rt_runtime;
  7478. spin_unlock(&rt_rq->rt_runtime_lock);
  7479. }
  7480. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7481. unlock:
  7482. read_unlock(&tasklist_lock);
  7483. mutex_unlock(&rt_constraints_mutex);
  7484. return err;
  7485. }
  7486. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7487. {
  7488. u64 rt_runtime, rt_period;
  7489. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7490. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7491. if (rt_runtime_us < 0)
  7492. rt_runtime = RUNTIME_INF;
  7493. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7494. }
  7495. long sched_group_rt_runtime(struct task_group *tg)
  7496. {
  7497. u64 rt_runtime_us;
  7498. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7499. return -1;
  7500. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7501. do_div(rt_runtime_us, NSEC_PER_USEC);
  7502. return rt_runtime_us;
  7503. }
  7504. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7505. {
  7506. u64 rt_runtime, rt_period;
  7507. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7508. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7509. if (rt_period == 0)
  7510. return -EINVAL;
  7511. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7512. }
  7513. long sched_group_rt_period(struct task_group *tg)
  7514. {
  7515. u64 rt_period_us;
  7516. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7517. do_div(rt_period_us, NSEC_PER_USEC);
  7518. return rt_period_us;
  7519. }
  7520. static int sched_rt_global_constraints(void)
  7521. {
  7522. struct task_group *tg = &root_task_group;
  7523. u64 rt_runtime, rt_period;
  7524. int ret = 0;
  7525. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7526. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7527. mutex_lock(&rt_constraints_mutex);
  7528. if (!__rt_schedulable(tg, rt_period, rt_runtime))
  7529. ret = -EINVAL;
  7530. mutex_unlock(&rt_constraints_mutex);
  7531. return ret;
  7532. }
  7533. #else /* !CONFIG_RT_GROUP_SCHED */
  7534. static int sched_rt_global_constraints(void)
  7535. {
  7536. unsigned long flags;
  7537. int i;
  7538. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7539. for_each_possible_cpu(i) {
  7540. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7541. spin_lock(&rt_rq->rt_runtime_lock);
  7542. rt_rq->rt_runtime = global_rt_runtime();
  7543. spin_unlock(&rt_rq->rt_runtime_lock);
  7544. }
  7545. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7546. return 0;
  7547. }
  7548. #endif /* CONFIG_RT_GROUP_SCHED */
  7549. int sched_rt_handler(struct ctl_table *table, int write,
  7550. struct file *filp, void __user *buffer, size_t *lenp,
  7551. loff_t *ppos)
  7552. {
  7553. int ret;
  7554. int old_period, old_runtime;
  7555. static DEFINE_MUTEX(mutex);
  7556. mutex_lock(&mutex);
  7557. old_period = sysctl_sched_rt_period;
  7558. old_runtime = sysctl_sched_rt_runtime;
  7559. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  7560. if (!ret && write) {
  7561. ret = sched_rt_global_constraints();
  7562. if (ret) {
  7563. sysctl_sched_rt_period = old_period;
  7564. sysctl_sched_rt_runtime = old_runtime;
  7565. } else {
  7566. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7567. def_rt_bandwidth.rt_period =
  7568. ns_to_ktime(global_rt_period());
  7569. }
  7570. }
  7571. mutex_unlock(&mutex);
  7572. return ret;
  7573. }
  7574. #ifdef CONFIG_CGROUP_SCHED
  7575. /* return corresponding task_group object of a cgroup */
  7576. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7577. {
  7578. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7579. struct task_group, css);
  7580. }
  7581. static struct cgroup_subsys_state *
  7582. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7583. {
  7584. struct task_group *tg, *parent;
  7585. if (!cgrp->parent) {
  7586. /* This is early initialization for the top cgroup */
  7587. init_task_group.css.cgroup = cgrp;
  7588. return &init_task_group.css;
  7589. }
  7590. parent = cgroup_tg(cgrp->parent);
  7591. tg = sched_create_group(parent);
  7592. if (IS_ERR(tg))
  7593. return ERR_PTR(-ENOMEM);
  7594. /* Bind the cgroup to task_group object we just created */
  7595. tg->css.cgroup = cgrp;
  7596. return &tg->css;
  7597. }
  7598. static void
  7599. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7600. {
  7601. struct task_group *tg = cgroup_tg(cgrp);
  7602. sched_destroy_group(tg);
  7603. }
  7604. static int
  7605. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7606. struct task_struct *tsk)
  7607. {
  7608. #ifdef CONFIG_RT_GROUP_SCHED
  7609. /* Don't accept realtime tasks when there is no way for them to run */
  7610. if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
  7611. return -EINVAL;
  7612. #else
  7613. /* We don't support RT-tasks being in separate groups */
  7614. if (tsk->sched_class != &fair_sched_class)
  7615. return -EINVAL;
  7616. #endif
  7617. return 0;
  7618. }
  7619. static void
  7620. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7621. struct cgroup *old_cont, struct task_struct *tsk)
  7622. {
  7623. sched_move_task(tsk);
  7624. }
  7625. #ifdef CONFIG_FAIR_GROUP_SCHED
  7626. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7627. u64 shareval)
  7628. {
  7629. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7630. }
  7631. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7632. {
  7633. struct task_group *tg = cgroup_tg(cgrp);
  7634. return (u64) tg->shares;
  7635. }
  7636. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7637. #ifdef CONFIG_RT_GROUP_SCHED
  7638. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7639. s64 val)
  7640. {
  7641. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7642. }
  7643. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7644. {
  7645. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7646. }
  7647. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7648. u64 rt_period_us)
  7649. {
  7650. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7651. }
  7652. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7653. {
  7654. return sched_group_rt_period(cgroup_tg(cgrp));
  7655. }
  7656. #endif /* CONFIG_RT_GROUP_SCHED */
  7657. static struct cftype cpu_files[] = {
  7658. #ifdef CONFIG_FAIR_GROUP_SCHED
  7659. {
  7660. .name = "shares",
  7661. .read_u64 = cpu_shares_read_u64,
  7662. .write_u64 = cpu_shares_write_u64,
  7663. },
  7664. #endif
  7665. #ifdef CONFIG_RT_GROUP_SCHED
  7666. {
  7667. .name = "rt_runtime_us",
  7668. .read_s64 = cpu_rt_runtime_read,
  7669. .write_s64 = cpu_rt_runtime_write,
  7670. },
  7671. {
  7672. .name = "rt_period_us",
  7673. .read_u64 = cpu_rt_period_read_uint,
  7674. .write_u64 = cpu_rt_period_write_uint,
  7675. },
  7676. #endif
  7677. };
  7678. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7679. {
  7680. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7681. }
  7682. struct cgroup_subsys cpu_cgroup_subsys = {
  7683. .name = "cpu",
  7684. .create = cpu_cgroup_create,
  7685. .destroy = cpu_cgroup_destroy,
  7686. .can_attach = cpu_cgroup_can_attach,
  7687. .attach = cpu_cgroup_attach,
  7688. .populate = cpu_cgroup_populate,
  7689. .subsys_id = cpu_cgroup_subsys_id,
  7690. .early_init = 1,
  7691. };
  7692. #endif /* CONFIG_CGROUP_SCHED */
  7693. #ifdef CONFIG_CGROUP_CPUACCT
  7694. /*
  7695. * CPU accounting code for task groups.
  7696. *
  7697. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7698. * (balbir@in.ibm.com).
  7699. */
  7700. /* track cpu usage of a group of tasks */
  7701. struct cpuacct {
  7702. struct cgroup_subsys_state css;
  7703. /* cpuusage holds pointer to a u64-type object on every cpu */
  7704. u64 *cpuusage;
  7705. };
  7706. struct cgroup_subsys cpuacct_subsys;
  7707. /* return cpu accounting group corresponding to this container */
  7708. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7709. {
  7710. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7711. struct cpuacct, css);
  7712. }
  7713. /* return cpu accounting group to which this task belongs */
  7714. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7715. {
  7716. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7717. struct cpuacct, css);
  7718. }
  7719. /* create a new cpu accounting group */
  7720. static struct cgroup_subsys_state *cpuacct_create(
  7721. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7722. {
  7723. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7724. if (!ca)
  7725. return ERR_PTR(-ENOMEM);
  7726. ca->cpuusage = alloc_percpu(u64);
  7727. if (!ca->cpuusage) {
  7728. kfree(ca);
  7729. return ERR_PTR(-ENOMEM);
  7730. }
  7731. return &ca->css;
  7732. }
  7733. /* destroy an existing cpu accounting group */
  7734. static void
  7735. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7736. {
  7737. struct cpuacct *ca = cgroup_ca(cgrp);
  7738. free_percpu(ca->cpuusage);
  7739. kfree(ca);
  7740. }
  7741. /* return total cpu usage (in nanoseconds) of a group */
  7742. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7743. {
  7744. struct cpuacct *ca = cgroup_ca(cgrp);
  7745. u64 totalcpuusage = 0;
  7746. int i;
  7747. for_each_possible_cpu(i) {
  7748. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7749. /*
  7750. * Take rq->lock to make 64-bit addition safe on 32-bit
  7751. * platforms.
  7752. */
  7753. spin_lock_irq(&cpu_rq(i)->lock);
  7754. totalcpuusage += *cpuusage;
  7755. spin_unlock_irq(&cpu_rq(i)->lock);
  7756. }
  7757. return totalcpuusage;
  7758. }
  7759. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7760. u64 reset)
  7761. {
  7762. struct cpuacct *ca = cgroup_ca(cgrp);
  7763. int err = 0;
  7764. int i;
  7765. if (reset) {
  7766. err = -EINVAL;
  7767. goto out;
  7768. }
  7769. for_each_possible_cpu(i) {
  7770. u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
  7771. spin_lock_irq(&cpu_rq(i)->lock);
  7772. *cpuusage = 0;
  7773. spin_unlock_irq(&cpu_rq(i)->lock);
  7774. }
  7775. out:
  7776. return err;
  7777. }
  7778. static struct cftype files[] = {
  7779. {
  7780. .name = "usage",
  7781. .read_u64 = cpuusage_read,
  7782. .write_u64 = cpuusage_write,
  7783. },
  7784. };
  7785. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7786. {
  7787. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7788. }
  7789. /*
  7790. * charge this task's execution time to its accounting group.
  7791. *
  7792. * called with rq->lock held.
  7793. */
  7794. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7795. {
  7796. struct cpuacct *ca;
  7797. if (!cpuacct_subsys.active)
  7798. return;
  7799. ca = task_ca(tsk);
  7800. if (ca) {
  7801. u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
  7802. *cpuusage += cputime;
  7803. }
  7804. }
  7805. struct cgroup_subsys cpuacct_subsys = {
  7806. .name = "cpuacct",
  7807. .create = cpuacct_create,
  7808. .destroy = cpuacct_destroy,
  7809. .populate = cpuacct_populate,
  7810. .subsys_id = cpuacct_subsys_id,
  7811. };
  7812. #endif /* CONFIG_CGROUP_CPUACCT */