123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207 |
- /*
- * kernel/sched.c
- *
- * Kernel scheduler and related syscalls
- *
- * Copyright (C) 1991-2002 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- * hybrid priority-list and round-robin design with
- * an array-switch method of distributing timeslices
- * and per-CPU runqueues. Cleanups and useful suggestions
- * by Davide Libenzi, preemptible kernel bits by Robert Love.
- * 2003-09-03 Interactivity tuning by Con Kolivas.
- * 2004-04-02 Scheduler domains code by Nick Piggin
- * 2007-04-15 Work begun on replacing all interactivity tuning with a
- * fair scheduling design by Con Kolivas.
- * 2007-05-05 Load balancing (smp-nice) and other improvements
- * by Peter Williams
- * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
- * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
- * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
- * Thomas Gleixner, Mike Kravetz
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/nmi.h>
- #include <linux/init.h>
- #include <linux/uaccess.h>
- #include <linux/highmem.h>
- #include <linux/smp_lock.h>
- #include <asm/mmu_context.h>
- #include <linux/interrupt.h>
- #include <linux/capability.h>
- #include <linux/completion.h>
- #include <linux/kernel_stat.h>
- #include <linux/debug_locks.h>
- #include <linux/security.h>
- #include <linux/notifier.h>
- #include <linux/profile.h>
- #include <linux/freezer.h>
- #include <linux/vmalloc.h>
- #include <linux/blkdev.h>
- #include <linux/delay.h>
- #include <linux/pid_namespace.h>
- #include <linux/smp.h>
- #include <linux/threads.h>
- #include <linux/timer.h>
- #include <linux/rcupdate.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/percpu.h>
- #include <linux/kthread.h>
- #include <linux/seq_file.h>
- #include <linux/sysctl.h>
- #include <linux/syscalls.h>
- #include <linux/times.h>
- #include <linux/tsacct_kern.h>
- #include <linux/kprobes.h>
- #include <linux/delayacct.h>
- #include <linux/reciprocal_div.h>
- #include <linux/unistd.h>
- #include <linux/pagemap.h>
- #include <linux/hrtimer.h>
- #include <linux/tick.h>
- #include <linux/bootmem.h>
- #include <linux/debugfs.h>
- #include <linux/ctype.h>
- #include <linux/ftrace.h>
- #include <asm/tlb.h>
- #include <asm/irq_regs.h>
- #include "sched_cpupri.h"
- /*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
- #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
- #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
- #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
- /*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
- #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
- #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
- #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
- /*
- * Helpers for converting nanosecond timing to jiffy resolution
- */
- #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
- #define NICE_0_LOAD SCHED_LOAD_SCALE
- #define NICE_0_SHIFT SCHED_LOAD_SHIFT
- /*
- * These are the 'tuning knobs' of the scheduler:
- *
- * default timeslice is 100 msecs (used only for SCHED_RR tasks).
- * Timeslices get refilled after they expire.
- */
- #define DEF_TIMESLICE (100 * HZ / 1000)
- /*
- * single value that denotes runtime == period, ie unlimited time.
- */
- #define RUNTIME_INF ((u64)~0ULL)
- #ifdef CONFIG_SMP
- /*
- * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
- * Since cpu_power is a 'constant', we can use a reciprocal divide.
- */
- static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
- {
- return reciprocal_divide(load, sg->reciprocal_cpu_power);
- }
- /*
- * Each time a sched group cpu_power is changed,
- * we must compute its reciprocal value
- */
- static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
- {
- sg->__cpu_power += val;
- sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
- }
- #endif
- static inline int rt_policy(int policy)
- {
- if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
- return 1;
- return 0;
- }
- static inline int task_has_rt_policy(struct task_struct *p)
- {
- return rt_policy(p->policy);
- }
- /*
- * This is the priority-queue data structure of the RT scheduling class:
- */
- struct rt_prio_array {
- DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
- struct list_head queue[MAX_RT_PRIO];
- };
- struct rt_bandwidth {
- /* nests inside the rq lock: */
- spinlock_t rt_runtime_lock;
- ktime_t rt_period;
- u64 rt_runtime;
- struct hrtimer rt_period_timer;
- };
- static struct rt_bandwidth def_rt_bandwidth;
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
- static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
- {
- struct rt_bandwidth *rt_b =
- container_of(timer, struct rt_bandwidth, rt_period_timer);
- ktime_t now;
- int overrun;
- int idle = 0;
- for (;;) {
- now = hrtimer_cb_get_time(timer);
- overrun = hrtimer_forward(timer, now, rt_b->rt_period);
- if (!overrun)
- break;
- idle = do_sched_rt_period_timer(rt_b, overrun);
- }
- return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
- }
- static
- void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
- {
- rt_b->rt_period = ns_to_ktime(period);
- rt_b->rt_runtime = runtime;
- spin_lock_init(&rt_b->rt_runtime_lock);
- hrtimer_init(&rt_b->rt_period_timer,
- CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rt_b->rt_period_timer.function = sched_rt_period_timer;
- rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
- }
- static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
- {
- ktime_t now;
- if (rt_b->rt_runtime == RUNTIME_INF)
- return;
- if (hrtimer_active(&rt_b->rt_period_timer))
- return;
- spin_lock(&rt_b->rt_runtime_lock);
- for (;;) {
- if (hrtimer_active(&rt_b->rt_period_timer))
- break;
- now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
- hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
- hrtimer_start(&rt_b->rt_period_timer,
- rt_b->rt_period_timer.expires,
- HRTIMER_MODE_ABS);
- }
- spin_unlock(&rt_b->rt_runtime_lock);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
- {
- hrtimer_cancel(&rt_b->rt_period_timer);
- }
- #endif
- /*
- * sched_domains_mutex serializes calls to arch_init_sched_domains,
- * detach_destroy_domains and partition_sched_domains.
- */
- static DEFINE_MUTEX(sched_domains_mutex);
- #ifdef CONFIG_GROUP_SCHED
- #include <linux/cgroup.h>
- struct cfs_rq;
- static LIST_HEAD(task_groups);
- /* task group related information */
- struct task_group {
- #ifdef CONFIG_CGROUP_SCHED
- struct cgroup_subsys_state css;
- #endif
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* schedulable entities of this group on each cpu */
- struct sched_entity **se;
- /* runqueue "owned" by this group on each cpu */
- struct cfs_rq **cfs_rq;
- unsigned long shares;
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- struct sched_rt_entity **rt_se;
- struct rt_rq **rt_rq;
- struct rt_bandwidth rt_bandwidth;
- #endif
- struct rcu_head rcu;
- struct list_head list;
- struct task_group *parent;
- struct list_head siblings;
- struct list_head children;
- };
- #ifdef CONFIG_USER_SCHED
- /*
- * Root task group.
- * Every UID task group (including init_task_group aka UID-0) will
- * be a child to this group.
- */
- struct task_group root_task_group;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* Default task group's sched entity on each cpu */
- static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
- /* Default task group's cfs_rq on each cpu */
- static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
- static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
- #endif /* CONFIG_RT_GROUP_SCHED */
- #else /* !CONFIG_FAIR_GROUP_SCHED */
- #define root_task_group init_task_group
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- /* task_group_lock serializes add/remove of task groups and also changes to
- * a task group's cpu shares.
- */
- static DEFINE_SPINLOCK(task_group_lock);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- #ifdef CONFIG_USER_SCHED
- # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
- #else /* !CONFIG_USER_SCHED */
- # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
- #endif /* CONFIG_USER_SCHED */
- /*
- * A weight of 0 or 1 can cause arithmetics problems.
- * A weight of a cfs_rq is the sum of weights of which entities
- * are queued on this cfs_rq, so a weight of a entity should not be
- * too large, so as the shares value of a task group.
- * (The default weight is 1024 - so there's no practical
- * limitation from this.)
- */
- #define MIN_SHARES 2
- #define MAX_SHARES (1UL << 18)
- static int init_task_group_load = INIT_TASK_GROUP_LOAD;
- #endif
- /* Default task group.
- * Every task in system belong to this group at bootup.
- */
- struct task_group init_task_group;
- /* return group to which a task belongs */
- static inline struct task_group *task_group(struct task_struct *p)
- {
- struct task_group *tg;
- #ifdef CONFIG_USER_SCHED
- tg = p->user->tg;
- #elif defined(CONFIG_CGROUP_SCHED)
- tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
- struct task_group, css);
- #else
- tg = &init_task_group;
- #endif
- return tg;
- }
- /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
- static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
- {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
- p->se.parent = task_group(p)->se[cpu];
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- p->rt.rt_rq = task_group(p)->rt_rq[cpu];
- p->rt.parent = task_group(p)->rt_se[cpu];
- #endif
- }
- #else
- static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
- static inline struct task_group *task_group(struct task_struct *p)
- {
- return NULL;
- }
- #endif /* CONFIG_GROUP_SCHED */
- /* CFS-related fields in a runqueue */
- struct cfs_rq {
- struct load_weight load;
- unsigned long nr_running;
- u64 exec_clock;
- u64 min_vruntime;
- u64 pair_start;
- struct rb_root tasks_timeline;
- struct rb_node *rb_leftmost;
- struct list_head tasks;
- struct list_head *balance_iterator;
- /*
- * 'curr' points to currently running entity on this cfs_rq.
- * It is set to NULL otherwise (i.e when none are currently running).
- */
- struct sched_entity *curr, *next;
- unsigned long nr_spread_over;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
- /*
- * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
- * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
- * (like users, containers etc.)
- *
- * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
- * list is used during load balance.
- */
- struct list_head leaf_cfs_rq_list;
- struct task_group *tg; /* group that "owns" this runqueue */
- #ifdef CONFIG_SMP
- /*
- * the part of load.weight contributed by tasks
- */
- unsigned long task_weight;
- /*
- * h_load = weight * f(tg)
- *
- * Where f(tg) is the recursive weight fraction assigned to
- * this group.
- */
- unsigned long h_load;
- /*
- * this cpu's part of tg->shares
- */
- unsigned long shares;
- /*
- * load.weight at the time we set shares
- */
- unsigned long rq_weight;
- #endif
- #endif
- };
- /* Real-Time classes' related field in a runqueue: */
- struct rt_rq {
- struct rt_prio_array active;
- unsigned long rt_nr_running;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- int highest_prio; /* highest queued rt task prio */
- #endif
- #ifdef CONFIG_SMP
- unsigned long rt_nr_migratory;
- int overloaded;
- #endif
- int rt_throttled;
- u64 rt_time;
- u64 rt_runtime;
- /* Nests inside the rq lock: */
- spinlock_t rt_runtime_lock;
- #ifdef CONFIG_RT_GROUP_SCHED
- unsigned long rt_nr_boosted;
- struct rq *rq;
- struct list_head leaf_rt_rq_list;
- struct task_group *tg;
- struct sched_rt_entity *rt_se;
- #endif
- };
- #ifdef CONFIG_SMP
- /*
- * We add the notion of a root-domain which will be used to define per-domain
- * variables. Each exclusive cpuset essentially defines an island domain by
- * fully partitioning the member cpus from any other cpuset. Whenever a new
- * exclusive cpuset is created, we also create and attach a new root-domain
- * object.
- *
- */
- struct root_domain {
- atomic_t refcount;
- cpumask_t span;
- cpumask_t online;
- /*
- * The "RT overload" flag: it gets set if a CPU has more than
- * one runnable RT task.
- */
- cpumask_t rto_mask;
- atomic_t rto_count;
- #ifdef CONFIG_SMP
- struct cpupri cpupri;
- #endif
- };
- /*
- * By default the system creates a single root-domain with all cpus as
- * members (mimicking the global state we have today).
- */
- static struct root_domain def_root_domain;
- #endif
- /*
- * This is the main, per-CPU runqueue data structure.
- *
- * Locking rule: those places that want to lock multiple runqueues
- * (such as the load balancing or the thread migration code), lock
- * acquire operations must be ordered by ascending &runqueue.
- */
- struct rq {
- /* runqueue lock: */
- spinlock_t lock;
- /*
- * nr_running and cpu_load should be in the same cacheline because
- * remote CPUs use both these fields when doing load calculation.
- */
- unsigned long nr_running;
- #define CPU_LOAD_IDX_MAX 5
- unsigned long cpu_load[CPU_LOAD_IDX_MAX];
- unsigned char idle_at_tick;
- #ifdef CONFIG_NO_HZ
- unsigned long last_tick_seen;
- unsigned char in_nohz_recently;
- #endif
- /* capture load from *all* tasks on this cpu: */
- struct load_weight load;
- unsigned long nr_load_updates;
- u64 nr_switches;
- struct cfs_rq cfs;
- struct rt_rq rt;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- /* list of leaf cfs_rq on this cpu: */
- struct list_head leaf_cfs_rq_list;
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- struct list_head leaf_rt_rq_list;
- #endif
- /*
- * This is part of a global counter where only the total sum
- * over all CPUs matters. A task can increase this counter on
- * one CPU and if it got migrated afterwards it may decrease
- * it on another CPU. Always updated under the runqueue lock:
- */
- unsigned long nr_uninterruptible;
- struct task_struct *curr, *idle;
- unsigned long next_balance;
- struct mm_struct *prev_mm;
- u64 clock;
- atomic_t nr_iowait;
- #ifdef CONFIG_SMP
- struct root_domain *rd;
- struct sched_domain *sd;
- /* For active balancing */
- int active_balance;
- int push_cpu;
- /* cpu of this runqueue: */
- int cpu;
- int online;
- unsigned long avg_load_per_task;
- struct task_struct *migration_thread;
- struct list_head migration_queue;
- #endif
- #ifdef CONFIG_SCHED_HRTICK
- unsigned long hrtick_flags;
- ktime_t hrtick_expire;
- struct hrtimer hrtick_timer;
- #endif
- #ifdef CONFIG_SCHEDSTATS
- /* latency stats */
- struct sched_info rq_sched_info;
- /* sys_sched_yield() stats */
- unsigned int yld_exp_empty;
- unsigned int yld_act_empty;
- unsigned int yld_both_empty;
- unsigned int yld_count;
- /* schedule() stats */
- unsigned int sched_switch;
- unsigned int sched_count;
- unsigned int sched_goidle;
- /* try_to_wake_up() stats */
- unsigned int ttwu_count;
- unsigned int ttwu_local;
- /* BKL stats */
- unsigned int bkl_count;
- #endif
- struct lock_class_key rq_lock_key;
- };
- static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
- static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
- {
- rq->curr->sched_class->check_preempt_curr(rq, p);
- }
- static inline int cpu_of(struct rq *rq)
- {
- #ifdef CONFIG_SMP
- return rq->cpu;
- #else
- return 0;
- #endif
- }
- /*
- * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
- * See detach_destroy_domains: synchronize_sched for details.
- *
- * The domain tree of any CPU may only be accessed from within
- * preempt-disabled sections.
- */
- #define for_each_domain(cpu, __sd) \
- for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
- #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
- #define this_rq() (&__get_cpu_var(runqueues))
- #define task_rq(p) cpu_rq(task_cpu(p))
- #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
- static inline void update_rq_clock(struct rq *rq)
- {
- rq->clock = sched_clock_cpu(cpu_of(rq));
- }
- /*
- * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
- */
- #ifdef CONFIG_SCHED_DEBUG
- # define const_debug __read_mostly
- #else
- # define const_debug static const
- #endif
- /**
- * runqueue_is_locked
- *
- * Returns true if the current cpu runqueue is locked.
- * This interface allows printk to be called with the runqueue lock
- * held and know whether or not it is OK to wake up the klogd.
- */
- int runqueue_is_locked(void)
- {
- int cpu = get_cpu();
- struct rq *rq = cpu_rq(cpu);
- int ret;
- ret = spin_is_locked(&rq->lock);
- put_cpu();
- return ret;
- }
- /*
- * Debugging: various feature bits
- */
- #define SCHED_FEAT(name, enabled) \
- __SCHED_FEAT_##name ,
- enum {
- #include "sched_features.h"
- };
- #undef SCHED_FEAT
- #define SCHED_FEAT(name, enabled) \
- (1UL << __SCHED_FEAT_##name) * enabled |
- const_debug unsigned int sysctl_sched_features =
- #include "sched_features.h"
- 0;
- #undef SCHED_FEAT
- #ifdef CONFIG_SCHED_DEBUG
- #define SCHED_FEAT(name, enabled) \
- #name ,
- static __read_mostly char *sched_feat_names[] = {
- #include "sched_features.h"
- NULL
- };
- #undef SCHED_FEAT
- static int sched_feat_open(struct inode *inode, struct file *filp)
- {
- filp->private_data = inode->i_private;
- return 0;
- }
- static ssize_t
- sched_feat_read(struct file *filp, char __user *ubuf,
- size_t cnt, loff_t *ppos)
- {
- char *buf;
- int r = 0;
- int len = 0;
- int i;
- for (i = 0; sched_feat_names[i]; i++) {
- len += strlen(sched_feat_names[i]);
- len += 4;
- }
- buf = kmalloc(len + 2, GFP_KERNEL);
- if (!buf)
- return -ENOMEM;
- for (i = 0; sched_feat_names[i]; i++) {
- if (sysctl_sched_features & (1UL << i))
- r += sprintf(buf + r, "%s ", sched_feat_names[i]);
- else
- r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
- }
- r += sprintf(buf + r, "\n");
- WARN_ON(r >= len + 2);
- r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
- kfree(buf);
- return r;
- }
- static ssize_t
- sched_feat_write(struct file *filp, const char __user *ubuf,
- size_t cnt, loff_t *ppos)
- {
- char buf[64];
- char *cmp = buf;
- int neg = 0;
- int i;
- if (cnt > 63)
- cnt = 63;
- if (copy_from_user(&buf, ubuf, cnt))
- return -EFAULT;
- buf[cnt] = 0;
- if (strncmp(buf, "NO_", 3) == 0) {
- neg = 1;
- cmp += 3;
- }
- for (i = 0; sched_feat_names[i]; i++) {
- int len = strlen(sched_feat_names[i]);
- if (strncmp(cmp, sched_feat_names[i], len) == 0) {
- if (neg)
- sysctl_sched_features &= ~(1UL << i);
- else
- sysctl_sched_features |= (1UL << i);
- break;
- }
- }
- if (!sched_feat_names[i])
- return -EINVAL;
- filp->f_pos += cnt;
- return cnt;
- }
- static struct file_operations sched_feat_fops = {
- .open = sched_feat_open,
- .read = sched_feat_read,
- .write = sched_feat_write,
- };
- static __init int sched_init_debug(void)
- {
- debugfs_create_file("sched_features", 0644, NULL, NULL,
- &sched_feat_fops);
- return 0;
- }
- late_initcall(sched_init_debug);
- #endif
- #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
- /*
- * Number of tasks to iterate in a single balance run.
- * Limited because this is done with IRQs disabled.
- */
- const_debug unsigned int sysctl_sched_nr_migrate = 32;
- /*
- * ratelimit for updating the group shares.
- * default: 0.5ms
- */
- const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
- /*
- * period over which we measure -rt task cpu usage in us.
- * default: 1s
- */
- unsigned int sysctl_sched_rt_period = 1000000;
- static __read_mostly int scheduler_running;
- /*
- * part of the period that we allow rt tasks to run in us.
- * default: 0.95s
- */
- int sysctl_sched_rt_runtime = 950000;
- static inline u64 global_rt_period(void)
- {
- return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
- }
- static inline u64 global_rt_runtime(void)
- {
- if (sysctl_sched_rt_period < 0)
- return RUNTIME_INF;
- return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
- }
- #ifndef prepare_arch_switch
- # define prepare_arch_switch(next) do { } while (0)
- #endif
- #ifndef finish_arch_switch
- # define finish_arch_switch(prev) do { } while (0)
- #endif
- static inline int task_current(struct rq *rq, struct task_struct *p)
- {
- return rq->curr == p;
- }
- #ifndef __ARCH_WANT_UNLOCKED_CTXSW
- static inline int task_running(struct rq *rq, struct task_struct *p)
- {
- return task_current(rq, p);
- }
- static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
- {
- }
- static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
- {
- #ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- rq->lock.owner = current;
- #endif
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
- spin_unlock_irq(&rq->lock);
- }
- #else /* __ARCH_WANT_UNLOCKED_CTXSW */
- static inline int task_running(struct rq *rq, struct task_struct *p)
- {
- #ifdef CONFIG_SMP
- return p->oncpu;
- #else
- return task_current(rq, p);
- #endif
- }
- static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
- {
- #ifdef CONFIG_SMP
- /*
- * We can optimise this out completely for !SMP, because the
- * SMP rebalancing from interrupt is the only thing that cares
- * here.
- */
- next->oncpu = 1;
- #endif
- #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
- spin_unlock_irq(&rq->lock);
- #else
- spin_unlock(&rq->lock);
- #endif
- }
- static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
- {
- #ifdef CONFIG_SMP
- /*
- * After ->oncpu is cleared, the task can be moved to a different CPU.
- * We must ensure this doesn't happen until the switch is completely
- * finished.
- */
- smp_wmb();
- prev->oncpu = 0;
- #endif
- #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
- local_irq_enable();
- #endif
- }
- #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
- /*
- * __task_rq_lock - lock the runqueue a given task resides on.
- * Must be called interrupts disabled.
- */
- static inline struct rq *__task_rq_lock(struct task_struct *p)
- __acquires(rq->lock)
- {
- for (;;) {
- struct rq *rq = task_rq(p);
- spin_lock(&rq->lock);
- if (likely(rq == task_rq(p)))
- return rq;
- spin_unlock(&rq->lock);
- }
- }
- /*
- * task_rq_lock - lock the runqueue a given task resides on and disable
- * interrupts. Note the ordering: we can safely lookup the task_rq without
- * explicitly disabling preemption.
- */
- static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
- __acquires(rq->lock)
- {
- struct rq *rq;
- for (;;) {
- local_irq_save(*flags);
- rq = task_rq(p);
- spin_lock(&rq->lock);
- if (likely(rq == task_rq(p)))
- return rq;
- spin_unlock_irqrestore(&rq->lock, *flags);
- }
- }
- static void __task_rq_unlock(struct rq *rq)
- __releases(rq->lock)
- {
- spin_unlock(&rq->lock);
- }
- static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
- __releases(rq->lock)
- {
- spin_unlock_irqrestore(&rq->lock, *flags);
- }
- /*
- * this_rq_lock - lock this runqueue and disable interrupts.
- */
- static struct rq *this_rq_lock(void)
- __acquires(rq->lock)
- {
- struct rq *rq;
- local_irq_disable();
- rq = this_rq();
- spin_lock(&rq->lock);
- return rq;
- }
- static void __resched_task(struct task_struct *p, int tif_bit);
- static inline void resched_task(struct task_struct *p)
- {
- __resched_task(p, TIF_NEED_RESCHED);
- }
- #ifdef CONFIG_SCHED_HRTICK
- /*
- * Use HR-timers to deliver accurate preemption points.
- *
- * Its all a bit involved since we cannot program an hrt while holding the
- * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
- * reschedule event.
- *
- * When we get rescheduled we reprogram the hrtick_timer outside of the
- * rq->lock.
- */
- static inline void resched_hrt(struct task_struct *p)
- {
- __resched_task(p, TIF_HRTICK_RESCHED);
- }
- static inline void resched_rq(struct rq *rq)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- resched_task(rq->curr);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- enum {
- HRTICK_SET, /* re-programm hrtick_timer */
- HRTICK_RESET, /* not a new slice */
- HRTICK_BLOCK, /* stop hrtick operations */
- };
- /*
- * Use hrtick when:
- * - enabled by features
- * - hrtimer is actually high res
- */
- static inline int hrtick_enabled(struct rq *rq)
- {
- if (!sched_feat(HRTICK))
- return 0;
- if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
- return 0;
- return hrtimer_is_hres_active(&rq->hrtick_timer);
- }
- /*
- * Called to set the hrtick timer state.
- *
- * called with rq->lock held and irqs disabled
- */
- static void hrtick_start(struct rq *rq, u64 delay, int reset)
- {
- assert_spin_locked(&rq->lock);
- /*
- * preempt at: now + delay
- */
- rq->hrtick_expire =
- ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
- /*
- * indicate we need to program the timer
- */
- __set_bit(HRTICK_SET, &rq->hrtick_flags);
- if (reset)
- __set_bit(HRTICK_RESET, &rq->hrtick_flags);
- /*
- * New slices are called from the schedule path and don't need a
- * forced reschedule.
- */
- if (reset)
- resched_hrt(rq->curr);
- }
- static void hrtick_clear(struct rq *rq)
- {
- if (hrtimer_active(&rq->hrtick_timer))
- hrtimer_cancel(&rq->hrtick_timer);
- }
- /*
- * Update the timer from the possible pending state.
- */
- static void hrtick_set(struct rq *rq)
- {
- ktime_t time;
- int set, reset;
- unsigned long flags;
- WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
- spin_lock_irqsave(&rq->lock, flags);
- set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
- reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
- time = rq->hrtick_expire;
- clear_thread_flag(TIF_HRTICK_RESCHED);
- spin_unlock_irqrestore(&rq->lock, flags);
- if (set) {
- hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
- if (reset && !hrtimer_active(&rq->hrtick_timer))
- resched_rq(rq);
- } else
- hrtick_clear(rq);
- }
- /*
- * High-resolution timer tick.
- * Runs from hardirq context with interrupts disabled.
- */
- static enum hrtimer_restart hrtick(struct hrtimer *timer)
- {
- struct rq *rq = container_of(timer, struct rq, hrtick_timer);
- WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
- spin_lock(&rq->lock);
- update_rq_clock(rq);
- rq->curr->sched_class->task_tick(rq, rq->curr, 1);
- spin_unlock(&rq->lock);
- return HRTIMER_NORESTART;
- }
- #ifdef CONFIG_SMP
- static void hotplug_hrtick_disable(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- rq->hrtick_flags = 0;
- __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
- spin_unlock_irqrestore(&rq->lock, flags);
- hrtick_clear(rq);
- }
- static void hotplug_hrtick_enable(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static int
- hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
- {
- int cpu = (int)(long)hcpu;
- switch (action) {
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- hotplug_hrtick_disable(cpu);
- return NOTIFY_OK;
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- hotplug_hrtick_enable(cpu);
- return NOTIFY_OK;
- }
- return NOTIFY_DONE;
- }
- static void init_hrtick(void)
- {
- hotcpu_notifier(hotplug_hrtick, 0);
- }
- #endif /* CONFIG_SMP */
- static void init_rq_hrtick(struct rq *rq)
- {
- rq->hrtick_flags = 0;
- hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
- rq->hrtick_timer.function = hrtick;
- rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
- }
- void hrtick_resched(void)
- {
- struct rq *rq;
- unsigned long flags;
- if (!test_thread_flag(TIF_HRTICK_RESCHED))
- return;
- local_irq_save(flags);
- rq = cpu_rq(smp_processor_id());
- hrtick_set(rq);
- local_irq_restore(flags);
- }
- #else
- static inline void hrtick_clear(struct rq *rq)
- {
- }
- static inline void hrtick_set(struct rq *rq)
- {
- }
- static inline void init_rq_hrtick(struct rq *rq)
- {
- }
- void hrtick_resched(void)
- {
- }
- static inline void init_hrtick(void)
- {
- }
- #endif
- /*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
- #ifdef CONFIG_SMP
- #ifndef tsk_is_polling
- #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
- #endif
- static void __resched_task(struct task_struct *p, int tif_bit)
- {
- int cpu;
- assert_spin_locked(&task_rq(p)->lock);
- if (unlikely(test_tsk_thread_flag(p, tif_bit)))
- return;
- set_tsk_thread_flag(p, tif_bit);
- cpu = task_cpu(p);
- if (cpu == smp_processor_id())
- return;
- /* NEED_RESCHED must be visible before we test polling */
- smp_mb();
- if (!tsk_is_polling(p))
- smp_send_reschedule(cpu);
- }
- static void resched_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- if (!spin_trylock_irqsave(&rq->lock, flags))
- return;
- resched_task(cpu_curr(cpu));
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- #ifdef CONFIG_NO_HZ
- /*
- * When add_timer_on() enqueues a timer into the timer wheel of an
- * idle CPU then this timer might expire before the next timer event
- * which is scheduled to wake up that CPU. In case of a completely
- * idle system the next event might even be infinite time into the
- * future. wake_up_idle_cpu() ensures that the CPU is woken up and
- * leaves the inner idle loop so the newly added timer is taken into
- * account when the CPU goes back to idle and evaluates the timer
- * wheel for the next timer event.
- */
- void wake_up_idle_cpu(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (cpu == smp_processor_id())
- return;
- /*
- * This is safe, as this function is called with the timer
- * wheel base lock of (cpu) held. When the CPU is on the way
- * to idle and has not yet set rq->curr to idle then it will
- * be serialized on the timer wheel base lock and take the new
- * timer into account automatically.
- */
- if (rq->curr != rq->idle)
- return;
- /*
- * We can set TIF_RESCHED on the idle task of the other CPU
- * lockless. The worst case is that the other CPU runs the
- * idle task through an additional NOOP schedule()
- */
- set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
- /* NEED_RESCHED must be visible before we test polling */
- smp_mb();
- if (!tsk_is_polling(rq->idle))
- smp_send_reschedule(cpu);
- }
- #endif /* CONFIG_NO_HZ */
- #else /* !CONFIG_SMP */
- static void __resched_task(struct task_struct *p, int tif_bit)
- {
- assert_spin_locked(&task_rq(p)->lock);
- set_tsk_thread_flag(p, tif_bit);
- }
- #endif /* CONFIG_SMP */
- #if BITS_PER_LONG == 32
- # define WMULT_CONST (~0UL)
- #else
- # define WMULT_CONST (1UL << 32)
- #endif
- #define WMULT_SHIFT 32
- /*
- * Shift right and round:
- */
- #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
- /*
- * delta *= weight / lw
- */
- static unsigned long
- calc_delta_mine(unsigned long delta_exec, unsigned long weight,
- struct load_weight *lw)
- {
- u64 tmp;
- if (!lw->inv_weight) {
- if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
- lw->inv_weight = 1;
- else
- lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
- / (lw->weight+1);
- }
- tmp = (u64)delta_exec * weight;
- /*
- * Check whether we'd overflow the 64-bit multiplication:
- */
- if (unlikely(tmp > WMULT_CONST))
- tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
- WMULT_SHIFT/2);
- else
- tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
- return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
- }
- static inline void update_load_add(struct load_weight *lw, unsigned long inc)
- {
- lw->weight += inc;
- lw->inv_weight = 0;
- }
- static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
- {
- lw->weight -= dec;
- lw->inv_weight = 0;
- }
- /*
- * To aid in avoiding the subversion of "niceness" due to uneven distribution
- * of tasks with abnormal "nice" values across CPUs the contribution that
- * each task makes to its run queue's load is weighted according to its
- * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
- * scaled version of the new time slice allocation that they receive on time
- * slice expiry etc.
- */
- #define WEIGHT_IDLEPRIO 2
- #define WMULT_IDLEPRIO (1 << 31)
- /*
- * Nice levels are multiplicative, with a gentle 10% change for every
- * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
- * nice 1, it will get ~10% less CPU time than another CPU-bound task
- * that remained on nice 0.
- *
- * The "10% effect" is relative and cumulative: from _any_ nice level,
- * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
- * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
- * If a task goes up by ~10% and another task goes down by ~10% then
- * the relative distance between them is ~25%.)
- */
- static const int prio_to_weight[40] = {
- /* -20 */ 88761, 71755, 56483, 46273, 36291,
- /* -15 */ 29154, 23254, 18705, 14949, 11916,
- /* -10 */ 9548, 7620, 6100, 4904, 3906,
- /* -5 */ 3121, 2501, 1991, 1586, 1277,
- /* 0 */ 1024, 820, 655, 526, 423,
- /* 5 */ 335, 272, 215, 172, 137,
- /* 10 */ 110, 87, 70, 56, 45,
- /* 15 */ 36, 29, 23, 18, 15,
- };
- /*
- * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
- *
- * In cases where the weight does not change often, we can use the
- * precalculated inverse to speed up arithmetics by turning divisions
- * into multiplications:
- */
- static const u32 prio_to_wmult[40] = {
- /* -20 */ 48388, 59856, 76040, 92818, 118348,
- /* -15 */ 147320, 184698, 229616, 287308, 360437,
- /* -10 */ 449829, 563644, 704093, 875809, 1099582,
- /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
- /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
- /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
- /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
- /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
- };
- static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
- /*
- * runqueue iterator, to support SMP load-balancing between different
- * scheduling classes, without having to expose their internal data
- * structures to the load-balancing proper:
- */
- struct rq_iterator {
- void *arg;
- struct task_struct *(*start)(void *);
- struct task_struct *(*next)(void *);
- };
- #ifdef CONFIG_SMP
- static unsigned long
- balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move, struct sched_domain *sd,
- enum cpu_idle_type idle, int *all_pinned,
- int *this_best_prio, struct rq_iterator *iterator);
- static int
- iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle,
- struct rq_iterator *iterator);
- #endif
- #ifdef CONFIG_CGROUP_CPUACCT
- static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
- #else
- static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
- #endif
- static inline void inc_cpu_load(struct rq *rq, unsigned long load)
- {
- update_load_add(&rq->load, load);
- }
- static inline void dec_cpu_load(struct rq *rq, unsigned long load)
- {
- update_load_sub(&rq->load, load);
- }
- #ifdef CONFIG_SMP
- static unsigned long source_load(int cpu, int type);
- static unsigned long target_load(int cpu, int type);
- static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
- static unsigned long cpu_avg_load_per_task(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- if (rq->nr_running)
- rq->avg_load_per_task = rq->load.weight / rq->nr_running;
- return rq->avg_load_per_task;
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
- /*
- * Iterate the full tree, calling @down when first entering a node and @up when
- * leaving it for the final time.
- */
- static void
- walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
- {
- struct task_group *parent, *child;
- rcu_read_lock();
- parent = &root_task_group;
- down:
- (*down)(parent, cpu, sd);
- list_for_each_entry_rcu(child, &parent->children, siblings) {
- parent = child;
- goto down;
- up:
- continue;
- }
- (*up)(parent, cpu, sd);
- child = parent;
- parent = parent->parent;
- if (parent)
- goto up;
- rcu_read_unlock();
- }
- static void __set_se_shares(struct sched_entity *se, unsigned long shares);
- /*
- * Calculate and set the cpu's group shares.
- */
- static void
- __update_group_shares_cpu(struct task_group *tg, int cpu,
- unsigned long sd_shares, unsigned long sd_rq_weight)
- {
- int boost = 0;
- unsigned long shares;
- unsigned long rq_weight;
- if (!tg->se[cpu])
- return;
- rq_weight = tg->cfs_rq[cpu]->load.weight;
- /*
- * If there are currently no tasks on the cpu pretend there is one of
- * average load so that when a new task gets to run here it will not
- * get delayed by group starvation.
- */
- if (!rq_weight) {
- boost = 1;
- rq_weight = NICE_0_LOAD;
- }
- if (unlikely(rq_weight > sd_rq_weight))
- rq_weight = sd_rq_weight;
- /*
- * \Sum shares * rq_weight
- * shares = -----------------------
- * \Sum rq_weight
- *
- */
- shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
- /*
- * record the actual number of shares, not the boosted amount.
- */
- tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
- tg->cfs_rq[cpu]->rq_weight = rq_weight;
- if (shares < MIN_SHARES)
- shares = MIN_SHARES;
- else if (shares > MAX_SHARES)
- shares = MAX_SHARES;
- __set_se_shares(tg->se[cpu], shares);
- }
- /*
- * Re-compute the task group their per cpu shares over the given domain.
- * This needs to be done in a bottom-up fashion because the rq weight of a
- * parent group depends on the shares of its child groups.
- */
- static void
- tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
- {
- unsigned long rq_weight = 0;
- unsigned long shares = 0;
- int i;
- for_each_cpu_mask(i, sd->span) {
- rq_weight += tg->cfs_rq[i]->load.weight;
- shares += tg->cfs_rq[i]->shares;
- }
- if ((!shares && rq_weight) || shares > tg->shares)
- shares = tg->shares;
- if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
- shares = tg->shares;
- if (!rq_weight)
- rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
- for_each_cpu_mask(i, sd->span) {
- struct rq *rq = cpu_rq(i);
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __update_group_shares_cpu(tg, i, shares, rq_weight);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- }
- /*
- * Compute the cpu's hierarchical load factor for each task group.
- * This needs to be done in a top-down fashion because the load of a child
- * group is a fraction of its parents load.
- */
- static void
- tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
- {
- unsigned long load;
- if (!tg->parent) {
- load = cpu_rq(cpu)->load.weight;
- } else {
- load = tg->parent->cfs_rq[cpu]->h_load;
- load *= tg->cfs_rq[cpu]->shares;
- load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
- }
- tg->cfs_rq[cpu]->h_load = load;
- }
- static void
- tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
- {
- }
- static void update_shares(struct sched_domain *sd)
- {
- u64 now = cpu_clock(raw_smp_processor_id());
- s64 elapsed = now - sd->last_update;
- if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
- sd->last_update = now;
- walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
- }
- }
- static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
- {
- spin_unlock(&rq->lock);
- update_shares(sd);
- spin_lock(&rq->lock);
- }
- static void update_h_load(int cpu)
- {
- walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
- }
- #else
- static inline void update_shares(struct sched_domain *sd)
- {
- }
- static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
- {
- }
- #endif
- #endif
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
- {
- #ifdef CONFIG_SMP
- cfs_rq->shares = shares;
- #endif
- }
- #endif
- #include "sched_stats.h"
- #include "sched_idletask.c"
- #include "sched_fair.c"
- #include "sched_rt.c"
- #ifdef CONFIG_SCHED_DEBUG
- # include "sched_debug.c"
- #endif
- #define sched_class_highest (&rt_sched_class)
- #define for_each_class(class) \
- for (class = sched_class_highest; class; class = class->next)
- static void inc_nr_running(struct rq *rq)
- {
- rq->nr_running++;
- }
- static void dec_nr_running(struct rq *rq)
- {
- rq->nr_running--;
- }
- static void set_load_weight(struct task_struct *p)
- {
- if (task_has_rt_policy(p)) {
- p->se.load.weight = prio_to_weight[0] * 2;
- p->se.load.inv_weight = prio_to_wmult[0] >> 1;
- return;
- }
- /*
- * SCHED_IDLE tasks get minimal weight:
- */
- if (p->policy == SCHED_IDLE) {
- p->se.load.weight = WEIGHT_IDLEPRIO;
- p->se.load.inv_weight = WMULT_IDLEPRIO;
- return;
- }
- p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
- p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
- }
- static void update_avg(u64 *avg, u64 sample)
- {
- s64 diff = sample - *avg;
- *avg += diff >> 3;
- }
- static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
- {
- sched_info_queued(p);
- p->sched_class->enqueue_task(rq, p, wakeup);
- p->se.on_rq = 1;
- }
- static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
- {
- if (sleep && p->se.last_wakeup) {
- update_avg(&p->se.avg_overlap,
- p->se.sum_exec_runtime - p->se.last_wakeup);
- p->se.last_wakeup = 0;
- }
- sched_info_dequeued(p);
- p->sched_class->dequeue_task(rq, p, sleep);
- p->se.on_rq = 0;
- }
- /*
- * __normal_prio - return the priority that is based on the static prio
- */
- static inline int __normal_prio(struct task_struct *p)
- {
- return p->static_prio;
- }
- /*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
- static inline int normal_prio(struct task_struct *p)
- {
- int prio;
- if (task_has_rt_policy(p))
- prio = MAX_RT_PRIO-1 - p->rt_priority;
- else
- prio = __normal_prio(p);
- return prio;
- }
- /*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
- static int effective_prio(struct task_struct *p)
- {
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
- }
- /*
- * activate_task - move a task to the runqueue.
- */
- static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
- {
- if (task_contributes_to_load(p))
- rq->nr_uninterruptible--;
- enqueue_task(rq, p, wakeup);
- inc_nr_running(rq);
- }
- /*
- * deactivate_task - remove a task from the runqueue.
- */
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
- {
- if (task_contributes_to_load(p))
- rq->nr_uninterruptible++;
- dequeue_task(rq, p, sleep);
- dec_nr_running(rq);
- }
- /**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- */
- inline int task_curr(const struct task_struct *p)
- {
- return cpu_curr(task_cpu(p)) == p;
- }
- static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
- {
- set_task_rq(p, cpu);
- #ifdef CONFIG_SMP
- /*
- * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
- * successfuly executed on another CPU. We must ensure that updates of
- * per-task data have been completed by this moment.
- */
- smp_wmb();
- task_thread_info(p)->cpu = cpu;
- #endif
- }
- static inline void check_class_changed(struct rq *rq, struct task_struct *p,
- const struct sched_class *prev_class,
- int oldprio, int running)
- {
- if (prev_class != p->sched_class) {
- if (prev_class->switched_from)
- prev_class->switched_from(rq, p, running);
- p->sched_class->switched_to(rq, p, running);
- } else
- p->sched_class->prio_changed(rq, p, oldprio, running);
- }
- #ifdef CONFIG_SMP
- /* Used instead of source_load when we know the type == 0 */
- static unsigned long weighted_cpuload(const int cpu)
- {
- return cpu_rq(cpu)->load.weight;
- }
- /*
- * Is this task likely cache-hot:
- */
- static int
- task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
- {
- s64 delta;
- /*
- * Buddy candidates are cache hot:
- */
- if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
- return 1;
- if (p->sched_class != &fair_sched_class)
- return 0;
- if (sysctl_sched_migration_cost == -1)
- return 1;
- if (sysctl_sched_migration_cost == 0)
- return 0;
- delta = now - p->se.exec_start;
- return delta < (s64)sysctl_sched_migration_cost;
- }
- void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
- {
- int old_cpu = task_cpu(p);
- struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
- struct cfs_rq *old_cfsrq = task_cfs_rq(p),
- *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
- u64 clock_offset;
- clock_offset = old_rq->clock - new_rq->clock;
- #ifdef CONFIG_SCHEDSTATS
- if (p->se.wait_start)
- p->se.wait_start -= clock_offset;
- if (p->se.sleep_start)
- p->se.sleep_start -= clock_offset;
- if (p->se.block_start)
- p->se.block_start -= clock_offset;
- if (old_cpu != new_cpu) {
- schedstat_inc(p, se.nr_migrations);
- if (task_hot(p, old_rq->clock, NULL))
- schedstat_inc(p, se.nr_forced2_migrations);
- }
- #endif
- p->se.vruntime -= old_cfsrq->min_vruntime -
- new_cfsrq->min_vruntime;
- __set_task_cpu(p, new_cpu);
- }
- struct migration_req {
- struct list_head list;
- struct task_struct *task;
- int dest_cpu;
- struct completion done;
- };
- /*
- * The task's runqueue lock must be held.
- * Returns true if you have to wait for migration thread.
- */
- static int
- migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the task is not on a runqueue (and not running), then
- * it is sufficient to simply update the task's cpu field.
- */
- if (!p->se.on_rq && !task_running(rq, p)) {
- set_task_cpu(p, dest_cpu);
- return 0;
- }
- init_completion(&req->done);
- req->task = p;
- req->dest_cpu = dest_cpu;
- list_add(&req->list, &rq->migration_queue);
- return 1;
- }
- /*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
- void wait_task_inactive(struct task_struct *p)
- {
- unsigned long flags;
- int running, on_rq;
- struct rq *rq;
- for (;;) {
- /*
- * We do the initial early heuristics without holding
- * any task-queue locks at all. We'll only try to get
- * the runqueue lock when things look like they will
- * work out!
- */
- rq = task_rq(p);
- /*
- * If the task is actively running on another CPU
- * still, just relax and busy-wait without holding
- * any locks.
- *
- * NOTE! Since we don't hold any locks, it's not
- * even sure that "rq" stays as the right runqueue!
- * But we don't care, since "task_running()" will
- * return false if the runqueue has changed and p
- * is actually now running somewhere else!
- */
- while (task_running(rq, p))
- cpu_relax();
- /*
- * Ok, time to look more closely! We need the rq
- * lock now, to be *sure*. If we're wrong, we'll
- * just go back and repeat.
- */
- rq = task_rq_lock(p, &flags);
- running = task_running(rq, p);
- on_rq = p->se.on_rq;
- task_rq_unlock(rq, &flags);
- /*
- * Was it really running after all now that we
- * checked with the proper locks actually held?
- *
- * Oops. Go back and try again..
- */
- if (unlikely(running)) {
- cpu_relax();
- continue;
- }
- /*
- * It's not enough that it's not actively running,
- * it must be off the runqueue _entirely_, and not
- * preempted!
- *
- * So if it wa still runnable (but just not actively
- * running right now), it's preempted, and we should
- * yield - it could be a while.
- */
- if (unlikely(on_rq)) {
- schedule_timeout_uninterruptible(1);
- continue;
- }
- /*
- * Ahh, all good. It wasn't running, and it wasn't
- * runnable, which means that it will never become
- * running in the future either. We're all done!
- */
- break;
- }
- }
- /***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesnt have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
- void kick_process(struct task_struct *p)
- {
- int cpu;
- preempt_disable();
- cpu = task_cpu(p);
- if ((cpu != smp_processor_id()) && task_curr(p))
- smp_send_reschedule(cpu);
- preempt_enable();
- }
- /*
- * Return a low guess at the load of a migration-source cpu weighted
- * according to the scheduling class and "nice" value.
- *
- * We want to under-estimate the load of migration sources, to
- * balance conservatively.
- */
- static unsigned long source_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(cpu);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return min(rq->cpu_load[type-1], total);
- }
- /*
- * Return a high guess at the load of a migration-target cpu weighted
- * according to the scheduling class and "nice" value.
- */
- static unsigned long target_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long total = weighted_cpuload(cpu);
- if (type == 0 || !sched_feat(LB_BIAS))
- return total;
- return max(rq->cpu_load[type-1], total);
- }
- /*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- */
- static struct sched_group *
- find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
- {
- struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
- unsigned long min_load = ULONG_MAX, this_load = 0;
- int load_idx = sd->forkexec_idx;
- int imbalance = 100 + (sd->imbalance_pct-100)/2;
- do {
- unsigned long load, avg_load;
- int local_group;
- int i;
- /* Skip over this group if it has no CPUs allowed */
- if (!cpus_intersects(group->cpumask, p->cpus_allowed))
- continue;
- local_group = cpu_isset(this_cpu, group->cpumask);
- /* Tally up the load of all CPUs in the group */
- avg_load = 0;
- for_each_cpu_mask(i, group->cpumask) {
- /* Bias balancing toward cpus of our domain */
- if (local_group)
- load = source_load(i, load_idx);
- else
- load = target_load(i, load_idx);
- avg_load += load;
- }
- /* Adjust by relative CPU power of the group */
- avg_load = sg_div_cpu_power(group,
- avg_load * SCHED_LOAD_SCALE);
- if (local_group) {
- this_load = avg_load;
- this = group;
- } else if (avg_load < min_load) {
- min_load = avg_load;
- idlest = group;
- }
- } while (group = group->next, group != sd->groups);
- if (!idlest || 100*this_load < imbalance*min_load)
- return NULL;
- return idlest;
- }
- /*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
- */
- static int
- find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
- cpumask_t *tmp)
- {
- unsigned long load, min_load = ULONG_MAX;
- int idlest = -1;
- int i;
- /* Traverse only the allowed CPUs */
- cpus_and(*tmp, group->cpumask, p->cpus_allowed);
- for_each_cpu_mask(i, *tmp) {
- load = weighted_cpuload(i);
- if (load < min_load || (load == min_load && i == this_cpu)) {
- min_load = load;
- idlest = i;
- }
- }
- return idlest;
- }
- /*
- * sched_balance_self: balance the current task (running on cpu) in domains
- * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
- * SD_BALANCE_EXEC.
- *
- * Balance, ie. select the least loaded group.
- *
- * Returns the target CPU number, or the same CPU if no balancing is needed.
- *
- * preempt must be disabled.
- */
- static int sched_balance_self(int cpu, int flag)
- {
- struct task_struct *t = current;
- struct sched_domain *tmp, *sd = NULL;
- for_each_domain(cpu, tmp) {
- /*
- * If power savings logic is enabled for a domain, stop there.
- */
- if (tmp->flags & SD_POWERSAVINGS_BALANCE)
- break;
- if (tmp->flags & flag)
- sd = tmp;
- }
- if (sd)
- update_shares(sd);
- while (sd) {
- cpumask_t span, tmpmask;
- struct sched_group *group;
- int new_cpu, weight;
- if (!(sd->flags & flag)) {
- sd = sd->child;
- continue;
- }
- span = sd->span;
- group = find_idlest_group(sd, t, cpu);
- if (!group) {
- sd = sd->child;
- continue;
- }
- new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
- if (new_cpu == -1 || new_cpu == cpu) {
- /* Now try balancing at a lower domain level of cpu */
- sd = sd->child;
- continue;
- }
- /* Now try balancing at a lower domain level of new_cpu */
- cpu = new_cpu;
- sd = NULL;
- weight = cpus_weight(span);
- for_each_domain(cpu, tmp) {
- if (weight <= cpus_weight(tmp->span))
- break;
- if (tmp->flags & flag)
- sd = tmp;
- }
- /* while loop will break here if sd == NULL */
- }
- return cpu;
- }
- #endif /* CONFIG_SMP */
- /***
- * try_to_wake_up - wake up a thread
- * @p: the to-be-woken-up thread
- * @state: the mask of task states that can be woken
- * @sync: do a synchronous wakeup?
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * returns failure only if the task is already active.
- */
- static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
- {
- int cpu, orig_cpu, this_cpu, success = 0;
- unsigned long flags;
- long old_state;
- struct rq *rq;
- if (!sched_feat(SYNC_WAKEUPS))
- sync = 0;
- #ifdef CONFIG_SMP
- if (sched_feat(LB_WAKEUP_UPDATE)) {
- struct sched_domain *sd;
- this_cpu = raw_smp_processor_id();
- cpu = task_cpu(p);
- for_each_domain(this_cpu, sd) {
- if (cpu_isset(cpu, sd->span)) {
- update_shares(sd);
- break;
- }
- }
- }
- #endif
- smp_wmb();
- rq = task_rq_lock(p, &flags);
- old_state = p->state;
- if (!(old_state & state))
- goto out;
- if (p->se.on_rq)
- goto out_running;
- cpu = task_cpu(p);
- orig_cpu = cpu;
- this_cpu = smp_processor_id();
- #ifdef CONFIG_SMP
- if (unlikely(task_running(rq, p)))
- goto out_activate;
- cpu = p->sched_class->select_task_rq(p, sync);
- if (cpu != orig_cpu) {
- set_task_cpu(p, cpu);
- task_rq_unlock(rq, &flags);
- /* might preempt at this point */
- rq = task_rq_lock(p, &flags);
- old_state = p->state;
- if (!(old_state & state))
- goto out;
- if (p->se.on_rq)
- goto out_running;
- this_cpu = smp_processor_id();
- cpu = task_cpu(p);
- }
- #ifdef CONFIG_SCHEDSTATS
- schedstat_inc(rq, ttwu_count);
- if (cpu == this_cpu)
- schedstat_inc(rq, ttwu_local);
- else {
- struct sched_domain *sd;
- for_each_domain(this_cpu, sd) {
- if (cpu_isset(cpu, sd->span)) {
- schedstat_inc(sd, ttwu_wake_remote);
- break;
- }
- }
- }
- #endif /* CONFIG_SCHEDSTATS */
- out_activate:
- #endif /* CONFIG_SMP */
- schedstat_inc(p, se.nr_wakeups);
- if (sync)
- schedstat_inc(p, se.nr_wakeups_sync);
- if (orig_cpu != cpu)
- schedstat_inc(p, se.nr_wakeups_migrate);
- if (cpu == this_cpu)
- schedstat_inc(p, se.nr_wakeups_local);
- else
- schedstat_inc(p, se.nr_wakeups_remote);
- update_rq_clock(rq);
- activate_task(rq, p, 1);
- success = 1;
- out_running:
- trace_mark(kernel_sched_wakeup,
- "pid %d state %ld ## rq %p task %p rq->curr %p",
- p->pid, p->state, rq, p, rq->curr);
- check_preempt_curr(rq, p);
- p->state = TASK_RUNNING;
- #ifdef CONFIG_SMP
- if (p->sched_class->task_wake_up)
- p->sched_class->task_wake_up(rq, p);
- #endif
- out:
- current->se.last_wakeup = current->se.sum_exec_runtime;
- task_rq_unlock(rq, &flags);
- return success;
- }
- int wake_up_process(struct task_struct *p)
- {
- return try_to_wake_up(p, TASK_ALL, 0);
- }
- EXPORT_SYMBOL(wake_up_process);
- int wake_up_state(struct task_struct *p, unsigned int state)
- {
- return try_to_wake_up(p, state, 0);
- }
- /*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- *
- * __sched_fork() is basic setup used by init_idle() too:
- */
- static void __sched_fork(struct task_struct *p)
- {
- p->se.exec_start = 0;
- p->se.sum_exec_runtime = 0;
- p->se.prev_sum_exec_runtime = 0;
- p->se.last_wakeup = 0;
- p->se.avg_overlap = 0;
- #ifdef CONFIG_SCHEDSTATS
- p->se.wait_start = 0;
- p->se.sum_sleep_runtime = 0;
- p->se.sleep_start = 0;
- p->se.block_start = 0;
- p->se.sleep_max = 0;
- p->se.block_max = 0;
- p->se.exec_max = 0;
- p->se.slice_max = 0;
- p->se.wait_max = 0;
- #endif
- INIT_LIST_HEAD(&p->rt.run_list);
- p->se.on_rq = 0;
- INIT_LIST_HEAD(&p->se.group_node);
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&p->preempt_notifiers);
- #endif
- /*
- * We mark the process as running here, but have not actually
- * inserted it onto the runqueue yet. This guarantees that
- * nobody will actually run it, and a signal or other external
- * event cannot wake it up and insert it on the runqueue either.
- */
- p->state = TASK_RUNNING;
- }
- /*
- * fork()/clone()-time setup:
- */
- void sched_fork(struct task_struct *p, int clone_flags)
- {
- int cpu = get_cpu();
- __sched_fork(p);
- #ifdef CONFIG_SMP
- cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
- #endif
- set_task_cpu(p, cpu);
- /*
- * Make sure we do not leak PI boosting priority to the child:
- */
- p->prio = current->normal_prio;
- if (!rt_prio(p->prio))
- p->sched_class = &fair_sched_class;
- #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
- if (likely(sched_info_on()))
- memset(&p->sched_info, 0, sizeof(p->sched_info));
- #endif
- #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
- p->oncpu = 0;
- #endif
- #ifdef CONFIG_PREEMPT
- /* Want to start with kernel preemption disabled. */
- task_thread_info(p)->preempt_count = 1;
- #endif
- put_cpu();
- }
- /*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
- void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
- {
- unsigned long flags;
- struct rq *rq;
- rq = task_rq_lock(p, &flags);
- BUG_ON(p->state != TASK_RUNNING);
- update_rq_clock(rq);
- p->prio = effective_prio(p);
- if (!p->sched_class->task_new || !current->se.on_rq) {
- activate_task(rq, p, 0);
- } else {
- /*
- * Let the scheduling class do new task startup
- * management (if any):
- */
- p->sched_class->task_new(rq, p);
- inc_nr_running(rq);
- }
- trace_mark(kernel_sched_wakeup_new,
- "pid %d state %ld ## rq %p task %p rq->curr %p",
- p->pid, p->state, rq, p, rq->curr);
- check_preempt_curr(rq, p);
- #ifdef CONFIG_SMP
- if (p->sched_class->task_wake_up)
- p->sched_class->task_wake_up(rq, p);
- #endif
- task_rq_unlock(rq, &flags);
- }
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- /**
- * preempt_notifier_register - tell me when current is being being preempted & rescheduled
- * @notifier: notifier struct to register
- */
- void preempt_notifier_register(struct preempt_notifier *notifier)
- {
- hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_register);
- /**
- * preempt_notifier_unregister - no longer interested in preemption notifications
- * @notifier: notifier struct to unregister
- *
- * This is safe to call from within a preemption notifier.
- */
- void preempt_notifier_unregister(struct preempt_notifier *notifier)
- {
- hlist_del(¬ifier->link);
- }
- EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
- static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- struct preempt_notifier *notifier;
- struct hlist_node *node;
- hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
- notifier->ops->sched_in(notifier, raw_smp_processor_id());
- }
- static void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- struct preempt_notifier *notifier;
- struct hlist_node *node;
- hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
- notifier->ops->sched_out(notifier, next);
- }
- #else /* !CONFIG_PREEMPT_NOTIFIERS */
- static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
- {
- }
- static void
- fire_sched_out_preempt_notifiers(struct task_struct *curr,
- struct task_struct *next)
- {
- }
- #endif /* CONFIG_PREEMPT_NOTIFIERS */
- /**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @prev: the current task that is being switched out
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
- static inline void
- prepare_task_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
- {
- fire_sched_out_preempt_notifiers(prev, next);
- prepare_lock_switch(rq, next);
- prepare_arch_switch(next);
- }
- /**
- * finish_task_switch - clean up after a task-switch
- * @rq: runqueue associated with task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- */
- static void finish_task_switch(struct rq *rq, struct task_struct *prev)
- __releases(rq->lock)
- {
- struct mm_struct *mm = rq->prev_mm;
- long prev_state;
- rq->prev_mm = NULL;
- /*
- * A task struct has one reference for the use as "current".
- * If a task dies, then it sets TASK_DEAD in tsk->state and calls
- * schedule one last time. The schedule call will never return, and
- * the scheduled task must drop that reference.
- * The test for TASK_DEAD must occur while the runqueue locks are
- * still held, otherwise prev could be scheduled on another cpu, die
- * there before we look at prev->state, and then the reference would
- * be dropped twice.
- * Manfred Spraul <manfred@colorfullife.com>
- */
- prev_state = prev->state;
- finish_arch_switch(prev);
- finish_lock_switch(rq, prev);
- #ifdef CONFIG_SMP
- if (current->sched_class->post_schedule)
- current->sched_class->post_schedule(rq);
- #endif
- fire_sched_in_preempt_notifiers(current);
- if (mm)
- mmdrop(mm);
- if (unlikely(prev_state == TASK_DEAD)) {
- /*
- * Remove function-return probe instances associated with this
- * task and put them back on the free list.
- */
- kprobe_flush_task(prev);
- put_task_struct(prev);
- }
- }
- /**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
- asmlinkage void schedule_tail(struct task_struct *prev)
- __releases(rq->lock)
- {
- struct rq *rq = this_rq();
- finish_task_switch(rq, prev);
- #ifdef __ARCH_WANT_UNLOCKED_CTXSW
- /* In this case, finish_task_switch does not reenable preemption */
- preempt_enable();
- #endif
- if (current->set_child_tid)
- put_user(task_pid_vnr(current), current->set_child_tid);
- }
- /*
- * context_switch - switch to the new MM and the new
- * thread's register state.
- */
- static inline void
- context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
- {
- struct mm_struct *mm, *oldmm;
- prepare_task_switch(rq, prev, next);
- trace_mark(kernel_sched_schedule,
- "prev_pid %d next_pid %d prev_state %ld "
- "## rq %p prev %p next %p",
- prev->pid, next->pid, prev->state,
- rq, prev, next);
- mm = next->mm;
- oldmm = prev->active_mm;
- /*
- * For paravirt, this is coupled with an exit in switch_to to
- * combine the page table reload and the switch backend into
- * one hypercall.
- */
- arch_enter_lazy_cpu_mode();
- if (unlikely(!mm)) {
- next->active_mm = oldmm;
- atomic_inc(&oldmm->mm_count);
- enter_lazy_tlb(oldmm, next);
- } else
- switch_mm(oldmm, mm, next);
- if (unlikely(!prev->mm)) {
- prev->active_mm = NULL;
- rq->prev_mm = oldmm;
- }
- /*
- * Since the runqueue lock will be released by the next
- * task (which is an invalid locking op but in the case
- * of the scheduler it's an obvious special-case), so we
- * do an early lockdep release here:
- */
- #ifndef __ARCH_WANT_UNLOCKED_CTXSW
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- #endif
- /* Here we just switch the register state and the stack. */
- switch_to(prev, next, prev);
- barrier();
- /*
- * this_rq must be evaluated again because prev may have moved
- * CPUs since it called schedule(), thus the 'rq' on its stack
- * frame will be invalid.
- */
- finish_task_switch(this_rq(), prev);
- }
- /*
- * nr_running, nr_uninterruptible and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, current number of uninterruptible-sleeping threads, total
- * number of context switches performed since bootup.
- */
- unsigned long nr_running(void)
- {
- unsigned long i, sum = 0;
- for_each_online_cpu(i)
- sum += cpu_rq(i)->nr_running;
- return sum;
- }
- unsigned long nr_uninterruptible(void)
- {
- unsigned long i, sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_uninterruptible;
- /*
- * Since we read the counters lockless, it might be slightly
- * inaccurate. Do not allow it to go below zero though:
- */
- if (unlikely((long)sum < 0))
- sum = 0;
- return sum;
- }
- unsigned long long nr_context_switches(void)
- {
- int i;
- unsigned long long sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_switches;
- return sum;
- }
- unsigned long nr_iowait(void)
- {
- unsigned long i, sum = 0;
- for_each_possible_cpu(i)
- sum += atomic_read(&cpu_rq(i)->nr_iowait);
- return sum;
- }
- unsigned long nr_active(void)
- {
- unsigned long i, running = 0, uninterruptible = 0;
- for_each_online_cpu(i) {
- running += cpu_rq(i)->nr_running;
- uninterruptible += cpu_rq(i)->nr_uninterruptible;
- }
- if (unlikely((long)uninterruptible < 0))
- uninterruptible = 0;
- return running + uninterruptible;
- }
- /*
- * Update rq->cpu_load[] statistics. This function is usually called every
- * scheduler tick (TICK_NSEC).
- */
- static void update_cpu_load(struct rq *this_rq)
- {
- unsigned long this_load = this_rq->load.weight;
- int i, scale;
- this_rq->nr_load_updates++;
- /* Update our load: */
- for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
- unsigned long old_load, new_load;
- /* scale is effectively 1 << i now, and >> i divides by scale */
- old_load = this_rq->cpu_load[i];
- new_load = this_load;
- /*
- * Round up the averaging division if load is increasing. This
- * prevents us from getting stuck on 9 if the load is 10, for
- * example.
- */
- if (new_load > old_load)
- new_load += scale-1;
- this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
- }
- }
- #ifdef CONFIG_SMP
- /*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
- static void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
- {
- BUG_ON(!irqs_disabled());
- if (rq1 == rq2) {
- spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
- } else {
- if (rq1 < rq2) {
- spin_lock(&rq1->lock);
- spin_lock(&rq2->lock);
- } else {
- spin_lock(&rq2->lock);
- spin_lock(&rq1->lock);
- }
- }
- update_rq_clock(rq1);
- update_rq_clock(rq2);
- }
- /*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
- static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
- {
- spin_unlock(&rq1->lock);
- if (rq1 != rq2)
- spin_unlock(&rq2->lock);
- else
- __release(rq2->lock);
- }
- /*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
- */
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
- __releases(this_rq->lock)
- __acquires(busiest->lock)
- __acquires(this_rq->lock)
- {
- int ret = 0;
- if (unlikely(!irqs_disabled())) {
- /* printk() doesn't work good under rq->lock */
- spin_unlock(&this_rq->lock);
- BUG_ON(1);
- }
- if (unlikely(!spin_trylock(&busiest->lock))) {
- if (busiest < this_rq) {
- spin_unlock(&this_rq->lock);
- spin_lock(&busiest->lock);
- spin_lock(&this_rq->lock);
- ret = 1;
- } else
- spin_lock(&busiest->lock);
- }
- return ret;
- }
- /*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu. Then
- * the cpu_allowed mask is restored.
- */
- static void sched_migrate_task(struct task_struct *p, int dest_cpu)
- {
- struct migration_req req;
- unsigned long flags;
- struct rq *rq;
- rq = task_rq_lock(p, &flags);
- if (!cpu_isset(dest_cpu, p->cpus_allowed)
- || unlikely(cpu_is_offline(dest_cpu)))
- goto out;
- /* force the process onto the specified CPU */
- if (migrate_task(p, dest_cpu, &req)) {
- /* Need to wait for migration thread (might exit: take ref). */
- struct task_struct *mt = rq->migration_thread;
- get_task_struct(mt);
- task_rq_unlock(rq, &flags);
- wake_up_process(mt);
- put_task_struct(mt);
- wait_for_completion(&req.done);
- return;
- }
- out:
- task_rq_unlock(rq, &flags);
- }
- /*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
- void sched_exec(void)
- {
- int new_cpu, this_cpu = get_cpu();
- new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
- put_cpu();
- if (new_cpu != this_cpu)
- sched_migrate_task(current, new_cpu);
- }
- /*
- * pull_task - move a task from a remote runqueue to the local runqueue.
- * Both runqueues must be locked.
- */
- static void pull_task(struct rq *src_rq, struct task_struct *p,
- struct rq *this_rq, int this_cpu)
- {
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * Note that idle threads have a prio of MAX_PRIO, for this test
- * to be always true for them.
- */
- check_preempt_curr(this_rq, p);
- }
- /*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
- static
- int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned)
- {
- /*
- * We do not migrate tasks that are:
- * 1) running (obviously), or
- * 2) cannot be migrated to this CPU due to cpus_allowed, or
- * 3) are cache-hot on their current CPU.
- */
- if (!cpu_isset(this_cpu, p->cpus_allowed)) {
- schedstat_inc(p, se.nr_failed_migrations_affine);
- return 0;
- }
- *all_pinned = 0;
- if (task_running(rq, p)) {
- schedstat_inc(p, se.nr_failed_migrations_running);
- return 0;
- }
- /*
- * Aggressive migration if:
- * 1) task is cache cold, or
- * 2) too many balance attempts have failed.
- */
- if (!task_hot(p, rq->clock, sd) ||
- sd->nr_balance_failed > sd->cache_nice_tries) {
- #ifdef CONFIG_SCHEDSTATS
- if (task_hot(p, rq->clock, sd)) {
- schedstat_inc(sd, lb_hot_gained[idle]);
- schedstat_inc(p, se.nr_forced_migrations);
- }
- #endif
- return 1;
- }
- if (task_hot(p, rq->clock, sd)) {
- schedstat_inc(p, se.nr_failed_migrations_hot);
- return 0;
- }
- return 1;
- }
- static unsigned long
- balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move, struct sched_domain *sd,
- enum cpu_idle_type idle, int *all_pinned,
- int *this_best_prio, struct rq_iterator *iterator)
- {
- int loops = 0, pulled = 0, pinned = 0;
- struct task_struct *p;
- long rem_load_move = max_load_move;
- if (max_load_move == 0)
- goto out;
- pinned = 1;
- /*
- * Start the load-balancing iterator:
- */
- p = iterator->start(iterator->arg);
- next:
- if (!p || loops++ > sysctl_sched_nr_migrate)
- goto out;
- if ((p->se.load.weight >> 1) > rem_load_move ||
- !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
- p = iterator->next(iterator->arg);
- goto next;
- }
- pull_task(busiest, p, this_rq, this_cpu);
- pulled++;
- rem_load_move -= p->se.load.weight;
- /*
- * We only want to steal up to the prescribed amount of weighted load.
- */
- if (rem_load_move > 0) {
- if (p->prio < *this_best_prio)
- *this_best_prio = p->prio;
- p = iterator->next(iterator->arg);
- goto next;
- }
- out:
- /*
- * Right now, this is one of only two places pull_task() is called,
- * so we can safely collect pull_task() stats here rather than
- * inside pull_task().
- */
- schedstat_add(sd, lb_gained[idle], pulled);
- if (all_pinned)
- *all_pinned = pinned;
- return max_load_move - rem_load_move;
- }
- /*
- * move_tasks tries to move up to max_load_move weighted load from busiest to
- * this_rq, as part of a balancing operation within domain "sd".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
- static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned)
- {
- const struct sched_class *class = sched_class_highest;
- unsigned long total_load_moved = 0;
- int this_best_prio = this_rq->curr->prio;
- do {
- total_load_moved +=
- class->load_balance(this_rq, this_cpu, busiest,
- max_load_move - total_load_moved,
- sd, idle, all_pinned, &this_best_prio);
- class = class->next;
- if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
- break;
- } while (class && max_load_move > total_load_moved);
- return total_load_moved > 0;
- }
- static int
- iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle,
- struct rq_iterator *iterator)
- {
- struct task_struct *p = iterator->start(iterator->arg);
- int pinned = 0;
- while (p) {
- if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
- pull_task(busiest, p, this_rq, this_cpu);
- /*
- * Right now, this is only the second place pull_task()
- * is called, so we can safely collect pull_task()
- * stats here rather than inside pull_task().
- */
- schedstat_inc(sd, lb_gained[idle]);
- return 1;
- }
- p = iterator->next(iterator->arg);
- }
- return 0;
- }
- /*
- * move_one_task tries to move exactly one task from busiest to this_rq, as
- * part of active balancing operations within "domain".
- * Returns 1 if successful and 0 otherwise.
- *
- * Called with both runqueues locked.
- */
- static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- const struct sched_class *class;
- for (class = sched_class_highest; class; class = class->next)
- if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
- return 1;
- return 0;
- }
- /*
- * find_busiest_group finds and returns the busiest CPU group within the
- * domain. It calculates and returns the amount of weighted load which
- * should be moved to restore balance via the imbalance parameter.
- */
- static struct sched_group *
- find_busiest_group(struct sched_domain *sd, int this_cpu,
- unsigned long *imbalance, enum cpu_idle_type idle,
- int *sd_idle, const cpumask_t *cpus, int *balance)
- {
- struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
- unsigned long max_load, avg_load, total_load, this_load, total_pwr;
- unsigned long max_pull;
- unsigned long busiest_load_per_task, busiest_nr_running;
- unsigned long this_load_per_task, this_nr_running;
- int load_idx, group_imb = 0;
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- int power_savings_balance = 1;
- unsigned long leader_nr_running = 0, min_load_per_task = 0;
- unsigned long min_nr_running = ULONG_MAX;
- struct sched_group *group_min = NULL, *group_leader = NULL;
- #endif
- max_load = this_load = total_load = total_pwr = 0;
- busiest_load_per_task = busiest_nr_running = 0;
- this_load_per_task = this_nr_running = 0;
- if (idle == CPU_NOT_IDLE)
- load_idx = sd->busy_idx;
- else if (idle == CPU_NEWLY_IDLE)
- load_idx = sd->newidle_idx;
- else
- load_idx = sd->idle_idx;
- do {
- unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
- int local_group;
- int i;
- int __group_imb = 0;
- unsigned int balance_cpu = -1, first_idle_cpu = 0;
- unsigned long sum_nr_running, sum_weighted_load;
- unsigned long sum_avg_load_per_task;
- unsigned long avg_load_per_task;
- local_group = cpu_isset(this_cpu, group->cpumask);
- if (local_group)
- balance_cpu = first_cpu(group->cpumask);
- /* Tally up the load of all CPUs in the group */
- sum_weighted_load = sum_nr_running = avg_load = 0;
- sum_avg_load_per_task = avg_load_per_task = 0;
- max_cpu_load = 0;
- min_cpu_load = ~0UL;
- for_each_cpu_mask(i, group->cpumask) {
- struct rq *rq;
- if (!cpu_isset(i, *cpus))
- continue;
- rq = cpu_rq(i);
- if (*sd_idle && rq->nr_running)
- *sd_idle = 0;
- /* Bias balancing toward cpus of our domain */
- if (local_group) {
- if (idle_cpu(i) && !first_idle_cpu) {
- first_idle_cpu = 1;
- balance_cpu = i;
- }
- load = target_load(i, load_idx);
- } else {
- load = source_load(i, load_idx);
- if (load > max_cpu_load)
- max_cpu_load = load;
- if (min_cpu_load > load)
- min_cpu_load = load;
- }
- avg_load += load;
- sum_nr_running += rq->nr_running;
- sum_weighted_load += weighted_cpuload(i);
- sum_avg_load_per_task += cpu_avg_load_per_task(i);
- }
- /*
- * First idle cpu or the first cpu(busiest) in this sched group
- * is eligible for doing load balancing at this and above
- * domains. In the newly idle case, we will allow all the cpu's
- * to do the newly idle load balance.
- */
- if (idle != CPU_NEWLY_IDLE && local_group &&
- balance_cpu != this_cpu && balance) {
- *balance = 0;
- goto ret;
- }
- total_load += avg_load;
- total_pwr += group->__cpu_power;
- /* Adjust by relative CPU power of the group */
- avg_load = sg_div_cpu_power(group,
- avg_load * SCHED_LOAD_SCALE);
- /*
- * Consider the group unbalanced when the imbalance is larger
- * than the average weight of two tasks.
- *
- * APZ: with cgroup the avg task weight can vary wildly and
- * might not be a suitable number - should we keep a
- * normalized nr_running number somewhere that negates
- * the hierarchy?
- */
- avg_load_per_task = sg_div_cpu_power(group,
- sum_avg_load_per_task * SCHED_LOAD_SCALE);
- if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
- __group_imb = 1;
- group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
- if (local_group) {
- this_load = avg_load;
- this = group;
- this_nr_running = sum_nr_running;
- this_load_per_task = sum_weighted_load;
- } else if (avg_load > max_load &&
- (sum_nr_running > group_capacity || __group_imb)) {
- max_load = avg_load;
- busiest = group;
- busiest_nr_running = sum_nr_running;
- busiest_load_per_task = sum_weighted_load;
- group_imb = __group_imb;
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- /*
- * Busy processors will not participate in power savings
- * balance.
- */
- if (idle == CPU_NOT_IDLE ||
- !(sd->flags & SD_POWERSAVINGS_BALANCE))
- goto group_next;
- /*
- * If the local group is idle or completely loaded
- * no need to do power savings balance at this domain
- */
- if (local_group && (this_nr_running >= group_capacity ||
- !this_nr_running))
- power_savings_balance = 0;
- /*
- * If a group is already running at full capacity or idle,
- * don't include that group in power savings calculations
- */
- if (!power_savings_balance || sum_nr_running >= group_capacity
- || !sum_nr_running)
- goto group_next;
- /*
- * Calculate the group which has the least non-idle load.
- * This is the group from where we need to pick up the load
- * for saving power
- */
- if ((sum_nr_running < min_nr_running) ||
- (sum_nr_running == min_nr_running &&
- first_cpu(group->cpumask) <
- first_cpu(group_min->cpumask))) {
- group_min = group;
- min_nr_running = sum_nr_running;
- min_load_per_task = sum_weighted_load /
- sum_nr_running;
- }
- /*
- * Calculate the group which is almost near its
- * capacity but still has some space to pick up some load
- * from other group and save more power
- */
- if (sum_nr_running <= group_capacity - 1) {
- if (sum_nr_running > leader_nr_running ||
- (sum_nr_running == leader_nr_running &&
- first_cpu(group->cpumask) >
- first_cpu(group_leader->cpumask))) {
- group_leader = group;
- leader_nr_running = sum_nr_running;
- }
- }
- group_next:
- #endif
- group = group->next;
- } while (group != sd->groups);
- if (!busiest || this_load >= max_load || busiest_nr_running == 0)
- goto out_balanced;
- avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
- if (this_load >= avg_load ||
- 100*max_load <= sd->imbalance_pct*this_load)
- goto out_balanced;
- busiest_load_per_task /= busiest_nr_running;
- if (group_imb)
- busiest_load_per_task = min(busiest_load_per_task, avg_load);
- /*
- * We're trying to get all the cpus to the average_load, so we don't
- * want to push ourselves above the average load, nor do we wish to
- * reduce the max loaded cpu below the average load, as either of these
- * actions would just result in more rebalancing later, and ping-pong
- * tasks around. Thus we look for the minimum possible imbalance.
- * Negative imbalances (*we* are more loaded than anyone else) will
- * be counted as no imbalance for these purposes -- we can't fix that
- * by pulling tasks to us. Be careful of negative numbers as they'll
- * appear as very large values with unsigned longs.
- */
- if (max_load <= busiest_load_per_task)
- goto out_balanced;
- /*
- * In the presence of smp nice balancing, certain scenarios can have
- * max load less than avg load(as we skip the groups at or below
- * its cpu_power, while calculating max_load..)
- */
- if (max_load < avg_load) {
- *imbalance = 0;
- goto small_imbalance;
- }
- /* Don't want to pull so many tasks that a group would go idle */
- max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
- /* How much load to actually move to equalise the imbalance */
- *imbalance = min(max_pull * busiest->__cpu_power,
- (avg_load - this_load) * this->__cpu_power)
- / SCHED_LOAD_SCALE;
- /*
- * if *imbalance is less than the average load per runnable task
- * there is no gaurantee that any tasks will be moved so we'll have
- * a think about bumping its value to force at least one task to be
- * moved
- */
- if (*imbalance < busiest_load_per_task) {
- unsigned long tmp, pwr_now, pwr_move;
- unsigned int imbn;
- small_imbalance:
- pwr_move = pwr_now = 0;
- imbn = 2;
- if (this_nr_running) {
- this_load_per_task /= this_nr_running;
- if (busiest_load_per_task > this_load_per_task)
- imbn = 1;
- } else
- this_load_per_task = cpu_avg_load_per_task(this_cpu);
- if (max_load - this_load + 2*busiest_load_per_task >=
- busiest_load_per_task * imbn) {
- *imbalance = busiest_load_per_task;
- return busiest;
- }
- /*
- * OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU power used by
- * moving them.
- */
- pwr_now += busiest->__cpu_power *
- min(busiest_load_per_task, max_load);
- pwr_now += this->__cpu_power *
- min(this_load_per_task, this_load);
- pwr_now /= SCHED_LOAD_SCALE;
- /* Amount of load we'd subtract */
- tmp = sg_div_cpu_power(busiest,
- busiest_load_per_task * SCHED_LOAD_SCALE);
- if (max_load > tmp)
- pwr_move += busiest->__cpu_power *
- min(busiest_load_per_task, max_load - tmp);
- /* Amount of load we'd add */
- if (max_load * busiest->__cpu_power <
- busiest_load_per_task * SCHED_LOAD_SCALE)
- tmp = sg_div_cpu_power(this,
- max_load * busiest->__cpu_power);
- else
- tmp = sg_div_cpu_power(this,
- busiest_load_per_task * SCHED_LOAD_SCALE);
- pwr_move += this->__cpu_power *
- min(this_load_per_task, this_load + tmp);
- pwr_move /= SCHED_LOAD_SCALE;
- /* Move if we gain throughput */
- if (pwr_move > pwr_now)
- *imbalance = busiest_load_per_task;
- }
- return busiest;
- out_balanced:
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
- goto ret;
- if (this == group_leader && group_leader != group_min) {
- *imbalance = min_load_per_task;
- return group_min;
- }
- #endif
- ret:
- *imbalance = 0;
- return NULL;
- }
- /*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
- */
- static struct rq *
- find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
- unsigned long imbalance, const cpumask_t *cpus)
- {
- struct rq *busiest = NULL, *rq;
- unsigned long max_load = 0;
- int i;
- for_each_cpu_mask(i, group->cpumask) {
- unsigned long wl;
- if (!cpu_isset(i, *cpus))
- continue;
- rq = cpu_rq(i);
- wl = weighted_cpuload(i);
- if (rq->nr_running == 1 && wl > imbalance)
- continue;
- if (wl > max_load) {
- max_load = wl;
- busiest = rq;
- }
- }
- return busiest;
- }
- /*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
- #define MAX_PINNED_INTERVAL 512
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
- static int load_balance(int this_cpu, struct rq *this_rq,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *balance, cpumask_t *cpus)
- {
- int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
- struct sched_group *group;
- unsigned long imbalance;
- struct rq *busiest;
- unsigned long flags;
- cpus_setall(*cpus);
- /*
- * When power savings policy is enabled for the parent domain, idle
- * sibling can pick up load irrespective of busy siblings. In this case,
- * let the state of idle sibling percolate up as CPU_IDLE, instead of
- * portraying it as CPU_NOT_IDLE.
- */
- if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- sd_idle = 1;
- schedstat_inc(sd, lb_count[idle]);
- redo:
- update_shares(sd);
- group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
- cpus, balance);
- if (*balance == 0)
- goto out_balanced;
- if (!group) {
- schedstat_inc(sd, lb_nobusyg[idle]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(group, idle, imbalance, cpus);
- if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[idle]);
- goto out_balanced;
- }
- BUG_ON(busiest == this_rq);
- schedstat_add(sd, lb_imbalance[idle], imbalance);
- ld_moved = 0;
- if (busiest->nr_running > 1) {
- /*
- * Attempt to move tasks. If find_busiest_group has found
- * an imbalance but busiest->nr_running <= 1, the group is
- * still unbalanced. ld_moved simply stays zero, so it is
- * correctly treated as an imbalance.
- */
- local_irq_save(flags);
- double_rq_lock(this_rq, busiest);
- ld_moved = move_tasks(this_rq, this_cpu, busiest,
- imbalance, sd, idle, &all_pinned);
- double_rq_unlock(this_rq, busiest);
- local_irq_restore(flags);
- /*
- * some other cpu did the load balance for us.
- */
- if (ld_moved && this_cpu != smp_processor_id())
- resched_cpu(this_cpu);
- /* All tasks on this runqueue were pinned by CPU affinity */
- if (unlikely(all_pinned)) {
- cpu_clear(cpu_of(busiest), *cpus);
- if (!cpus_empty(*cpus))
- goto redo;
- goto out_balanced;
- }
- }
- if (!ld_moved) {
- schedstat_inc(sd, lb_failed[idle]);
- sd->nr_balance_failed++;
- if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
- spin_lock_irqsave(&busiest->lock, flags);
- /* don't kick the migration_thread, if the curr
- * task on busiest cpu can't be moved to this_cpu
- */
- if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
- spin_unlock_irqrestore(&busiest->lock, flags);
- all_pinned = 1;
- goto out_one_pinned;
- }
- if (!busiest->active_balance) {
- busiest->active_balance = 1;
- busiest->push_cpu = this_cpu;
- active_balance = 1;
- }
- spin_unlock_irqrestore(&busiest->lock, flags);
- if (active_balance)
- wake_up_process(busiest->migration_thread);
- /*
- * We've kicked active balancing, reset the failure
- * counter.
- */
- sd->nr_balance_failed = sd->cache_nice_tries+1;
- }
- } else
- sd->nr_balance_failed = 0;
- if (likely(!active_balance)) {
- /* We were unbalanced, so reset the balancing interval */
- sd->balance_interval = sd->min_interval;
- } else {
- /*
- * If we've begun active balancing, start to back off. This
- * case may not be covered by the all_pinned logic if there
- * is only 1 task on the busy runqueue (because we don't call
- * move_tasks).
- */
- if (sd->balance_interval < sd->max_interval)
- sd->balance_interval *= 2;
- }
- if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- ld_moved = -1;
- goto out;
- out_balanced:
- schedstat_inc(sd, lb_balanced[idle]);
- sd->nr_balance_failed = 0;
- out_one_pinned:
- /* tune up the balancing interval */
- if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
- (sd->balance_interval < sd->max_interval))
- sd->balance_interval *= 2;
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- ld_moved = -1;
- else
- ld_moved = 0;
- out:
- if (ld_moved)
- update_shares(sd);
- return ld_moved;
- }
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- *
- * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
- * this_rq is locked.
- */
- static int
- load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
- cpumask_t *cpus)
- {
- struct sched_group *group;
- struct rq *busiest = NULL;
- unsigned long imbalance;
- int ld_moved = 0;
- int sd_idle = 0;
- int all_pinned = 0;
- cpus_setall(*cpus);
- /*
- * When power savings policy is enabled for the parent domain, idle
- * sibling can pick up load irrespective of busy siblings. In this case,
- * let the state of idle sibling percolate up as IDLE, instead of
- * portraying it as CPU_NOT_IDLE.
- */
- if (sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- sd_idle = 1;
- schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
- redo:
- update_shares_locked(this_rq, sd);
- group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
- &sd_idle, cpus, NULL);
- if (!group) {
- schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
- if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
- goto out_balanced;
- }
- BUG_ON(busiest == this_rq);
- schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
- ld_moved = 0;
- if (busiest->nr_running > 1) {
- /* Attempt to move tasks */
- double_lock_balance(this_rq, busiest);
- /* this_rq->clock is already updated */
- update_rq_clock(busiest);
- ld_moved = move_tasks(this_rq, this_cpu, busiest,
- imbalance, sd, CPU_NEWLY_IDLE,
- &all_pinned);
- spin_unlock(&busiest->lock);
- if (unlikely(all_pinned)) {
- cpu_clear(cpu_of(busiest), *cpus);
- if (!cpus_empty(*cpus))
- goto redo;
- }
- }
- if (!ld_moved) {
- schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- } else
- sd->nr_balance_failed = 0;
- update_shares_locked(this_rq, sd);
- return ld_moved;
- out_balanced:
- schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- sd->nr_balance_failed = 0;
- return 0;
- }
- /*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
- static void idle_balance(int this_cpu, struct rq *this_rq)
- {
- struct sched_domain *sd;
- int pulled_task = -1;
- unsigned long next_balance = jiffies + HZ;
- cpumask_t tmpmask;
- for_each_domain(this_cpu, sd) {
- unsigned long interval;
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- if (sd->flags & SD_BALANCE_NEWIDLE)
- /* If we've pulled tasks over stop searching: */
- pulled_task = load_balance_newidle(this_cpu, this_rq,
- sd, &tmpmask);
- interval = msecs_to_jiffies(sd->balance_interval);
- if (time_after(next_balance, sd->last_balance + interval))
- next_balance = sd->last_balance + interval;
- if (pulled_task)
- break;
- }
- if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
- /*
- * We are going idle. next_balance may be set based on
- * a busy processor. So reset next_balance.
- */
- this_rq->next_balance = next_balance;
- }
- }
- /*
- * active_load_balance is run by migration threads. It pushes running tasks
- * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
- * running on each physical CPU where possible, and avoids physical /
- * logical imbalances.
- *
- * Called with busiest_rq locked.
- */
- static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
- {
- int target_cpu = busiest_rq->push_cpu;
- struct sched_domain *sd;
- struct rq *target_rq;
- /* Is there any task to move? */
- if (busiest_rq->nr_running <= 1)
- return;
- target_rq = cpu_rq(target_cpu);
- /*
- * This condition is "impossible", if it occurs
- * we need to fix it. Originally reported by
- * Bjorn Helgaas on a 128-cpu setup.
- */
- BUG_ON(busiest_rq == target_rq);
- /* move a task from busiest_rq to target_rq */
- double_lock_balance(busiest_rq, target_rq);
- update_rq_clock(busiest_rq);
- update_rq_clock(target_rq);
- /* Search for an sd spanning us and the target CPU. */
- for_each_domain(target_cpu, sd) {
- if ((sd->flags & SD_LOAD_BALANCE) &&
- cpu_isset(busiest_cpu, sd->span))
- break;
- }
- if (likely(sd)) {
- schedstat_inc(sd, alb_count);
- if (move_one_task(target_rq, target_cpu, busiest_rq,
- sd, CPU_IDLE))
- schedstat_inc(sd, alb_pushed);
- else
- schedstat_inc(sd, alb_failed);
- }
- spin_unlock(&target_rq->lock);
- }
- #ifdef CONFIG_NO_HZ
- static struct {
- atomic_t load_balancer;
- cpumask_t cpu_mask;
- } nohz ____cacheline_aligned = {
- .load_balancer = ATOMIC_INIT(-1),
- .cpu_mask = CPU_MASK_NONE,
- };
- /*
- * This routine will try to nominate the ilb (idle load balancing)
- * owner among the cpus whose ticks are stopped. ilb owner will do the idle
- * load balancing on behalf of all those cpus. If all the cpus in the system
- * go into this tickless mode, then there will be no ilb owner (as there is
- * no need for one) and all the cpus will sleep till the next wakeup event
- * arrives...
- *
- * For the ilb owner, tick is not stopped. And this tick will be used
- * for idle load balancing. ilb owner will still be part of
- * nohz.cpu_mask..
- *
- * While stopping the tick, this cpu will become the ilb owner if there
- * is no other owner. And will be the owner till that cpu becomes busy
- * or if all cpus in the system stop their ticks at which point
- * there is no need for ilb owner.
- *
- * When the ilb owner becomes busy, it nominates another owner, during the
- * next busy scheduler_tick()
- */
- int select_nohz_load_balancer(int stop_tick)
- {
- int cpu = smp_processor_id();
- if (stop_tick) {
- cpu_set(cpu, nohz.cpu_mask);
- cpu_rq(cpu)->in_nohz_recently = 1;
- /*
- * If we are going offline and still the leader, give up!
- */
- if (cpu_is_offline(cpu) &&
- atomic_read(&nohz.load_balancer) == cpu) {
- if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
- BUG();
- return 0;
- }
- /* time for ilb owner also to sleep */
- if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
- if (atomic_read(&nohz.load_balancer) == cpu)
- atomic_set(&nohz.load_balancer, -1);
- return 0;
- }
- if (atomic_read(&nohz.load_balancer) == -1) {
- /* make me the ilb owner */
- if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
- return 1;
- } else if (atomic_read(&nohz.load_balancer) == cpu)
- return 1;
- } else {
- if (!cpu_isset(cpu, nohz.cpu_mask))
- return 0;
- cpu_clear(cpu, nohz.cpu_mask);
- if (atomic_read(&nohz.load_balancer) == cpu)
- if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
- BUG();
- }
- return 0;
- }
- #endif
- static DEFINE_SPINLOCK(balancing);
- /*
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in arch_init_sched_domains.
- */
- static void rebalance_domains(int cpu, enum cpu_idle_type idle)
- {
- int balance = 1;
- struct rq *rq = cpu_rq(cpu);
- unsigned long interval;
- struct sched_domain *sd;
- /* Earliest time when we have to do rebalance again */
- unsigned long next_balance = jiffies + 60*HZ;
- int update_next_balance = 0;
- int need_serialize;
- cpumask_t tmp;
- for_each_domain(cpu, sd) {
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- interval = sd->balance_interval;
- if (idle != CPU_IDLE)
- interval *= sd->busy_factor;
- /* scale ms to jiffies */
- interval = msecs_to_jiffies(interval);
- if (unlikely(!interval))
- interval = 1;
- if (interval > HZ*NR_CPUS/10)
- interval = HZ*NR_CPUS/10;
- need_serialize = sd->flags & SD_SERIALIZE;
- if (need_serialize) {
- if (!spin_trylock(&balancing))
- goto out;
- }
- if (time_after_eq(jiffies, sd->last_balance + interval)) {
- if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
- /*
- * We've pulled tasks over so either we're no
- * longer idle, or one of our SMT siblings is
- * not idle.
- */
- idle = CPU_NOT_IDLE;
- }
- sd->last_balance = jiffies;
- }
- if (need_serialize)
- spin_unlock(&balancing);
- out:
- if (time_after(next_balance, sd->last_balance + interval)) {
- next_balance = sd->last_balance + interval;
- update_next_balance = 1;
- }
- /*
- * Stop the load balance at this level. There is another
- * CPU in our sched group which is doing load balancing more
- * actively.
- */
- if (!balance)
- break;
- }
- /*
- * next_balance will be updated only when there is a need.
- * When the cpu is attached to null domain for ex, it will not be
- * updated.
- */
- if (likely(update_next_balance))
- rq->next_balance = next_balance;
- }
- /*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- * In CONFIG_NO_HZ case, the idle load balance owner will do the
- * rebalancing for all the cpus for whom scheduler ticks are stopped.
- */
- static void run_rebalance_domains(struct softirq_action *h)
- {
- int this_cpu = smp_processor_id();
- struct rq *this_rq = cpu_rq(this_cpu);
- enum cpu_idle_type idle = this_rq->idle_at_tick ?
- CPU_IDLE : CPU_NOT_IDLE;
- rebalance_domains(this_cpu, idle);
- #ifdef CONFIG_NO_HZ
- /*
- * If this cpu is the owner for idle load balancing, then do the
- * balancing on behalf of the other idle cpus whose ticks are
- * stopped.
- */
- if (this_rq->idle_at_tick &&
- atomic_read(&nohz.load_balancer) == this_cpu) {
- cpumask_t cpus = nohz.cpu_mask;
- struct rq *rq;
- int balance_cpu;
- cpu_clear(this_cpu, cpus);
- for_each_cpu_mask(balance_cpu, cpus) {
- /*
- * If this cpu gets work to do, stop the load balancing
- * work being done for other cpus. Next load
- * balancing owner will pick it up.
- */
- if (need_resched())
- break;
- rebalance_domains(balance_cpu, CPU_IDLE);
- rq = cpu_rq(balance_cpu);
- if (time_after(this_rq->next_balance, rq->next_balance))
- this_rq->next_balance = rq->next_balance;
- }
- }
- #endif
- }
- /*
- * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
- *
- * In case of CONFIG_NO_HZ, this is the place where we nominate a new
- * idle load balancing owner or decide to stop the periodic load balancing,
- * if the whole system is idle.
- */
- static inline void trigger_load_balance(struct rq *rq, int cpu)
- {
- #ifdef CONFIG_NO_HZ
- /*
- * If we were in the nohz mode recently and busy at the current
- * scheduler tick, then check if we need to nominate new idle
- * load balancer.
- */
- if (rq->in_nohz_recently && !rq->idle_at_tick) {
- rq->in_nohz_recently = 0;
- if (atomic_read(&nohz.load_balancer) == cpu) {
- cpu_clear(cpu, nohz.cpu_mask);
- atomic_set(&nohz.load_balancer, -1);
- }
- if (atomic_read(&nohz.load_balancer) == -1) {
- /*
- * simple selection for now: Nominate the
- * first cpu in the nohz list to be the next
- * ilb owner.
- *
- * TBD: Traverse the sched domains and nominate
- * the nearest cpu in the nohz.cpu_mask.
- */
- int ilb = first_cpu(nohz.cpu_mask);
- if (ilb < nr_cpu_ids)
- resched_cpu(ilb);
- }
- }
- /*
- * If this cpu is idle and doing idle load balancing for all the
- * cpus with ticks stopped, is it time for that to stop?
- */
- if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
- cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
- resched_cpu(cpu);
- return;
- }
- /*
- * If this cpu is idle and the idle load balancing is done by
- * someone else, then no need raise the SCHED_SOFTIRQ
- */
- if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
- cpu_isset(cpu, nohz.cpu_mask))
- return;
- #endif
- if (time_after_eq(jiffies, rq->next_balance))
- raise_softirq(SCHED_SOFTIRQ);
- }
- #else /* CONFIG_SMP */
- /*
- * on UP we do not need to balance between CPUs:
- */
- static inline void idle_balance(int cpu, struct rq *rq)
- {
- }
- #endif
- DEFINE_PER_CPU(struct kernel_stat, kstat);
- EXPORT_PER_CPU_SYMBOL(kstat);
- /*
- * Return p->sum_exec_runtime plus any more ns on the sched_clock
- * that have not yet been banked in case the task is currently running.
- */
- unsigned long long task_sched_runtime(struct task_struct *p)
- {
- unsigned long flags;
- u64 ns, delta_exec;
- struct rq *rq;
- rq = task_rq_lock(p, &flags);
- ns = p->se.sum_exec_runtime;
- if (task_current(rq, p)) {
- update_rq_clock(rq);
- delta_exec = rq->clock - p->se.exec_start;
- if ((s64)delta_exec > 0)
- ns += delta_exec;
- }
- task_rq_unlock(rq, &flags);
- return ns;
- }
- /*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
- */
- void account_user_time(struct task_struct *p, cputime_t cputime)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- cputime64_t tmp;
- p->utime = cputime_add(p->utime, cputime);
- /* Add user time to cpustat. */
- tmp = cputime_to_cputime64(cputime);
- if (TASK_NICE(p) > 0)
- cpustat->nice = cputime64_add(cpustat->nice, tmp);
- else
- cpustat->user = cputime64_add(cpustat->user, tmp);
- }
- /*
- * Account guest cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in virtual machine since the last update
- */
- static void account_guest_time(struct task_struct *p, cputime_t cputime)
- {
- cputime64_t tmp;
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- tmp = cputime_to_cputime64(cputime);
- p->utime = cputime_add(p->utime, cputime);
- p->gtime = cputime_add(p->gtime, cputime);
- cpustat->user = cputime64_add(cpustat->user, tmp);
- cpustat->guest = cputime64_add(cpustat->guest, tmp);
- }
- /*
- * Account scaled user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @cputime: the cpu time spent in user space since the last update
- */
- void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
- {
- p->utimescaled = cputime_add(p->utimescaled, cputime);
- }
- /*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- */
- void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- struct rq *rq = this_rq();
- cputime64_t tmp;
- if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
- account_guest_time(p, cputime);
- return;
- }
- p->stime = cputime_add(p->stime, cputime);
- /* Add system time to cpustat. */
- tmp = cputime_to_cputime64(cputime);
- if (hardirq_count() - hardirq_offset)
- cpustat->irq = cputime64_add(cpustat->irq, tmp);
- else if (softirq_count())
- cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
- else if (p != rq->idle)
- cpustat->system = cputime64_add(cpustat->system, tmp);
- else if (atomic_read(&rq->nr_iowait) > 0)
- cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
- else
- cpustat->idle = cputime64_add(cpustat->idle, tmp);
- /* Account for system time used */
- acct_update_integrals(p);
- }
- /*
- * Account scaled system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- */
- void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
- {
- p->stimescaled = cputime_add(p->stimescaled, cputime);
- }
- /*
- * Account for involuntary wait time.
- * @p: the process from which the cpu time has been stolen
- * @steal: the cpu time spent in involuntary wait
- */
- void account_steal_time(struct task_struct *p, cputime_t steal)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- cputime64_t tmp = cputime_to_cputime64(steal);
- struct rq *rq = this_rq();
- if (p == rq->idle) {
- p->stime = cputime_add(p->stime, steal);
- if (atomic_read(&rq->nr_iowait) > 0)
- cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
- else
- cpustat->idle = cputime64_add(cpustat->idle, tmp);
- } else
- cpustat->steal = cputime64_add(cpustat->steal, tmp);
- }
- /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- *
- * It also gets called by the fork code, when changing the parent's
- * timeslices.
- */
- void scheduler_tick(void)
- {
- int cpu = smp_processor_id();
- struct rq *rq = cpu_rq(cpu);
- struct task_struct *curr = rq->curr;
- sched_clock_tick();
- spin_lock(&rq->lock);
- update_rq_clock(rq);
- update_cpu_load(rq);
- curr->sched_class->task_tick(rq, curr, 0);
- spin_unlock(&rq->lock);
- #ifdef CONFIG_SMP
- rq->idle_at_tick = idle_cpu(cpu);
- trigger_load_balance(rq, cpu);
- #endif
- }
- #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
- defined(CONFIG_PREEMPT_TRACER))
- static inline unsigned long get_parent_ip(unsigned long addr)
- {
- if (in_lock_functions(addr)) {
- addr = CALLER_ADDR2;
- if (in_lock_functions(addr))
- addr = CALLER_ADDR3;
- }
- return addr;
- }
- void __kprobes add_preempt_count(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
- return;
- #endif
- preempt_count() += val;
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Spinlock count overflowing soon?
- */
- DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
- PREEMPT_MASK - 10);
- #endif
- if (preempt_count() == val)
- trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
- }
- EXPORT_SYMBOL(add_preempt_count);
- void __kprobes sub_preempt_count(int val)
- {
- #ifdef CONFIG_DEBUG_PREEMPT
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
- return;
- /*
- * Is the spinlock portion underflowing?
- */
- if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
- !(preempt_count() & PREEMPT_MASK)))
- return;
- #endif
- if (preempt_count() == val)
- trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
- preempt_count() -= val;
- }
- EXPORT_SYMBOL(sub_preempt_count);
- #endif
- /*
- * Print scheduling while atomic bug:
- */
- static noinline void __schedule_bug(struct task_struct *prev)
- {
- struct pt_regs *regs = get_irq_regs();
- printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
- prev->comm, prev->pid, preempt_count());
- debug_show_held_locks(prev);
- print_modules();
- if (irqs_disabled())
- print_irqtrace_events(prev);
- if (regs)
- show_regs(regs);
- else
- dump_stack();
- }
- /*
- * Various schedule()-time debugging checks and statistics:
- */
- static inline void schedule_debug(struct task_struct *prev)
- {
- /*
- * Test if we are atomic. Since do_exit() needs to call into
- * schedule() atomically, we ignore that path for now.
- * Otherwise, whine if we are scheduling when we should not be.
- */
- if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
- __schedule_bug(prev);
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
- schedstat_inc(this_rq(), sched_count);
- #ifdef CONFIG_SCHEDSTATS
- if (unlikely(prev->lock_depth >= 0)) {
- schedstat_inc(this_rq(), bkl_count);
- schedstat_inc(prev, sched_info.bkl_count);
- }
- #endif
- }
- /*
- * Pick up the highest-prio task:
- */
- static inline struct task_struct *
- pick_next_task(struct rq *rq, struct task_struct *prev)
- {
- const struct sched_class *class;
- struct task_struct *p;
- /*
- * Optimization: we know that if all tasks are in
- * the fair class we can call that function directly:
- */
- if (likely(rq->nr_running == rq->cfs.nr_running)) {
- p = fair_sched_class.pick_next_task(rq);
- if (likely(p))
- return p;
- }
- class = sched_class_highest;
- for ( ; ; ) {
- p = class->pick_next_task(rq);
- if (p)
- return p;
- /*
- * Will never be NULL as the idle class always
- * returns a non-NULL p:
- */
- class = class->next;
- }
- }
- /*
- * schedule() is the main scheduler function.
- */
- asmlinkage void __sched schedule(void)
- {
- struct task_struct *prev, *next;
- unsigned long *switch_count;
- struct rq *rq;
- int cpu, hrtick = sched_feat(HRTICK);
- need_resched:
- preempt_disable();
- cpu = smp_processor_id();
- rq = cpu_rq(cpu);
- rcu_qsctr_inc(cpu);
- prev = rq->curr;
- switch_count = &prev->nivcsw;
- release_kernel_lock(prev);
- need_resched_nonpreemptible:
- schedule_debug(prev);
- if (hrtick)
- hrtick_clear(rq);
- /*
- * Do the rq-clock update outside the rq lock:
- */
- local_irq_disable();
- update_rq_clock(rq);
- spin_lock(&rq->lock);
- clear_tsk_need_resched(prev);
- if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
- if (unlikely(signal_pending_state(prev->state, prev)))
- prev->state = TASK_RUNNING;
- else
- deactivate_task(rq, prev, 1);
- switch_count = &prev->nvcsw;
- }
- #ifdef CONFIG_SMP
- if (prev->sched_class->pre_schedule)
- prev->sched_class->pre_schedule(rq, prev);
- #endif
- if (unlikely(!rq->nr_running))
- idle_balance(cpu, rq);
- prev->sched_class->put_prev_task(rq, prev);
- next = pick_next_task(rq, prev);
- if (likely(prev != next)) {
- sched_info_switch(prev, next);
- rq->nr_switches++;
- rq->curr = next;
- ++*switch_count;
- context_switch(rq, prev, next); /* unlocks the rq */
- /*
- * the context switch might have flipped the stack from under
- * us, hence refresh the local variables.
- */
- cpu = smp_processor_id();
- rq = cpu_rq(cpu);
- } else
- spin_unlock_irq(&rq->lock);
- if (hrtick)
- hrtick_set(rq);
- if (unlikely(reacquire_kernel_lock(current) < 0))
- goto need_resched_nonpreemptible;
- preempt_enable_no_resched();
- if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
- goto need_resched;
- }
- EXPORT_SYMBOL(schedule);
- #ifdef CONFIG_PREEMPT
- /*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
- asmlinkage void __sched preempt_schedule(void)
- {
- struct thread_info *ti = current_thread_info();
- /*
- * If there is a non-zero preempt_count or interrupts are disabled,
- * we do not want to preempt the current task. Just return..
- */
- if (likely(ti->preempt_count || irqs_disabled()))
- return;
- do {
- add_preempt_count(PREEMPT_ACTIVE);
- schedule();
- sub_preempt_count(PREEMPT_ACTIVE);
- /*
- * Check again in case we missed a preemption opportunity
- * between schedule and now.
- */
- barrier();
- } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
- }
- EXPORT_SYMBOL(preempt_schedule);
- /*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
- asmlinkage void __sched preempt_schedule_irq(void)
- {
- struct thread_info *ti = current_thread_info();
- /* Catch callers which need to be fixed */
- BUG_ON(ti->preempt_count || !irqs_disabled());
- do {
- add_preempt_count(PREEMPT_ACTIVE);
- local_irq_enable();
- schedule();
- local_irq_disable();
- sub_preempt_count(PREEMPT_ACTIVE);
- /*
- * Check again in case we missed a preemption opportunity
- * between schedule and now.
- */
- barrier();
- } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
- }
- #endif /* CONFIG_PREEMPT */
- int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
- void *key)
- {
- return try_to_wake_up(curr->private, mode, sync);
- }
- EXPORT_SYMBOL(default_wake_function);
- /*
- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
- */
- static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
- int nr_exclusive, int sync, void *key)
- {
- wait_queue_t *curr, *next;
- list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
- unsigned flags = curr->flags;
- if (curr->func(curr, mode, sync, key) &&
- (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
- break;
- }
- }
- /**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: is directly passed to the wakeup function
- */
- void __wake_up(wait_queue_head_t *q, unsigned int mode,
- int nr_exclusive, void *key)
- {
- unsigned long flags;
- spin_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr_exclusive, 0, key);
- spin_unlock_irqrestore(&q->lock, flags);
- }
- EXPORT_SYMBOL(__wake_up);
- /*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
- */
- void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
- {
- __wake_up_common(q, mode, 1, 0, NULL);
- }
- /**
- * __wake_up_sync - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
- *
- * On UP it can prevent extra preemption.
- */
- void
- __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
- {
- unsigned long flags;
- int sync = 1;
- if (unlikely(!q))
- return;
- if (unlikely(!nr_exclusive))
- sync = 0;
- spin_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr_exclusive, sync, NULL);
- spin_unlock_irqrestore(&q->lock, flags);
- }
- EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
- void complete(struct completion *x)
- {
- unsigned long flags;
- spin_lock_irqsave(&x->wait.lock, flags);
- x->done++;
- __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
- spin_unlock_irqrestore(&x->wait.lock, flags);
- }
- EXPORT_SYMBOL(complete);
- void complete_all(struct completion *x)
- {
- unsigned long flags;
- spin_lock_irqsave(&x->wait.lock, flags);
- x->done += UINT_MAX/2;
- __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
- spin_unlock_irqrestore(&x->wait.lock, flags);
- }
- EXPORT_SYMBOL(complete_all);
- static inline long __sched
- do_wait_for_common(struct completion *x, long timeout, int state)
- {
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- if ((state == TASK_INTERRUPTIBLE &&
- signal_pending(current)) ||
- (state == TASK_KILLABLE &&
- fatal_signal_pending(current))) {
- timeout = -ERESTARTSYS;
- break;
- }
- __set_current_state(state);
- spin_unlock_irq(&x->wait.lock);
- timeout = schedule_timeout(timeout);
- spin_lock_irq(&x->wait.lock);
- } while (!x->done && timeout);
- __remove_wait_queue(&x->wait, &wait);
- if (!x->done)
- return timeout;
- }
- x->done--;
- return timeout ?: 1;
- }
- static long __sched
- wait_for_common(struct completion *x, long timeout, int state)
- {
- might_sleep();
- spin_lock_irq(&x->wait.lock);
- timeout = do_wait_for_common(x, timeout, state);
- spin_unlock_irq(&x->wait.lock);
- return timeout;
- }
- void __sched wait_for_completion(struct completion *x)
- {
- wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
- }
- EXPORT_SYMBOL(wait_for_completion);
- unsigned long __sched
- wait_for_completion_timeout(struct completion *x, unsigned long timeout)
- {
- return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
- }
- EXPORT_SYMBOL(wait_for_completion_timeout);
- int __sched wait_for_completion_interruptible(struct completion *x)
- {
- long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
- if (t == -ERESTARTSYS)
- return t;
- return 0;
- }
- EXPORT_SYMBOL(wait_for_completion_interruptible);
- unsigned long __sched
- wait_for_completion_interruptible_timeout(struct completion *x,
- unsigned long timeout)
- {
- return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
- }
- EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
- int __sched wait_for_completion_killable(struct completion *x)
- {
- long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
- if (t == -ERESTARTSYS)
- return t;
- return 0;
- }
- EXPORT_SYMBOL(wait_for_completion_killable);
- static long __sched
- sleep_on_common(wait_queue_head_t *q, int state, long timeout)
- {
- unsigned long flags;
- wait_queue_t wait;
- init_waitqueue_entry(&wait, current);
- __set_current_state(state);
- spin_lock_irqsave(&q->lock, flags);
- __add_wait_queue(q, &wait);
- spin_unlock(&q->lock);
- timeout = schedule_timeout(timeout);
- spin_lock_irq(&q->lock);
- __remove_wait_queue(q, &wait);
- spin_unlock_irqrestore(&q->lock, flags);
- return timeout;
- }
- void __sched interruptible_sleep_on(wait_queue_head_t *q)
- {
- sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
- }
- EXPORT_SYMBOL(interruptible_sleep_on);
- long __sched
- interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
- }
- EXPORT_SYMBOL(interruptible_sleep_on_timeout);
- void __sched sleep_on(wait_queue_head_t *q)
- {
- sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
- }
- EXPORT_SYMBOL(sleep_on);
- long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
- }
- EXPORT_SYMBOL(sleep_on_timeout);
- #ifdef CONFIG_RT_MUTEXES
- /*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance logic.
- */
- void rt_mutex_setprio(struct task_struct *p, int prio)
- {
- unsigned long flags;
- int oldprio, on_rq, running;
- struct rq *rq;
- const struct sched_class *prev_class = p->sched_class;
- BUG_ON(prio < 0 || prio > MAX_PRIO);
- rq = task_rq_lock(p, &flags);
- update_rq_clock(rq);
- oldprio = p->prio;
- on_rq = p->se.on_rq;
- running = task_current(rq, p);
- if (on_rq)
- dequeue_task(rq, p, 0);
- if (running)
- p->sched_class->put_prev_task(rq, p);
- if (rt_prio(prio))
- p->sched_class = &rt_sched_class;
- else
- p->sched_class = &fair_sched_class;
- p->prio = prio;
- if (running)
- p->sched_class->set_curr_task(rq);
- if (on_rq) {
- enqueue_task(rq, p, 0);
- check_class_changed(rq, p, prev_class, oldprio, running);
- }
- task_rq_unlock(rq, &flags);
- }
- #endif
- void set_user_nice(struct task_struct *p, long nice)
- {
- int old_prio, delta, on_rq;
- unsigned long flags;
- struct rq *rq;
- if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
- return;
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- rq = task_rq_lock(p, &flags);
- update_rq_clock(rq);
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
- * SCHED_FIFO/SCHED_RR:
- */
- if (task_has_rt_policy(p)) {
- p->static_prio = NICE_TO_PRIO(nice);
- goto out_unlock;
- }
- on_rq = p->se.on_rq;
- if (on_rq)
- dequeue_task(rq, p, 0);
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p);
- old_prio = p->prio;
- p->prio = effective_prio(p);
- delta = p->prio - old_prio;
- if (on_rq) {
- enqueue_task(rq, p, 0);
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- if (delta < 0 || (delta > 0 && task_running(rq, p)))
- resched_task(rq->curr);
- }
- out_unlock:
- task_rq_unlock(rq, &flags);
- }
- EXPORT_SYMBOL(set_user_nice);
- /*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
- int can_nice(const struct task_struct *p, const int nice)
- {
- /* convert nice value [19,-20] to rlimit style value [1,40] */
- int nice_rlim = 20 - nice;
- return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
- capable(CAP_SYS_NICE));
- }
- #ifdef __ARCH_WANT_SYS_NICE
- /*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
- asmlinkage long sys_nice(int increment)
- {
- long nice, retval;
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- if (increment < -40)
- increment = -40;
- if (increment > 40)
- increment = 40;
- nice = PRIO_TO_NICE(current->static_prio) + increment;
- if (nice < -20)
- nice = -20;
- if (nice > 19)
- nice = 19;
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
- set_user_nice(current, nice);
- return 0;
- }
- #endif
- /**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
- int task_prio(const struct task_struct *p)
- {
- return p->prio - MAX_RT_PRIO;
- }
- /**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
- int task_nice(const struct task_struct *p)
- {
- return TASK_NICE(p);
- }
- EXPORT_SYMBOL(task_nice);
- /**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- */
- int idle_cpu(int cpu)
- {
- return cpu_curr(cpu) == cpu_rq(cpu)->idle;
- }
- /**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- */
- struct task_struct *idle_task(int cpu)
- {
- return cpu_rq(cpu)->idle;
- }
- /**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
- static struct task_struct *find_process_by_pid(pid_t pid)
- {
- return pid ? find_task_by_vpid(pid) : current;
- }
- /* Actually do priority change: must hold rq lock. */
- static void
- __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
- {
- BUG_ON(p->se.on_rq);
- p->policy = policy;
- switch (p->policy) {
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- p->sched_class = &fair_sched_class;
- break;
- case SCHED_FIFO:
- case SCHED_RR:
- p->sched_class = &rt_sched_class;
- break;
- }
- p->rt_priority = prio;
- p->normal_prio = normal_prio(p);
- /* we are holding p->pi_lock already */
- p->prio = rt_mutex_getprio(p);
- set_load_weight(p);
- }
- static int __sched_setscheduler(struct task_struct *p, int policy,
- struct sched_param *param, bool user)
- {
- int retval, oldprio, oldpolicy = -1, on_rq, running;
- unsigned long flags;
- const struct sched_class *prev_class = p->sched_class;
- struct rq *rq;
- /* may grab non-irq protected spin_locks */
- BUG_ON(in_interrupt());
- recheck:
- /* double check policy once rq lock held */
- if (policy < 0)
- policy = oldpolicy = p->policy;
- else if (policy != SCHED_FIFO && policy != SCHED_RR &&
- policy != SCHED_NORMAL && policy != SCHED_BATCH &&
- policy != SCHED_IDLE)
- return -EINVAL;
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
- * SCHED_BATCH and SCHED_IDLE is 0.
- */
- if (param->sched_priority < 0 ||
- (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
- (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
- return -EINVAL;
- if (rt_policy(policy) != (param->sched_priority != 0))
- return -EINVAL;
- /*
- * Allow unprivileged RT tasks to decrease priority:
- */
- if (user && !capable(CAP_SYS_NICE)) {
- if (rt_policy(policy)) {
- unsigned long rlim_rtprio;
- if (!lock_task_sighand(p, &flags))
- return -ESRCH;
- rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
- unlock_task_sighand(p, &flags);
- /* can't set/change the rt policy */
- if (policy != p->policy && !rlim_rtprio)
- return -EPERM;
- /* can't increase priority */
- if (param->sched_priority > p->rt_priority &&
- param->sched_priority > rlim_rtprio)
- return -EPERM;
- }
- /*
- * Like positive nice levels, dont allow tasks to
- * move out of SCHED_IDLE either:
- */
- if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
- return -EPERM;
- /* can't change other user's priorities */
- if ((current->euid != p->euid) &&
- (current->euid != p->uid))
- return -EPERM;
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Do not allow realtime tasks into groups that have no runtime
- * assigned.
- */
- if (user
- && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
- return -EPERM;
- #endif
- retval = security_task_setscheduler(p, policy, param);
- if (retval)
- return retval;
- /*
- * make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- */
- spin_lock_irqsave(&p->pi_lock, flags);
- /*
- * To be able to change p->policy safely, the apropriate
- * runqueue lock must be held.
- */
- rq = __task_rq_lock(p);
- /* recheck policy now with rq lock held */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- __task_rq_unlock(rq);
- spin_unlock_irqrestore(&p->pi_lock, flags);
- goto recheck;
- }
- update_rq_clock(rq);
- on_rq = p->se.on_rq;
- running = task_current(rq, p);
- if (on_rq)
- deactivate_task(rq, p, 0);
- if (running)
- p->sched_class->put_prev_task(rq, p);
- oldprio = p->prio;
- __setscheduler(rq, p, policy, param->sched_priority);
- if (running)
- p->sched_class->set_curr_task(rq);
- if (on_rq) {
- activate_task(rq, p, 0);
- check_class_changed(rq, p, prev_class, oldprio, running);
- }
- __task_rq_unlock(rq);
- spin_unlock_irqrestore(&p->pi_lock, flags);
- rt_mutex_adjust_pi(p);
- return 0;
- }
- /**
- * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * NOTE that the task may be already dead.
- */
- int sched_setscheduler(struct task_struct *p, int policy,
- struct sched_param *param)
- {
- return __sched_setscheduler(p, policy, param, true);
- }
- EXPORT_SYMBOL_GPL(sched_setscheduler);
- /**
- * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * Just like sched_setscheduler, only don't bother checking if the
- * current context has permission. For example, this is needed in
- * stop_machine(): we create temporary high priority worker threads,
- * but our caller might not have that capability.
- */
- int sched_setscheduler_nocheck(struct task_struct *p, int policy,
- struct sched_param *param)
- {
- return __sched_setscheduler(p, policy, param, false);
- }
- static int
- do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
- {
- struct sched_param lparam;
- struct task_struct *p;
- int retval;
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setscheduler(p, policy, &lparam);
- rcu_read_unlock();
- return retval;
- }
- /**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- */
- asmlinkage long
- sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
- {
- /* negative values for policy are not valid */
- if (policy < 0)
- return -EINVAL;
- return do_sched_setscheduler(pid, policy, param);
- }
- /**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- */
- asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
- {
- return do_sched_setscheduler(pid, -1, param);
- }
- /**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- */
- asmlinkage long sys_sched_getscheduler(pid_t pid)
- {
- struct task_struct *p;
- int retval;
- if (pid < 0)
- return -EINVAL;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (p) {
- retval = security_task_getscheduler(p);
- if (!retval)
- retval = p->policy;
- }
- read_unlock(&tasklist_lock);
- return retval;
- }
- /**
- * sys_sched_getscheduler - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- */
- asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
- {
- struct sched_param lp;
- struct task_struct *p;
- int retval;
- if (!param || pid < 0)
- return -EINVAL;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- lp.sched_priority = p->rt_priority;
- read_unlock(&tasklist_lock);
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
- return retval;
- out_unlock:
- read_unlock(&tasklist_lock);
- return retval;
- }
- long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
- {
- cpumask_t cpus_allowed;
- cpumask_t new_mask = *in_mask;
- struct task_struct *p;
- int retval;
- get_online_cpus();
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (!p) {
- read_unlock(&tasklist_lock);
- put_online_cpus();
- return -ESRCH;
- }
- /*
- * It is not safe to call set_cpus_allowed with the
- * tasklist_lock held. We will bump the task_struct's
- * usage count and then drop tasklist_lock.
- */
- get_task_struct(p);
- read_unlock(&tasklist_lock);
- retval = -EPERM;
- if ((current->euid != p->euid) && (current->euid != p->uid) &&
- !capable(CAP_SYS_NICE))
- goto out_unlock;
- retval = security_task_setscheduler(p, 0, NULL);
- if (retval)
- goto out_unlock;
- cpuset_cpus_allowed(p, &cpus_allowed);
- cpus_and(new_mask, new_mask, cpus_allowed);
- again:
- retval = set_cpus_allowed_ptr(p, &new_mask);
- if (!retval) {
- cpuset_cpus_allowed(p, &cpus_allowed);
- if (!cpus_subset(new_mask, cpus_allowed)) {
- /*
- * We must have raced with a concurrent cpuset
- * update. Just reset the cpus_allowed to the
- * cpuset's cpus_allowed
- */
- new_mask = cpus_allowed;
- goto again;
- }
- }
- out_unlock:
- put_task_struct(p);
- put_online_cpus();
- return retval;
- }
- static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- cpumask_t *new_mask)
- {
- if (len < sizeof(cpumask_t)) {
- memset(new_mask, 0, sizeof(cpumask_t));
- } else if (len > sizeof(cpumask_t)) {
- len = sizeof(cpumask_t);
- }
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
- }
- /**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
- asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
- unsigned long __user *user_mask_ptr)
- {
- cpumask_t new_mask;
- int retval;
- retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
- if (retval)
- return retval;
- return sched_setaffinity(pid, &new_mask);
- }
- long sched_getaffinity(pid_t pid, cpumask_t *mask)
- {
- struct task_struct *p;
- int retval;
- get_online_cpus();
- read_lock(&tasklist_lock);
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- cpus_and(*mask, p->cpus_allowed, cpu_online_map);
- out_unlock:
- read_unlock(&tasklist_lock);
- put_online_cpus();
- return retval;
- }
- /**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
- asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
- unsigned long __user *user_mask_ptr)
- {
- int ret;
- cpumask_t mask;
- if (len < sizeof(cpumask_t))
- return -EINVAL;
- ret = sched_getaffinity(pid, &mask);
- if (ret < 0)
- return ret;
- if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
- return -EFAULT;
- return sizeof(cpumask_t);
- }
- /**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * This function yields the current CPU to other tasks. If there are no
- * other threads running on this CPU then this function will return.
- */
- asmlinkage long sys_sched_yield(void)
- {
- struct rq *rq = this_rq_lock();
- schedstat_inc(rq, yld_count);
- current->sched_class->yield_task(rq);
- /*
- * Since we are going to call schedule() anyway, there's
- * no need to preempt or enable interrupts:
- */
- __release(rq->lock);
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- _raw_spin_unlock(&rq->lock);
- preempt_enable_no_resched();
- schedule();
- return 0;
- }
- static void __cond_resched(void)
- {
- #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
- __might_sleep(__FILE__, __LINE__);
- #endif
- /*
- * The BKS might be reacquired before we have dropped
- * PREEMPT_ACTIVE, which could trigger a second
- * cond_resched() call.
- */
- do {
- add_preempt_count(PREEMPT_ACTIVE);
- schedule();
- sub_preempt_count(PREEMPT_ACTIVE);
- } while (need_resched());
- }
- int __sched _cond_resched(void)
- {
- if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
- system_state == SYSTEM_RUNNING) {
- __cond_resched();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(_cond_resched);
- /*
- * cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
- int cond_resched_lock(spinlock_t *lock)
- {
- int resched = need_resched() && system_state == SYSTEM_RUNNING;
- int ret = 0;
- if (spin_needbreak(lock) || resched) {
- spin_unlock(lock);
- if (resched && need_resched())
- __cond_resched();
- else
- cpu_relax();
- ret = 1;
- spin_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(cond_resched_lock);
- int __sched cond_resched_softirq(void)
- {
- BUG_ON(!in_softirq());
- if (need_resched() && system_state == SYSTEM_RUNNING) {
- local_bh_enable();
- __cond_resched();
- local_bh_disable();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(cond_resched_softirq);
- /**
- * yield - yield the current processor to other threads.
- *
- * This is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
- */
- void __sched yield(void)
- {
- set_current_state(TASK_RUNNING);
- sys_sched_yield();
- }
- EXPORT_SYMBOL(yield);
- /*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- *
- * But don't do that if it is a deliberate, throttling IO wait (this task
- * has set its backing_dev_info: the queue against which it should throttle)
- */
- void __sched io_schedule(void)
- {
- struct rq *rq = &__raw_get_cpu_var(runqueues);
- delayacct_blkio_start();
- atomic_inc(&rq->nr_iowait);
- schedule();
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
- }
- EXPORT_SYMBOL(io_schedule);
- long __sched io_schedule_timeout(long timeout)
- {
- struct rq *rq = &__raw_get_cpu_var(runqueues);
- long ret;
- delayacct_blkio_start();
- atomic_inc(&rq->nr_iowait);
- ret = schedule_timeout(timeout);
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
- return ret;
- }
- /**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
- */
- asmlinkage long sys_sched_get_priority_max(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_USER_RT_PRIO-1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- break;
- }
- return ret;
- }
- /**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
- asmlinkage long sys_sched_get_priority_min(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- case SCHED_IDLE:
- ret = 0;
- }
- return ret;
- }
- /**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- */
- asmlinkage
- long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
- {
- struct task_struct *p;
- unsigned int time_slice;
- int retval;
- struct timespec t;
- if (pid < 0)
- return -EINVAL;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- /*
- * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
- * tasks that are on an otherwise idle runqueue:
- */
- time_slice = 0;
- if (p->policy == SCHED_RR) {
- time_slice = DEF_TIMESLICE;
- } else if (p->policy != SCHED_FIFO) {
- struct sched_entity *se = &p->se;
- unsigned long flags;
- struct rq *rq;
- rq = task_rq_lock(p, &flags);
- if (rq->cfs.load.weight)
- time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
- task_rq_unlock(rq, &flags);
- }
- read_unlock(&tasklist_lock);
- jiffies_to_timespec(time_slice, &t);
- retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
- return retval;
- out_unlock:
- read_unlock(&tasklist_lock);
- return retval;
- }
- static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
- void sched_show_task(struct task_struct *p)
- {
- unsigned long free = 0;
- unsigned state;
- state = p->state ? __ffs(p->state) + 1 : 0;
- printk(KERN_INFO "%-13.13s %c", p->comm,
- state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
- #if BITS_PER_LONG == 32
- if (state == TASK_RUNNING)
- printk(KERN_CONT " running ");
- else
- printk(KERN_CONT " %08lx ", thread_saved_pc(p));
- #else
- if (state == TASK_RUNNING)
- printk(KERN_CONT " running task ");
- else
- printk(KERN_CONT " %016lx ", thread_saved_pc(p));
- #endif
- #ifdef CONFIG_DEBUG_STACK_USAGE
- {
- unsigned long *n = end_of_stack(p);
- while (!*n)
- n++;
- free = (unsigned long)n - (unsigned long)end_of_stack(p);
- }
- #endif
- printk(KERN_CONT "%5lu %5d %6d\n", free,
- task_pid_nr(p), task_pid_nr(p->real_parent));
- show_stack(p, NULL);
- }
- void show_state_filter(unsigned long state_filter)
- {
- struct task_struct *g, *p;
- #if BITS_PER_LONG == 32
- printk(KERN_INFO
- " task PC stack pid father\n");
- #else
- printk(KERN_INFO
- " task PC stack pid father\n");
- #endif
- read_lock(&tasklist_lock);
- do_each_thread(g, p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take alot of time:
- */
- touch_nmi_watchdog();
- if (!state_filter || (p->state & state_filter))
- sched_show_task(p);
- } while_each_thread(g, p);
- touch_all_softlockup_watchdogs();
- #ifdef CONFIG_SCHED_DEBUG
- sysrq_sched_debug_show();
- #endif
- read_unlock(&tasklist_lock);
- /*
- * Only show locks if all tasks are dumped:
- */
- if (state_filter == -1)
- debug_show_all_locks();
- }
- void __cpuinit init_idle_bootup_task(struct task_struct *idle)
- {
- idle->sched_class = &idle_sched_class;
- }
- /**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
- void __cpuinit init_idle(struct task_struct *idle, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- __sched_fork(idle);
- idle->se.exec_start = sched_clock();
- idle->prio = idle->normal_prio = MAX_PRIO;
- idle->cpus_allowed = cpumask_of_cpu(cpu);
- __set_task_cpu(idle, cpu);
- spin_lock_irqsave(&rq->lock, flags);
- rq->curr = rq->idle = idle;
- #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
- idle->oncpu = 1;
- #endif
- spin_unlock_irqrestore(&rq->lock, flags);
- /* Set the preempt count _outside_ the spinlocks! */
- #if defined(CONFIG_PREEMPT)
- task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
- #else
- task_thread_info(idle)->preempt_count = 0;
- #endif
- /*
- * The idle tasks have their own, simple scheduling class:
- */
- idle->sched_class = &idle_sched_class;
- }
- /*
- * In a system that switches off the HZ timer nohz_cpu_mask
- * indicates which cpus entered this state. This is used
- * in the rcu update to wait only for active cpus. For system
- * which do not switch off the HZ timer nohz_cpu_mask should
- * always be CPU_MASK_NONE.
- */
- cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
- /*
- * Increase the granularity value when there are more CPUs,
- * because with more CPUs the 'effective latency' as visible
- * to users decreases. But the relationship is not linear,
- * so pick a second-best guess by going with the log2 of the
- * number of CPUs.
- *
- * This idea comes from the SD scheduler of Con Kolivas:
- */
- static inline void sched_init_granularity(void)
- {
- unsigned int factor = 1 + ilog2(num_online_cpus());
- const unsigned long limit = 200000000;
- sysctl_sched_min_granularity *= factor;
- if (sysctl_sched_min_granularity > limit)
- sysctl_sched_min_granularity = limit;
- sysctl_sched_latency *= factor;
- if (sysctl_sched_latency > limit)
- sysctl_sched_latency = limit;
- sysctl_sched_wakeup_granularity *= factor;
- }
- #ifdef CONFIG_SMP
- /*
- * This is how migration works:
- *
- * 1) we queue a struct migration_req structure in the source CPU's
- * runqueue and wake up that CPU's migration thread.
- * 2) we down() the locked semaphore => thread blocks.
- * 3) migration thread wakes up (implicitly it forces the migrated
- * thread off the CPU)
- * 4) it gets the migration request and checks whether the migrated
- * task is still in the wrong runqueue.
- * 5) if it's in the wrong runqueue then the migration thread removes
- * it and puts it into the right queue.
- * 6) migration thread up()s the semaphore.
- * 7) we wake up and the migration is done.
- */
- /*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
- int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
- {
- struct migration_req req;
- unsigned long flags;
- struct rq *rq;
- int ret = 0;
- rq = task_rq_lock(p, &flags);
- if (!cpus_intersects(*new_mask, cpu_online_map)) {
- ret = -EINVAL;
- goto out;
- }
- if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
- !cpus_equal(p->cpus_allowed, *new_mask))) {
- ret = -EINVAL;
- goto out;
- }
- if (p->sched_class->set_cpus_allowed)
- p->sched_class->set_cpus_allowed(p, new_mask);
- else {
- p->cpus_allowed = *new_mask;
- p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
- }
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpu_isset(task_cpu(p), *new_mask))
- goto out;
- if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
- /* Need help from migration thread: drop lock and wait. */
- task_rq_unlock(rq, &flags);
- wake_up_process(rq->migration_thread);
- wait_for_completion(&req.done);
- tlb_migrate_finish(p->mm);
- return 0;
- }
- out:
- task_rq_unlock(rq, &flags);
- return ret;
- }
- EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
- /*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- *
- * Returns non-zero if task was successfully migrated.
- */
- static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
- {
- struct rq *rq_dest, *rq_src;
- int ret = 0, on_rq;
- if (unlikely(cpu_is_offline(dest_cpu)))
- return ret;
- rq_src = cpu_rq(src_cpu);
- rq_dest = cpu_rq(dest_cpu);
- double_rq_lock(rq_src, rq_dest);
- /* Already moved. */
- if (task_cpu(p) != src_cpu)
- goto done;
- /* Affinity changed (again). */
- if (!cpu_isset(dest_cpu, p->cpus_allowed))
- goto fail;
- on_rq = p->se.on_rq;
- if (on_rq)
- deactivate_task(rq_src, p, 0);
- set_task_cpu(p, dest_cpu);
- if (on_rq) {
- activate_task(rq_dest, p, 0);
- check_preempt_curr(rq_dest, p);
- }
- done:
- ret = 1;
- fail:
- double_rq_unlock(rq_src, rq_dest);
- return ret;
- }
- /*
- * migration_thread - this is a highprio system thread that performs
- * thread migration by bumping thread off CPU then 'pushing' onto
- * another runqueue.
- */
- static int migration_thread(void *data)
- {
- int cpu = (long)data;
- struct rq *rq;
- rq = cpu_rq(cpu);
- BUG_ON(rq->migration_thread != current);
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop()) {
- struct migration_req *req;
- struct list_head *head;
- spin_lock_irq(&rq->lock);
- if (cpu_is_offline(cpu)) {
- spin_unlock_irq(&rq->lock);
- goto wait_to_die;
- }
- if (rq->active_balance) {
- active_load_balance(rq, cpu);
- rq->active_balance = 0;
- }
- head = &rq->migration_queue;
- if (list_empty(head)) {
- spin_unlock_irq(&rq->lock);
- schedule();
- set_current_state(TASK_INTERRUPTIBLE);
- continue;
- }
- req = list_entry(head->next, struct migration_req, list);
- list_del_init(head->next);
- spin_unlock(&rq->lock);
- __migrate_task(req->task, cpu, req->dest_cpu);
- local_irq_enable();
- complete(&req->done);
- }
- __set_current_state(TASK_RUNNING);
- return 0;
- wait_to_die:
- /* Wait for kthread_stop */
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop()) {
- schedule();
- set_current_state(TASK_INTERRUPTIBLE);
- }
- __set_current_state(TASK_RUNNING);
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
- {
- int ret;
- local_irq_disable();
- ret = __migrate_task(p, src_cpu, dest_cpu);
- local_irq_enable();
- return ret;
- }
- /*
- * Figure out where task on dead CPU should go, use force if necessary.
- * NOTE: interrupts should be disabled by the caller
- */
- static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
- {
- unsigned long flags;
- cpumask_t mask;
- struct rq *rq;
- int dest_cpu;
- do {
- /* On same node? */
- mask = node_to_cpumask(cpu_to_node(dead_cpu));
- cpus_and(mask, mask, p->cpus_allowed);
- dest_cpu = any_online_cpu(mask);
- /* On any allowed CPU? */
- if (dest_cpu >= nr_cpu_ids)
- dest_cpu = any_online_cpu(p->cpus_allowed);
- /* No more Mr. Nice Guy. */
- if (dest_cpu >= nr_cpu_ids) {
- cpumask_t cpus_allowed;
- cpuset_cpus_allowed_locked(p, &cpus_allowed);
- /*
- * Try to stay on the same cpuset, where the
- * current cpuset may be a subset of all cpus.
- * The cpuset_cpus_allowed_locked() variant of
- * cpuset_cpus_allowed() will not block. It must be
- * called within calls to cpuset_lock/cpuset_unlock.
- */
- rq = task_rq_lock(p, &flags);
- p->cpus_allowed = cpus_allowed;
- dest_cpu = any_online_cpu(p->cpus_allowed);
- task_rq_unlock(rq, &flags);
- /*
- * Don't tell them about moving exiting tasks or
- * kernel threads (both mm NULL), since they never
- * leave kernel.
- */
- if (p->mm && printk_ratelimit()) {
- printk(KERN_INFO "process %d (%s) no "
- "longer affine to cpu%d\n",
- task_pid_nr(p), p->comm, dead_cpu);
- }
- }
- } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
- }
- /*
- * While a dead CPU has no uninterruptible tasks queued at this point,
- * it might still have a nonzero ->nr_uninterruptible counter, because
- * for performance reasons the counter is not stricly tracking tasks to
- * their home CPUs. So we just add the counter to another CPU's counter,
- * to keep the global sum constant after CPU-down:
- */
- static void migrate_nr_uninterruptible(struct rq *rq_src)
- {
- struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
- unsigned long flags;
- local_irq_save(flags);
- double_rq_lock(rq_src, rq_dest);
- rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
- rq_src->nr_uninterruptible = 0;
- double_rq_unlock(rq_src, rq_dest);
- local_irq_restore(flags);
- }
- /* Run through task list and migrate tasks from the dead cpu. */
- static void migrate_live_tasks(int src_cpu)
- {
- struct task_struct *p, *t;
- read_lock(&tasklist_lock);
- do_each_thread(t, p) {
- if (p == current)
- continue;
- if (task_cpu(p) == src_cpu)
- move_task_off_dead_cpu(src_cpu, p);
- } while_each_thread(t, p);
- read_unlock(&tasklist_lock);
- }
- /*
- * Schedules idle task to be the next runnable task on current CPU.
- * It does so by boosting its priority to highest possible.
- * Used by CPU offline code.
- */
- void sched_idle_next(void)
- {
- int this_cpu = smp_processor_id();
- struct rq *rq = cpu_rq(this_cpu);
- struct task_struct *p = rq->idle;
- unsigned long flags;
- /* cpu has to be offline */
- BUG_ON(cpu_online(this_cpu));
- /*
- * Strictly not necessary since rest of the CPUs are stopped by now
- * and interrupts disabled on the current cpu.
- */
- spin_lock_irqsave(&rq->lock, flags);
- __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
- update_rq_clock(rq);
- activate_task(rq, p, 0);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- /*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
- void idle_task_exit(void)
- {
- struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- if (mm != &init_mm)
- switch_mm(mm, &init_mm, current);
- mmdrop(mm);
- }
- /* called under rq->lock with disabled interrupts */
- static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
- {
- struct rq *rq = cpu_rq(dead_cpu);
- /* Must be exiting, otherwise would be on tasklist. */
- BUG_ON(!p->exit_state);
- /* Cannot have done final schedule yet: would have vanished. */
- BUG_ON(p->state == TASK_DEAD);
- get_task_struct(p);
- /*
- * Drop lock around migration; if someone else moves it,
- * that's OK. No task can be added to this CPU, so iteration is
- * fine.
- */
- spin_unlock_irq(&rq->lock);
- move_task_off_dead_cpu(dead_cpu, p);
- spin_lock_irq(&rq->lock);
- put_task_struct(p);
- }
- /* release_task() removes task from tasklist, so we won't find dead tasks. */
- static void migrate_dead_tasks(unsigned int dead_cpu)
- {
- struct rq *rq = cpu_rq(dead_cpu);
- struct task_struct *next;
- for ( ; ; ) {
- if (!rq->nr_running)
- break;
- update_rq_clock(rq);
- next = pick_next_task(rq, rq->curr);
- if (!next)
- break;
- next->sched_class->put_prev_task(rq, next);
- migrate_dead(dead_cpu, next);
- }
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
- static struct ctl_table sd_ctl_dir[] = {
- {
- .procname = "sched_domain",
- .mode = 0555,
- },
- {0, },
- };
- static struct ctl_table sd_ctl_root[] = {
- {
- .ctl_name = CTL_KERN,
- .procname = "kernel",
- .mode = 0555,
- .child = sd_ctl_dir,
- },
- {0, },
- };
- static struct ctl_table *sd_alloc_ctl_entry(int n)
- {
- struct ctl_table *entry =
- kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
- return entry;
- }
- static void sd_free_ctl_entry(struct ctl_table **tablep)
- {
- struct ctl_table *entry;
- /*
- * In the intermediate directories, both the child directory and
- * procname are dynamically allocated and could fail but the mode
- * will always be set. In the lowest directory the names are
- * static strings and all have proc handlers.
- */
- for (entry = *tablep; entry->mode; entry++) {
- if (entry->child)
- sd_free_ctl_entry(&entry->child);
- if (entry->proc_handler == NULL)
- kfree(entry->procname);
- }
- kfree(*tablep);
- *tablep = NULL;
- }
- static void
- set_table_entry(struct ctl_table *entry,
- const char *procname, void *data, int maxlen,
- mode_t mode, proc_handler *proc_handler)
- {
- entry->procname = procname;
- entry->data = data;
- entry->maxlen = maxlen;
- entry->mode = mode;
- entry->proc_handler = proc_handler;
- }
- static struct ctl_table *
- sd_alloc_ctl_domain_table(struct sched_domain *sd)
- {
- struct ctl_table *table = sd_alloc_ctl_entry(12);
- if (table == NULL)
- return NULL;
- set_table_entry(&table[0], "min_interval", &sd->min_interval,
- sizeof(long), 0644, proc_doulongvec_minmax);
- set_table_entry(&table[1], "max_interval", &sd->max_interval,
- sizeof(long), 0644, proc_doulongvec_minmax);
- set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[9], "cache_nice_tries",
- &sd->cache_nice_tries,
- sizeof(int), 0644, proc_dointvec_minmax);
- set_table_entry(&table[10], "flags", &sd->flags,
- sizeof(int), 0644, proc_dointvec_minmax);
- /* &table[11] is terminator */
- return table;
- }
- static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
- {
- struct ctl_table *entry, *table;
- struct sched_domain *sd;
- int domain_num = 0, i;
- char buf[32];
- for_each_domain(cpu, sd)
- domain_num++;
- entry = table = sd_alloc_ctl_entry(domain_num + 1);
- if (table == NULL)
- return NULL;
- i = 0;
- for_each_domain(cpu, sd) {
- snprintf(buf, 32, "domain%d", i);
- entry->procname = kstrdup(buf, GFP_KERNEL);
- entry->mode = 0555;
- entry->child = sd_alloc_ctl_domain_table(sd);
- entry++;
- i++;
- }
- return table;
- }
- static struct ctl_table_header *sd_sysctl_header;
- static void register_sched_domain_sysctl(void)
- {
- int i, cpu_num = num_online_cpus();
- struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
- char buf[32];
- WARN_ON(sd_ctl_dir[0].child);
- sd_ctl_dir[0].child = entry;
- if (entry == NULL)
- return;
- for_each_online_cpu(i) {
- snprintf(buf, 32, "cpu%d", i);
- entry->procname = kstrdup(buf, GFP_KERNEL);
- entry->mode = 0555;
- entry->child = sd_alloc_ctl_cpu_table(i);
- entry++;
- }
- WARN_ON(sd_sysctl_header);
- sd_sysctl_header = register_sysctl_table(sd_ctl_root);
- }
- /* may be called multiple times per register */
- static void unregister_sched_domain_sysctl(void)
- {
- if (sd_sysctl_header)
- unregister_sysctl_table(sd_sysctl_header);
- sd_sysctl_header = NULL;
- if (sd_ctl_dir[0].child)
- sd_free_ctl_entry(&sd_ctl_dir[0].child);
- }
- #else
- static void register_sched_domain_sysctl(void)
- {
- }
- static void unregister_sched_domain_sysctl(void)
- {
- }
- #endif
- static void set_rq_online(struct rq *rq)
- {
- if (!rq->online) {
- const struct sched_class *class;
- cpu_set(rq->cpu, rq->rd->online);
- rq->online = 1;
- for_each_class(class) {
- if (class->rq_online)
- class->rq_online(rq);
- }
- }
- }
- static void set_rq_offline(struct rq *rq)
- {
- if (rq->online) {
- const struct sched_class *class;
- for_each_class(class) {
- if (class->rq_offline)
- class->rq_offline(rq);
- }
- cpu_clear(rq->cpu, rq->rd->online);
- rq->online = 0;
- }
- }
- /*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
- */
- static int __cpuinit
- migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
- {
- struct task_struct *p;
- int cpu = (long)hcpu;
- unsigned long flags;
- struct rq *rq;
- switch (action) {
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
- if (IS_ERR(p))
- return NOTIFY_BAD;
- kthread_bind(p, cpu);
- /* Must be high prio: stop_machine expects to yield to it. */
- rq = task_rq_lock(p, &flags);
- __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
- task_rq_unlock(rq, &flags);
- cpu_rq(cpu)->migration_thread = p;
- break;
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- /* Strictly unnecessary, as first user will wake it. */
- wake_up_process(cpu_rq(cpu)->migration_thread);
- /* Update our root-domain */
- rq = cpu_rq(cpu);
- spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- BUG_ON(!cpu_isset(cpu, rq->rd->span));
- set_rq_online(rq);
- }
- spin_unlock_irqrestore(&rq->lock, flags);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- if (!cpu_rq(cpu)->migration_thread)
- break;
- /* Unbind it from offline cpu so it can run. Fall thru. */
- kthread_bind(cpu_rq(cpu)->migration_thread,
- any_online_cpu(cpu_online_map));
- kthread_stop(cpu_rq(cpu)->migration_thread);
- cpu_rq(cpu)->migration_thread = NULL;
- break;
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
- migrate_live_tasks(cpu);
- rq = cpu_rq(cpu);
- kthread_stop(rq->migration_thread);
- rq->migration_thread = NULL;
- /* Idle task back to normal (off runqueue, low prio) */
- spin_lock_irq(&rq->lock);
- update_rq_clock(rq);
- deactivate_task(rq, rq->idle, 0);
- rq->idle->static_prio = MAX_PRIO;
- __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
- rq->idle->sched_class = &idle_sched_class;
- migrate_dead_tasks(cpu);
- spin_unlock_irq(&rq->lock);
- cpuset_unlock();
- migrate_nr_uninterruptible(rq);
- BUG_ON(rq->nr_running != 0);
- /*
- * No need to migrate the tasks: it was best-effort if
- * they didn't take sched_hotcpu_mutex. Just wake up
- * the requestors.
- */
- spin_lock_irq(&rq->lock);
- while (!list_empty(&rq->migration_queue)) {
- struct migration_req *req;
- req = list_entry(rq->migration_queue.next,
- struct migration_req, list);
- list_del_init(&req->list);
- complete(&req->done);
- }
- spin_unlock_irq(&rq->lock);
- break;
- case CPU_DYING:
- case CPU_DYING_FROZEN:
- /* Update our root-domain */
- rq = cpu_rq(cpu);
- spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- BUG_ON(!cpu_isset(cpu, rq->rd->span));
- set_rq_offline(rq);
- }
- spin_unlock_irqrestore(&rq->lock, flags);
- break;
- #endif
- }
- return NOTIFY_OK;
- }
- /* Register at highest priority so that task migration (migrate_all_tasks)
- * happens before everything else.
- */
- static struct notifier_block __cpuinitdata migration_notifier = {
- .notifier_call = migration_call,
- .priority = 10
- };
- void __init migration_init(void)
- {
- void *cpu = (void *)(long)smp_processor_id();
- int err;
- /* Start one for the boot CPU: */
- err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
- BUG_ON(err == NOTIFY_BAD);
- migration_call(&migration_notifier, CPU_ONLINE, cpu);
- register_cpu_notifier(&migration_notifier);
- }
- #endif
- #ifdef CONFIG_SMP
- #ifdef CONFIG_SCHED_DEBUG
- static inline const char *sd_level_to_string(enum sched_domain_level lvl)
- {
- switch (lvl) {
- case SD_LV_NONE:
- return "NONE";
- case SD_LV_SIBLING:
- return "SIBLING";
- case SD_LV_MC:
- return "MC";
- case SD_LV_CPU:
- return "CPU";
- case SD_LV_NODE:
- return "NODE";
- case SD_LV_ALLNODES:
- return "ALLNODES";
- case SD_LV_MAX:
- return "MAX";
- }
- return "MAX";
- }
- static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
- cpumask_t *groupmask)
- {
- struct sched_group *group = sd->groups;
- char str[256];
- cpulist_scnprintf(str, sizeof(str), sd->span);
- cpus_clear(*groupmask);
- printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
- " has parent");
- return -1;
- }
- printk(KERN_CONT "span %s level %s\n",
- str, sd_level_to_string(sd->level));
- if (!cpu_isset(cpu, sd->span)) {
- printk(KERN_ERR "ERROR: domain->span does not contain "
- "CPU%d\n", cpu);
- }
- if (!cpu_isset(cpu, group->cpumask)) {
- printk(KERN_ERR "ERROR: domain->groups does not contain"
- " CPU%d\n", cpu);
- }
- printk(KERN_DEBUG "%*s groups:", level + 1, "");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
- if (!group->__cpu_power) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: domain->cpu_power not "
- "set\n");
- break;
- }
- if (!cpus_weight(group->cpumask)) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: empty group\n");
- break;
- }
- if (cpus_intersects(*groupmask, group->cpumask)) {
- printk(KERN_CONT "\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- break;
- }
- cpus_or(*groupmask, *groupmask, group->cpumask);
- cpulist_scnprintf(str, sizeof(str), group->cpumask);
- printk(KERN_CONT " %s", str);
- group = group->next;
- } while (group != sd->groups);
- printk(KERN_CONT "\n");
- if (!cpus_equal(sd->span, *groupmask))
- printk(KERN_ERR "ERROR: groups don't span domain->span\n");
- if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
- printk(KERN_ERR "ERROR: parent span is not a superset "
- "of domain->span\n");
- return 0;
- }
- static void sched_domain_debug(struct sched_domain *sd, int cpu)
- {
- cpumask_t *groupmask;
- int level = 0;
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
- groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
- if (!groupmask) {
- printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
- return;
- }
- for (;;) {
- if (sched_domain_debug_one(sd, cpu, level, groupmask))
- break;
- level++;
- sd = sd->parent;
- if (!sd)
- break;
- }
- kfree(groupmask);
- }
- #else /* !CONFIG_SCHED_DEBUG */
- # define sched_domain_debug(sd, cpu) do { } while (0)
- #endif /* CONFIG_SCHED_DEBUG */
- static int sd_degenerate(struct sched_domain *sd)
- {
- if (cpus_weight(sd->span) == 1)
- return 1;
- /* Following flags need at least 2 groups */
- if (sd->flags & (SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUPOWER |
- SD_SHARE_PKG_RESOURCES)) {
- if (sd->groups != sd->groups->next)
- return 0;
- }
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_IDLE |
- SD_WAKE_AFFINE |
- SD_WAKE_BALANCE))
- return 0;
- return 1;
- }
- static int
- sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
- {
- unsigned long cflags = sd->flags, pflags = parent->flags;
- if (sd_degenerate(parent))
- return 1;
- if (!cpus_equal(sd->span, parent->span))
- return 0;
- /* Does parent contain flags not in child? */
- /* WAKE_BALANCE is a subset of WAKE_AFFINE */
- if (cflags & SD_WAKE_AFFINE)
- pflags &= ~SD_WAKE_BALANCE;
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next) {
- pflags &= ~(SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUPOWER |
- SD_SHARE_PKG_RESOURCES);
- }
- if (~cflags & pflags)
- return 0;
- return 1;
- }
- static void rq_attach_root(struct rq *rq, struct root_domain *rd)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- if (rq->rd) {
- struct root_domain *old_rd = rq->rd;
- if (cpu_isset(rq->cpu, old_rd->online))
- set_rq_offline(rq);
- cpu_clear(rq->cpu, old_rd->span);
- if (atomic_dec_and_test(&old_rd->refcount))
- kfree(old_rd);
- }
- atomic_inc(&rd->refcount);
- rq->rd = rd;
- cpu_set(rq->cpu, rd->span);
- if (cpu_isset(rq->cpu, cpu_online_map))
- set_rq_online(rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static void init_rootdomain(struct root_domain *rd)
- {
- memset(rd, 0, sizeof(*rd));
- cpus_clear(rd->span);
- cpus_clear(rd->online);
- cpupri_init(&rd->cpupri);
- }
- static void init_defrootdomain(void)
- {
- init_rootdomain(&def_root_domain);
- atomic_set(&def_root_domain.refcount, 1);
- }
- static struct root_domain *alloc_rootdomain(void)
- {
- struct root_domain *rd;
- rd = kmalloc(sizeof(*rd), GFP_KERNEL);
- if (!rd)
- return NULL;
- init_rootdomain(rd);
- return rd;
- }
- /*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
- static void
- cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; tmp = tmp->parent) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- }
- }
- if (sd && sd_degenerate(sd)) {
- sd = sd->parent;
- if (sd)
- sd->child = NULL;
- }
- sched_domain_debug(sd, cpu);
- rq_attach_root(rq, rd);
- rcu_assign_pointer(rq->sd, sd);
- }
- /* cpus with isolated domains */
- static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
- /* Setup the mask of cpus configured for isolated domains */
- static int __init isolated_cpu_setup(char *str)
- {
- int ints[NR_CPUS], i;
- str = get_options(str, ARRAY_SIZE(ints), ints);
- cpus_clear(cpu_isolated_map);
- for (i = 1; i <= ints[0]; i++)
- if (ints[i] < NR_CPUS)
- cpu_set(ints[i], cpu_isolated_map);
- return 1;
- }
- __setup("isolcpus=", isolated_cpu_setup);
- /*
- * init_sched_build_groups takes the cpumask we wish to span, and a pointer
- * to a function which identifies what group(along with sched group) a CPU
- * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
- * (due to the fact that we keep track of groups covered with a cpumask_t).
- *
- * init_sched_build_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_power to 0.
- */
- static void
- init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
- int (*group_fn)(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg,
- cpumask_t *tmpmask),
- cpumask_t *covered, cpumask_t *tmpmask)
- {
- struct sched_group *first = NULL, *last = NULL;
- int i;
- cpus_clear(*covered);
- for_each_cpu_mask(i, *span) {
- struct sched_group *sg;
- int group = group_fn(i, cpu_map, &sg, tmpmask);
- int j;
- if (cpu_isset(i, *covered))
- continue;
- cpus_clear(sg->cpumask);
- sg->__cpu_power = 0;
- for_each_cpu_mask(j, *span) {
- if (group_fn(j, cpu_map, NULL, tmpmask) != group)
- continue;
- cpu_set(j, *covered);
- cpu_set(j, sg->cpumask);
- }
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
- }
- #define SD_NODES_PER_DOMAIN 16
- #ifdef CONFIG_NUMA
- /**
- * find_next_best_node - find the next node to include in a sched_domain
- * @node: node whose sched_domain we're building
- * @used_nodes: nodes already in the sched_domain
- *
- * Find the next node to include in a given scheduling domain. Simply
- * finds the closest node not already in the @used_nodes map.
- *
- * Should use nodemask_t.
- */
- static int find_next_best_node(int node, nodemask_t *used_nodes)
- {
- int i, n, val, min_val, best_node = 0;
- min_val = INT_MAX;
- for (i = 0; i < nr_node_ids; i++) {
- /* Start at @node */
- n = (node + i) % nr_node_ids;
- if (!nr_cpus_node(n))
- continue;
- /* Skip already used nodes */
- if (node_isset(n, *used_nodes))
- continue;
- /* Simple min distance search */
- val = node_distance(node, n);
- if (val < min_val) {
- min_val = val;
- best_node = n;
- }
- }
- node_set(best_node, *used_nodes);
- return best_node;
- }
- /**
- * sched_domain_node_span - get a cpumask for a node's sched_domain
- * @node: node whose cpumask we're constructing
- * @span: resulting cpumask
- *
- * Given a node, construct a good cpumask for its sched_domain to span. It
- * should be one that prevents unnecessary balancing, but also spreads tasks
- * out optimally.
- */
- static void sched_domain_node_span(int node, cpumask_t *span)
- {
- nodemask_t used_nodes;
- node_to_cpumask_ptr(nodemask, node);
- int i;
- cpus_clear(*span);
- nodes_clear(used_nodes);
- cpus_or(*span, *span, *nodemask);
- node_set(node, used_nodes);
- for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
- int next_node = find_next_best_node(node, &used_nodes);
- node_to_cpumask_ptr_next(nodemask, next_node);
- cpus_or(*span, *span, *nodemask);
- }
- }
- #endif /* CONFIG_NUMA */
- int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
- /*
- * SMT sched-domains:
- */
- #ifdef CONFIG_SCHED_SMT
- static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
- static int
- cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
- cpumask_t *unused)
- {
- if (sg)
- *sg = &per_cpu(sched_group_cpus, cpu);
- return cpu;
- }
- #endif /* CONFIG_SCHED_SMT */
- /*
- * multi-core sched-domains:
- */
- #ifdef CONFIG_SCHED_MC
- static DEFINE_PER_CPU(struct sched_domain, core_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_core);
- #endif /* CONFIG_SCHED_MC */
- #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
- static int
- cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
- cpumask_t *mask)
- {
- int group;
- *mask = per_cpu(cpu_sibling_map, cpu);
- cpus_and(*mask, *mask, *cpu_map);
- group = first_cpu(*mask);
- if (sg)
- *sg = &per_cpu(sched_group_core, group);
- return group;
- }
- #elif defined(CONFIG_SCHED_MC)
- static int
- cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
- cpumask_t *unused)
- {
- if (sg)
- *sg = &per_cpu(sched_group_core, cpu);
- return cpu;
- }
- #endif
- static DEFINE_PER_CPU(struct sched_domain, phys_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
- static int
- cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
- cpumask_t *mask)
- {
- int group;
- #ifdef CONFIG_SCHED_MC
- *mask = cpu_coregroup_map(cpu);
- cpus_and(*mask, *mask, *cpu_map);
- group = first_cpu(*mask);
- #elif defined(CONFIG_SCHED_SMT)
- *mask = per_cpu(cpu_sibling_map, cpu);
- cpus_and(*mask, *mask, *cpu_map);
- group = first_cpu(*mask);
- #else
- group = cpu;
- #endif
- if (sg)
- *sg = &per_cpu(sched_group_phys, group);
- return group;
- }
- #ifdef CONFIG_NUMA
- /*
- * The init_sched_build_groups can't handle what we want to do with node
- * groups, so roll our own. Now each node has its own list of groups which
- * gets dynamically allocated.
- */
- static DEFINE_PER_CPU(struct sched_domain, node_domains);
- static struct sched_group ***sched_group_nodes_bycpu;
- static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
- static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg, cpumask_t *nodemask)
- {
- int group;
- *nodemask = node_to_cpumask(cpu_to_node(cpu));
- cpus_and(*nodemask, *nodemask, *cpu_map);
- group = first_cpu(*nodemask);
- if (sg)
- *sg = &per_cpu(sched_group_allnodes, group);
- return group;
- }
- static void init_numa_sched_groups_power(struct sched_group *group_head)
- {
- struct sched_group *sg = group_head;
- int j;
- if (!sg)
- return;
- do {
- for_each_cpu_mask(j, sg->cpumask) {
- struct sched_domain *sd;
- sd = &per_cpu(phys_domains, j);
- if (j != first_cpu(sd->groups->cpumask)) {
- /*
- * Only add "power" once for each
- * physical package.
- */
- continue;
- }
- sg_inc_cpu_power(sg, sd->groups->__cpu_power);
- }
- sg = sg->next;
- } while (sg != group_head);
- }
- #endif /* CONFIG_NUMA */
- #ifdef CONFIG_NUMA
- /* Free memory allocated for various sched_group structures */
- static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
- {
- int cpu, i;
- for_each_cpu_mask(cpu, *cpu_map) {
- struct sched_group **sched_group_nodes
- = sched_group_nodes_bycpu[cpu];
- if (!sched_group_nodes)
- continue;
- for (i = 0; i < nr_node_ids; i++) {
- struct sched_group *oldsg, *sg = sched_group_nodes[i];
- *nodemask = node_to_cpumask(i);
- cpus_and(*nodemask, *nodemask, *cpu_map);
- if (cpus_empty(*nodemask))
- continue;
- if (sg == NULL)
- continue;
- sg = sg->next;
- next_sg:
- oldsg = sg;
- sg = sg->next;
- kfree(oldsg);
- if (oldsg != sched_group_nodes[i])
- goto next_sg;
- }
- kfree(sched_group_nodes);
- sched_group_nodes_bycpu[cpu] = NULL;
- }
- }
- #else /* !CONFIG_NUMA */
- static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
- {
- }
- #endif /* CONFIG_NUMA */
- /*
- * Initialize sched groups cpu_power.
- *
- * cpu_power indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_power for all the groups in a sched domain will be same unless
- * there are asymmetries in the topology. If there are asymmetries, group
- * having more cpu_power will pickup more load compared to the group having
- * less cpu_power.
- *
- * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
- * the maximum number of tasks a group can handle in the presence of other idle
- * or lightly loaded groups in the same sched domain.
- */
- static void init_sched_groups_power(int cpu, struct sched_domain *sd)
- {
- struct sched_domain *child;
- struct sched_group *group;
- WARN_ON(!sd || !sd->groups);
- if (cpu != first_cpu(sd->groups->cpumask))
- return;
- child = sd->child;
- sd->groups->__cpu_power = 0;
- /*
- * For perf policy, if the groups in child domain share resources
- * (for example cores sharing some portions of the cache hierarchy
- * or SMT), then set this domain groups cpu_power such that each group
- * can handle only one task, when there are other idle groups in the
- * same sched domain.
- */
- if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
- (child->flags &
- (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
- sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
- return;
- }
- /*
- * add cpu_power of each child group to this groups cpu_power
- */
- group = child->groups;
- do {
- sg_inc_cpu_power(sd->groups, group->__cpu_power);
- group = group->next;
- } while (group != child->groups);
- }
- /*
- * Initializers for schedule domains
- * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
- */
- #define SD_INIT(sd, type) sd_init_##type(sd)
- #define SD_INIT_FUNC(type) \
- static noinline void sd_init_##type(struct sched_domain *sd) \
- { \
- memset(sd, 0, sizeof(*sd)); \
- *sd = SD_##type##_INIT; \
- sd->level = SD_LV_##type; \
- }
- SD_INIT_FUNC(CPU)
- #ifdef CONFIG_NUMA
- SD_INIT_FUNC(ALLNODES)
- SD_INIT_FUNC(NODE)
- #endif
- #ifdef CONFIG_SCHED_SMT
- SD_INIT_FUNC(SIBLING)
- #endif
- #ifdef CONFIG_SCHED_MC
- SD_INIT_FUNC(MC)
- #endif
- /*
- * To minimize stack usage kmalloc room for cpumasks and share the
- * space as the usage in build_sched_domains() dictates. Used only
- * if the amount of space is significant.
- */
- struct allmasks {
- cpumask_t tmpmask; /* make this one first */
- union {
- cpumask_t nodemask;
- cpumask_t this_sibling_map;
- cpumask_t this_core_map;
- };
- cpumask_t send_covered;
- #ifdef CONFIG_NUMA
- cpumask_t domainspan;
- cpumask_t covered;
- cpumask_t notcovered;
- #endif
- };
- #if NR_CPUS > 128
- #define SCHED_CPUMASK_ALLOC 1
- #define SCHED_CPUMASK_FREE(v) kfree(v)
- #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
- #else
- #define SCHED_CPUMASK_ALLOC 0
- #define SCHED_CPUMASK_FREE(v)
- #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
- #endif
- #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
- ((unsigned long)(a) + offsetof(struct allmasks, v))
- static int default_relax_domain_level = -1;
- static int __init setup_relax_domain_level(char *str)
- {
- unsigned long val;
- val = simple_strtoul(str, NULL, 0);
- if (val < SD_LV_MAX)
- default_relax_domain_level = val;
- return 1;
- }
- __setup("relax_domain_level=", setup_relax_domain_level);
- static void set_domain_attribute(struct sched_domain *sd,
- struct sched_domain_attr *attr)
- {
- int request;
- if (!attr || attr->relax_domain_level < 0) {
- if (default_relax_domain_level < 0)
- return;
- else
- request = default_relax_domain_level;
- } else
- request = attr->relax_domain_level;
- if (request < sd->level) {
- /* turn off idle balance on this domain */
- sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
- } else {
- /* turn on idle balance on this domain */
- sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
- }
- }
- /*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
- static int __build_sched_domains(const cpumask_t *cpu_map,
- struct sched_domain_attr *attr)
- {
- int i;
- struct root_domain *rd;
- SCHED_CPUMASK_DECLARE(allmasks);
- cpumask_t *tmpmask;
- #ifdef CONFIG_NUMA
- struct sched_group **sched_group_nodes = NULL;
- int sd_allnodes = 0;
- /*
- * Allocate the per-node list of sched groups
- */
- sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
- GFP_KERNEL);
- if (!sched_group_nodes) {
- printk(KERN_WARNING "Can not alloc sched group node list\n");
- return -ENOMEM;
- }
- #endif
- rd = alloc_rootdomain();
- if (!rd) {
- printk(KERN_WARNING "Cannot alloc root domain\n");
- #ifdef CONFIG_NUMA
- kfree(sched_group_nodes);
- #endif
- return -ENOMEM;
- }
- #if SCHED_CPUMASK_ALLOC
- /* get space for all scratch cpumask variables */
- allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
- if (!allmasks) {
- printk(KERN_WARNING "Cannot alloc cpumask array\n");
- kfree(rd);
- #ifdef CONFIG_NUMA
- kfree(sched_group_nodes);
- #endif
- return -ENOMEM;
- }
- #endif
- tmpmask = (cpumask_t *)allmasks;
- #ifdef CONFIG_NUMA
- sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
- #endif
- /*
- * Set up domains for cpus specified by the cpu_map.
- */
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd = NULL, *p;
- SCHED_CPUMASK_VAR(nodemask, allmasks);
- *nodemask = node_to_cpumask(cpu_to_node(i));
- cpus_and(*nodemask, *nodemask, *cpu_map);
- #ifdef CONFIG_NUMA
- if (cpus_weight(*cpu_map) >
- SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
- sd = &per_cpu(allnodes_domains, i);
- SD_INIT(sd, ALLNODES);
- set_domain_attribute(sd, attr);
- sd->span = *cpu_map;
- cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
- p = sd;
- sd_allnodes = 1;
- } else
- p = NULL;
- sd = &per_cpu(node_domains, i);
- SD_INIT(sd, NODE);
- set_domain_attribute(sd, attr);
- sched_domain_node_span(cpu_to_node(i), &sd->span);
- sd->parent = p;
- if (p)
- p->child = sd;
- cpus_and(sd->span, sd->span, *cpu_map);
- #endif
- p = sd;
- sd = &per_cpu(phys_domains, i);
- SD_INIT(sd, CPU);
- set_domain_attribute(sd, attr);
- sd->span = *nodemask;
- sd->parent = p;
- if (p)
- p->child = sd;
- cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
- #ifdef CONFIG_SCHED_MC
- p = sd;
- sd = &per_cpu(core_domains, i);
- SD_INIT(sd, MC);
- set_domain_attribute(sd, attr);
- sd->span = cpu_coregroup_map(i);
- cpus_and(sd->span, sd->span, *cpu_map);
- sd->parent = p;
- p->child = sd;
- cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
- #endif
- #ifdef CONFIG_SCHED_SMT
- p = sd;
- sd = &per_cpu(cpu_domains, i);
- SD_INIT(sd, SIBLING);
- set_domain_attribute(sd, attr);
- sd->span = per_cpu(cpu_sibling_map, i);
- cpus_and(sd->span, sd->span, *cpu_map);
- sd->parent = p;
- p->child = sd;
- cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
- #endif
- }
- #ifdef CONFIG_SCHED_SMT
- /* Set up CPU (sibling) groups */
- for_each_cpu_mask(i, *cpu_map) {
- SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
- SCHED_CPUMASK_VAR(send_covered, allmasks);
- *this_sibling_map = per_cpu(cpu_sibling_map, i);
- cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
- if (i != first_cpu(*this_sibling_map))
- continue;
- init_sched_build_groups(this_sibling_map, cpu_map,
- &cpu_to_cpu_group,
- send_covered, tmpmask);
- }
- #endif
- #ifdef CONFIG_SCHED_MC
- /* Set up multi-core groups */
- for_each_cpu_mask(i, *cpu_map) {
- SCHED_CPUMASK_VAR(this_core_map, allmasks);
- SCHED_CPUMASK_VAR(send_covered, allmasks);
- *this_core_map = cpu_coregroup_map(i);
- cpus_and(*this_core_map, *this_core_map, *cpu_map);
- if (i != first_cpu(*this_core_map))
- continue;
- init_sched_build_groups(this_core_map, cpu_map,
- &cpu_to_core_group,
- send_covered, tmpmask);
- }
- #endif
- /* Set up physical groups */
- for (i = 0; i < nr_node_ids; i++) {
- SCHED_CPUMASK_VAR(nodemask, allmasks);
- SCHED_CPUMASK_VAR(send_covered, allmasks);
- *nodemask = node_to_cpumask(i);
- cpus_and(*nodemask, *nodemask, *cpu_map);
- if (cpus_empty(*nodemask))
- continue;
- init_sched_build_groups(nodemask, cpu_map,
- &cpu_to_phys_group,
- send_covered, tmpmask);
- }
- #ifdef CONFIG_NUMA
- /* Set up node groups */
- if (sd_allnodes) {
- SCHED_CPUMASK_VAR(send_covered, allmasks);
- init_sched_build_groups(cpu_map, cpu_map,
- &cpu_to_allnodes_group,
- send_covered, tmpmask);
- }
- for (i = 0; i < nr_node_ids; i++) {
- /* Set up node groups */
- struct sched_group *sg, *prev;
- SCHED_CPUMASK_VAR(nodemask, allmasks);
- SCHED_CPUMASK_VAR(domainspan, allmasks);
- SCHED_CPUMASK_VAR(covered, allmasks);
- int j;
- *nodemask = node_to_cpumask(i);
- cpus_clear(*covered);
- cpus_and(*nodemask, *nodemask, *cpu_map);
- if (cpus_empty(*nodemask)) {
- sched_group_nodes[i] = NULL;
- continue;
- }
- sched_domain_node_span(i, domainspan);
- cpus_and(*domainspan, *domainspan, *cpu_map);
- sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
- if (!sg) {
- printk(KERN_WARNING "Can not alloc domain group for "
- "node %d\n", i);
- goto error;
- }
- sched_group_nodes[i] = sg;
- for_each_cpu_mask(j, *nodemask) {
- struct sched_domain *sd;
- sd = &per_cpu(node_domains, j);
- sd->groups = sg;
- }
- sg->__cpu_power = 0;
- sg->cpumask = *nodemask;
- sg->next = sg;
- cpus_or(*covered, *covered, *nodemask);
- prev = sg;
- for (j = 0; j < nr_node_ids; j++) {
- SCHED_CPUMASK_VAR(notcovered, allmasks);
- int n = (i + j) % nr_node_ids;
- node_to_cpumask_ptr(pnodemask, n);
- cpus_complement(*notcovered, *covered);
- cpus_and(*tmpmask, *notcovered, *cpu_map);
- cpus_and(*tmpmask, *tmpmask, *domainspan);
- if (cpus_empty(*tmpmask))
- break;
- cpus_and(*tmpmask, *tmpmask, *pnodemask);
- if (cpus_empty(*tmpmask))
- continue;
- sg = kmalloc_node(sizeof(struct sched_group),
- GFP_KERNEL, i);
- if (!sg) {
- printk(KERN_WARNING
- "Can not alloc domain group for node %d\n", j);
- goto error;
- }
- sg->__cpu_power = 0;
- sg->cpumask = *tmpmask;
- sg->next = prev->next;
- cpus_or(*covered, *covered, *tmpmask);
- prev->next = sg;
- prev = sg;
- }
- }
- #endif
- /* Calculate CPU power for physical packages and nodes */
- #ifdef CONFIG_SCHED_SMT
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd = &per_cpu(cpu_domains, i);
- init_sched_groups_power(i, sd);
- }
- #endif
- #ifdef CONFIG_SCHED_MC
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd = &per_cpu(core_domains, i);
- init_sched_groups_power(i, sd);
- }
- #endif
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd = &per_cpu(phys_domains, i);
- init_sched_groups_power(i, sd);
- }
- #ifdef CONFIG_NUMA
- for (i = 0; i < nr_node_ids; i++)
- init_numa_sched_groups_power(sched_group_nodes[i]);
- if (sd_allnodes) {
- struct sched_group *sg;
- cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
- tmpmask);
- init_numa_sched_groups_power(sg);
- }
- #endif
- /* Attach the domains */
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd;
- #ifdef CONFIG_SCHED_SMT
- sd = &per_cpu(cpu_domains, i);
- #elif defined(CONFIG_SCHED_MC)
- sd = &per_cpu(core_domains, i);
- #else
- sd = &per_cpu(phys_domains, i);
- #endif
- cpu_attach_domain(sd, rd, i);
- }
- SCHED_CPUMASK_FREE((void *)allmasks);
- return 0;
- #ifdef CONFIG_NUMA
- error:
- free_sched_groups(cpu_map, tmpmask);
- SCHED_CPUMASK_FREE((void *)allmasks);
- return -ENOMEM;
- #endif
- }
- static int build_sched_domains(const cpumask_t *cpu_map)
- {
- return __build_sched_domains(cpu_map, NULL);
- }
- static cpumask_t *doms_cur; /* current sched domains */
- static int ndoms_cur; /* number of sched domains in 'doms_cur' */
- static struct sched_domain_attr *dattr_cur;
- /* attribues of custom domains in 'doms_cur' */
- /*
- * Special case: If a kmalloc of a doms_cur partition (array of
- * cpumask_t) fails, then fallback to a single sched domain,
- * as determined by the single cpumask_t fallback_doms.
- */
- static cpumask_t fallback_doms;
- void __attribute__((weak)) arch_update_cpu_topology(void)
- {
- }
- /*
- * Free current domain masks.
- * Called after all cpus are attached to NULL domain.
- */
- static void free_sched_domains(void)
- {
- ndoms_cur = 0;
- if (doms_cur != &fallback_doms)
- kfree(doms_cur);
- doms_cur = &fallback_doms;
- }
- /*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
- static int arch_init_sched_domains(const cpumask_t *cpu_map)
- {
- int err;
- arch_update_cpu_topology();
- ndoms_cur = 1;
- doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
- if (!doms_cur)
- doms_cur = &fallback_doms;
- cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
- dattr_cur = NULL;
- err = build_sched_domains(doms_cur);
- register_sched_domain_sysctl();
- return err;
- }
- static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
- cpumask_t *tmpmask)
- {
- free_sched_groups(cpu_map, tmpmask);
- }
- /*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
- static void detach_destroy_domains(const cpumask_t *cpu_map)
- {
- cpumask_t tmpmask;
- int i;
- unregister_sched_domain_sysctl();
- for_each_cpu_mask(i, *cpu_map)
- cpu_attach_domain(NULL, &def_root_domain, i);
- synchronize_sched();
- arch_destroy_sched_domains(cpu_map, &tmpmask);
- }
- /* handle null as "default" */
- static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
- struct sched_domain_attr *new, int idx_new)
- {
- struct sched_domain_attr tmp;
- /* fast path */
- if (!new && !cur)
- return 1;
- tmp = SD_ATTR_INIT;
- return !memcmp(cur ? (cur + idx_cur) : &tmp,
- new ? (new + idx_new) : &tmp,
- sizeof(struct sched_domain_attr));
- }
- /*
- * Partition sched domains as specified by the 'ndoms_new'
- * cpumasks in the array doms_new[] of cpumasks. This compares
- * doms_new[] to the current sched domain partitioning, doms_cur[].
- * It destroys each deleted domain and builds each new domain.
- *
- * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
- * The masks don't intersect (don't overlap.) We should setup one
- * sched domain for each mask. CPUs not in any of the cpumasks will
- * not be load balanced. If the same cpumask appears both in the
- * current 'doms_cur' domains and in the new 'doms_new', we can leave
- * it as it is.
- *
- * The passed in 'doms_new' should be kmalloc'd. This routine takes
- * ownership of it and will kfree it when done with it. If the caller
- * failed the kmalloc call, then it can pass in doms_new == NULL,
- * and partition_sched_domains() will fallback to the single partition
- * 'fallback_doms'.
- *
- * Call with hotplug lock held
- */
- void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
- struct sched_domain_attr *dattr_new)
- {
- int i, j;
- mutex_lock(&sched_domains_mutex);
- /* always unregister in case we don't destroy any domains */
- unregister_sched_domain_sysctl();
- if (doms_new == NULL) {
- ndoms_new = 1;
- doms_new = &fallback_doms;
- cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
- dattr_new = NULL;
- }
- /* Destroy deleted domains */
- for (i = 0; i < ndoms_cur; i++) {
- for (j = 0; j < ndoms_new; j++) {
- if (cpus_equal(doms_cur[i], doms_new[j])
- && dattrs_equal(dattr_cur, i, dattr_new, j))
- goto match1;
- }
- /* no match - a current sched domain not in new doms_new[] */
- detach_destroy_domains(doms_cur + i);
- match1:
- ;
- }
- /* Build new domains */
- for (i = 0; i < ndoms_new; i++) {
- for (j = 0; j < ndoms_cur; j++) {
- if (cpus_equal(doms_new[i], doms_cur[j])
- && dattrs_equal(dattr_new, i, dattr_cur, j))
- goto match2;
- }
- /* no match - add a new doms_new */
- __build_sched_domains(doms_new + i,
- dattr_new ? dattr_new + i : NULL);
- match2:
- ;
- }
- /* Remember the new sched domains */
- if (doms_cur != &fallback_doms)
- kfree(doms_cur);
- kfree(dattr_cur); /* kfree(NULL) is safe */
- doms_cur = doms_new;
- dattr_cur = dattr_new;
- ndoms_cur = ndoms_new;
- register_sched_domain_sysctl();
- mutex_unlock(&sched_domains_mutex);
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- int arch_reinit_sched_domains(void)
- {
- int err;
- get_online_cpus();
- mutex_lock(&sched_domains_mutex);
- detach_destroy_domains(&cpu_online_map);
- free_sched_domains();
- err = arch_init_sched_domains(&cpu_online_map);
- mutex_unlock(&sched_domains_mutex);
- put_online_cpus();
- return err;
- }
- static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
- {
- int ret;
- if (buf[0] != '0' && buf[0] != '1')
- return -EINVAL;
- if (smt)
- sched_smt_power_savings = (buf[0] == '1');
- else
- sched_mc_power_savings = (buf[0] == '1');
- ret = arch_reinit_sched_domains();
- return ret ? ret : count;
- }
- #ifdef CONFIG_SCHED_MC
- static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
- struct sysdev_attribute *attr, char *page)
- {
- return sprintf(page, "%u\n", sched_mc_power_savings);
- }
- static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
- struct sysdev_attribute *attr,
- const char *buf, size_t count)
- {
- return sched_power_savings_store(buf, count, 0);
- }
- static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
- sched_mc_power_savings_store);
- #endif
- #ifdef CONFIG_SCHED_SMT
- static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
- struct sysdev_attribute *attr, char *page)
- {
- return sprintf(page, "%u\n", sched_smt_power_savings);
- }
- static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
- struct sysdev_attribute *attr,
- const char *buf, size_t count)
- {
- return sched_power_savings_store(buf, count, 1);
- }
- static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
- sched_smt_power_savings_store);
- #endif
- int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
- {
- int err = 0;
- #ifdef CONFIG_SCHED_SMT
- if (smt_capable())
- err = sysfs_create_file(&cls->kset.kobj,
- &attr_sched_smt_power_savings.attr);
- #endif
- #ifdef CONFIG_SCHED_MC
- if (!err && mc_capable())
- err = sysfs_create_file(&cls->kset.kobj,
- &attr_sched_mc_power_savings.attr);
- #endif
- return err;
- }
- #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
- /*
- * Force a reinitialization of the sched domains hierarchy. The domains
- * and groups cannot be updated in place without racing with the balancing
- * code, so we temporarily attach all running cpus to the NULL domain
- * which will prevent rebalancing while the sched domains are recalculated.
- */
- static int update_sched_domains(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- int cpu = (int)(long)hcpu;
- switch (action) {
- case CPU_DOWN_PREPARE:
- case CPU_DOWN_PREPARE_FROZEN:
- disable_runtime(cpu_rq(cpu));
- /* fall-through */
- case CPU_UP_PREPARE:
- case CPU_UP_PREPARE_FROZEN:
- detach_destroy_domains(&cpu_online_map);
- free_sched_domains();
- return NOTIFY_OK;
- case CPU_DOWN_FAILED:
- case CPU_DOWN_FAILED_FROZEN:
- case CPU_ONLINE:
- case CPU_ONLINE_FROZEN:
- enable_runtime(cpu_rq(cpu));
- /* fall-through */
- case CPU_UP_CANCELED:
- case CPU_UP_CANCELED_FROZEN:
- case CPU_DEAD:
- case CPU_DEAD_FROZEN:
- /*
- * Fall through and re-initialise the domains.
- */
- break;
- default:
- return NOTIFY_DONE;
- }
- #ifndef CONFIG_CPUSETS
- /*
- * Create default domain partitioning if cpusets are disabled.
- * Otherwise we let cpusets rebuild the domains based on the
- * current setup.
- */
- /* The hotplug lock is already held by cpu_up/cpu_down */
- arch_init_sched_domains(&cpu_online_map);
- #endif
- return NOTIFY_OK;
- }
- void __init sched_init_smp(void)
- {
- cpumask_t non_isolated_cpus;
- #if defined(CONFIG_NUMA)
- sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
- GFP_KERNEL);
- BUG_ON(sched_group_nodes_bycpu == NULL);
- #endif
- get_online_cpus();
- mutex_lock(&sched_domains_mutex);
- arch_init_sched_domains(&cpu_online_map);
- cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
- if (cpus_empty(non_isolated_cpus))
- cpu_set(smp_processor_id(), non_isolated_cpus);
- mutex_unlock(&sched_domains_mutex);
- put_online_cpus();
- /* XXX: Theoretical race here - CPU may be hotplugged now */
- hotcpu_notifier(update_sched_domains, 0);
- init_hrtick();
- /* Move init over to a non-isolated CPU */
- if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
- BUG();
- sched_init_granularity();
- }
- #else
- void __init sched_init_smp(void)
- {
- sched_init_granularity();
- }
- #endif /* CONFIG_SMP */
- int in_sched_functions(unsigned long addr)
- {
- return in_lock_functions(addr) ||
- (addr >= (unsigned long)__sched_text_start
- && addr < (unsigned long)__sched_text_end);
- }
- static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
- {
- cfs_rq->tasks_timeline = RB_ROOT;
- INIT_LIST_HEAD(&cfs_rq->tasks);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- cfs_rq->rq = rq;
- #endif
- cfs_rq->min_vruntime = (u64)(-(1LL << 20));
- }
- static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
- {
- struct rt_prio_array *array;
- int i;
- array = &rt_rq->active;
- for (i = 0; i < MAX_RT_PRIO; i++) {
- INIT_LIST_HEAD(array->queue + i);
- __clear_bit(i, array->bitmap);
- }
- /* delimiter for bitsearch: */
- __set_bit(MAX_RT_PRIO, array->bitmap);
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- rt_rq->highest_prio = MAX_RT_PRIO;
- #endif
- #ifdef CONFIG_SMP
- rt_rq->rt_nr_migratory = 0;
- rt_rq->overloaded = 0;
- #endif
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- rt_rq->rt_runtime = 0;
- spin_lock_init(&rt_rq->rt_runtime_lock);
- #ifdef CONFIG_RT_GROUP_SCHED
- rt_rq->rt_nr_boosted = 0;
- rt_rq->rq = rq;
- #endif
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
- struct sched_entity *se, int cpu, int add,
- struct sched_entity *parent)
- {
- struct rq *rq = cpu_rq(cpu);
- tg->cfs_rq[cpu] = cfs_rq;
- init_cfs_rq(cfs_rq, rq);
- cfs_rq->tg = tg;
- if (add)
- list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
- tg->se[cpu] = se;
- /* se could be NULL for init_task_group */
- if (!se)
- return;
- if (!parent)
- se->cfs_rq = &rq->cfs;
- else
- se->cfs_rq = parent->my_q;
- se->my_q = cfs_rq;
- se->load.weight = tg->shares;
- se->load.inv_weight = 0;
- se->parent = parent;
- }
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
- struct sched_rt_entity *rt_se, int cpu, int add,
- struct sched_rt_entity *parent)
- {
- struct rq *rq = cpu_rq(cpu);
- tg->rt_rq[cpu] = rt_rq;
- init_rt_rq(rt_rq, rq);
- rt_rq->tg = tg;
- rt_rq->rt_se = rt_se;
- rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
- if (add)
- list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
- tg->rt_se[cpu] = rt_se;
- if (!rt_se)
- return;
- if (!parent)
- rt_se->rt_rq = &rq->rt;
- else
- rt_se->rt_rq = parent->my_q;
- rt_se->my_q = rt_rq;
- rt_se->parent = parent;
- INIT_LIST_HEAD(&rt_se->run_list);
- }
- #endif
- void __init sched_init(void)
- {
- int i, j;
- unsigned long alloc_size = 0, ptr;
- #ifdef CONFIG_FAIR_GROUP_SCHED
- alloc_size += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- alloc_size += 2 * nr_cpu_ids * sizeof(void **);
- #endif
- #ifdef CONFIG_USER_SCHED
- alloc_size *= 2;
- #endif
- /*
- * As sched_init() is called before page_alloc is setup,
- * we use alloc_bootmem().
- */
- if (alloc_size) {
- ptr = (unsigned long)alloc_bootmem(alloc_size);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- init_task_group.se = (struct sched_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- init_task_group.cfs_rq = (struct cfs_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #ifdef CONFIG_USER_SCHED
- root_task_group.se = (struct sched_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.cfs_rq = (struct cfs_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_USER_SCHED */
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- init_task_group.rt_se = (struct sched_rt_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- init_task_group.rt_rq = (struct rt_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #ifdef CONFIG_USER_SCHED
- root_task_group.rt_se = (struct sched_rt_entity **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- root_task_group.rt_rq = (struct rt_rq **)ptr;
- ptr += nr_cpu_ids * sizeof(void **);
- #endif /* CONFIG_USER_SCHED */
- #endif /* CONFIG_RT_GROUP_SCHED */
- }
- #ifdef CONFIG_SMP
- init_defrootdomain();
- #endif
- init_rt_bandwidth(&def_rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- #ifdef CONFIG_RT_GROUP_SCHED
- init_rt_bandwidth(&init_task_group.rt_bandwidth,
- global_rt_period(), global_rt_runtime());
- #ifdef CONFIG_USER_SCHED
- init_rt_bandwidth(&root_task_group.rt_bandwidth,
- global_rt_period(), RUNTIME_INF);
- #endif /* CONFIG_USER_SCHED */
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_GROUP_SCHED
- list_add(&init_task_group.list, &task_groups);
- INIT_LIST_HEAD(&init_task_group.children);
- #ifdef CONFIG_USER_SCHED
- INIT_LIST_HEAD(&root_task_group.children);
- init_task_group.parent = &root_task_group;
- list_add(&init_task_group.siblings, &root_task_group.children);
- #endif /* CONFIG_USER_SCHED */
- #endif /* CONFIG_GROUP_SCHED */
- for_each_possible_cpu(i) {
- struct rq *rq;
- rq = cpu_rq(i);
- spin_lock_init(&rq->lock);
- lockdep_set_class(&rq->lock, &rq->rq_lock_key);
- rq->nr_running = 0;
- init_cfs_rq(&rq->cfs, rq);
- init_rt_rq(&rq->rt, rq);
- #ifdef CONFIG_FAIR_GROUP_SCHED
- init_task_group.shares = init_task_group_load;
- INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
- #ifdef CONFIG_CGROUP_SCHED
- /*
- * How much cpu bandwidth does init_task_group get?
- *
- * In case of task-groups formed thr' the cgroup filesystem, it
- * gets 100% of the cpu resources in the system. This overall
- * system cpu resource is divided among the tasks of
- * init_task_group and its child task-groups in a fair manner,
- * based on each entity's (task or task-group's) weight
- * (se->load.weight).
- *
- * In other words, if init_task_group has 10 tasks of weight
- * 1024) and two child groups A0 and A1 (of weight 1024 each),
- * then A0's share of the cpu resource is:
- *
- * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
- *
- * We achieve this by letting init_task_group's tasks sit
- * directly in rq->cfs (i.e init_task_group->se[] = NULL).
- */
- init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
- #elif defined CONFIG_USER_SCHED
- root_task_group.shares = NICE_0_LOAD;
- init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
- /*
- * In case of task-groups formed thr' the user id of tasks,
- * init_task_group represents tasks belonging to root user.
- * Hence it forms a sibling of all subsequent groups formed.
- * In this case, init_task_group gets only a fraction of overall
- * system cpu resource, based on the weight assigned to root
- * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
- * by letting tasks of init_task_group sit in a separate cfs_rq
- * (init_cfs_rq) and having one entity represent this group of
- * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
- */
- init_tg_cfs_entry(&init_task_group,
- &per_cpu(init_cfs_rq, i),
- &per_cpu(init_sched_entity, i), i, 1,
- root_task_group.se[i]);
- #endif
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
- #ifdef CONFIG_RT_GROUP_SCHED
- INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
- #ifdef CONFIG_CGROUP_SCHED
- init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
- #elif defined CONFIG_USER_SCHED
- init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
- init_tg_rt_entry(&init_task_group,
- &per_cpu(init_rt_rq, i),
- &per_cpu(init_sched_rt_entity, i), i, 1,
- root_task_group.rt_se[i]);
- #endif
- #endif
- for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
- rq->cpu_load[j] = 0;
- #ifdef CONFIG_SMP
- rq->sd = NULL;
- rq->rd = NULL;
- rq->active_balance = 0;
- rq->next_balance = jiffies;
- rq->push_cpu = 0;
- rq->cpu = i;
- rq->online = 0;
- rq->migration_thread = NULL;
- INIT_LIST_HEAD(&rq->migration_queue);
- rq_attach_root(rq, &def_root_domain);
- #endif
- init_rq_hrtick(rq);
- atomic_set(&rq->nr_iowait, 0);
- }
- set_load_weight(&init_task);
- #ifdef CONFIG_PREEMPT_NOTIFIERS
- INIT_HLIST_HEAD(&init_task.preempt_notifiers);
- #endif
- #ifdef CONFIG_SMP
- open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
- #endif
- #ifdef CONFIG_RT_MUTEXES
- plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
- #endif
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- atomic_inc(&init_mm.mm_count);
- enter_lazy_tlb(&init_mm, current);
- /*
- * Make us the idle thread. Technically, schedule() should not be
- * called from this thread, however somewhere below it might be,
- * but because we are the idle thread, we just pick up running again
- * when this runqueue becomes "idle".
- */
- init_idle(current, smp_processor_id());
- /*
- * During early bootup we pretend to be a normal task:
- */
- current->sched_class = &fair_sched_class;
- scheduler_running = 1;
- }
- #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
- void __might_sleep(char *file, int line)
- {
- #ifdef in_atomic
- static unsigned long prev_jiffy; /* ratelimiting */
- if ((in_atomic() || irqs_disabled()) &&
- system_state == SYSTEM_RUNNING && !oops_in_progress) {
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- printk(KERN_ERR "BUG: sleeping function called from invalid"
- " context at %s:%d\n", file, line);
- printk("in_atomic():%d, irqs_disabled():%d\n",
- in_atomic(), irqs_disabled());
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- dump_stack();
- }
- #endif
- }
- EXPORT_SYMBOL(__might_sleep);
- #endif
- #ifdef CONFIG_MAGIC_SYSRQ
- static void normalize_task(struct rq *rq, struct task_struct *p)
- {
- int on_rq;
- update_rq_clock(rq);
- on_rq = p->se.on_rq;
- if (on_rq)
- deactivate_task(rq, p, 0);
- __setscheduler(rq, p, SCHED_NORMAL, 0);
- if (on_rq) {
- activate_task(rq, p, 0);
- resched_task(rq->curr);
- }
- }
- void normalize_rt_tasks(void)
- {
- struct task_struct *g, *p;
- unsigned long flags;
- struct rq *rq;
- read_lock_irqsave(&tasklist_lock, flags);
- do_each_thread(g, p) {
- /*
- * Only normalize user tasks:
- */
- if (!p->mm)
- continue;
- p->se.exec_start = 0;
- #ifdef CONFIG_SCHEDSTATS
- p->se.wait_start = 0;
- p->se.sleep_start = 0;
- p->se.block_start = 0;
- #endif
- if (!rt_task(p)) {
- /*
- * Renice negative nice level userspace
- * tasks back to 0:
- */
- if (TASK_NICE(p) < 0 && p->mm)
- set_user_nice(p, 0);
- continue;
- }
- spin_lock(&p->pi_lock);
- rq = __task_rq_lock(p);
- normalize_task(rq, p);
- __task_rq_unlock(rq);
- spin_unlock(&p->pi_lock);
- } while_each_thread(g, p);
- read_unlock_irqrestore(&tasklist_lock, flags);
- }
- #endif /* CONFIG_MAGIC_SYSRQ */
- #ifdef CONFIG_IA64
- /*
- * These functions are only useful for the IA64 MCA handling.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
- /**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
- struct task_struct *curr_task(int cpu)
- {
- return cpu_curr(cpu);
- }
- /**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronized, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
- void set_curr_task(int cpu, struct task_struct *p)
- {
- cpu_curr(cpu) = p;
- }
- #endif
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void free_fair_sched_group(struct task_group *tg)
- {
- int i;
- for_each_possible_cpu(i) {
- if (tg->cfs_rq)
- kfree(tg->cfs_rq[i]);
- if (tg->se)
- kfree(tg->se[i]);
- }
- kfree(tg->cfs_rq);
- kfree(tg->se);
- }
- static
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- struct cfs_rq *cfs_rq;
- struct sched_entity *se, *parent_se;
- struct rq *rq;
- int i;
- tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->cfs_rq)
- goto err;
- tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->se)
- goto err;
- tg->shares = NICE_0_LOAD;
- for_each_possible_cpu(i) {
- rq = cpu_rq(i);
- cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
- GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
- if (!cfs_rq)
- goto err;
- se = kmalloc_node(sizeof(struct sched_entity),
- GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
- if (!se)
- goto err;
- parent_se = parent ? parent->se[i] : NULL;
- init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
- }
- return 1;
- err:
- return 0;
- }
- static inline void register_fair_sched_group(struct task_group *tg, int cpu)
- {
- list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
- &cpu_rq(cpu)->leaf_cfs_rq_list);
- }
- static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
- {
- list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
- }
- #else /* !CONFG_FAIR_GROUP_SCHED */
- static inline void free_fair_sched_group(struct task_group *tg)
- {
- }
- static inline
- int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
- {
- return 1;
- }
- static inline void register_fair_sched_group(struct task_group *tg, int cpu)
- {
- }
- static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
- {
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static void free_rt_sched_group(struct task_group *tg)
- {
- int i;
- destroy_rt_bandwidth(&tg->rt_bandwidth);
- for_each_possible_cpu(i) {
- if (tg->rt_rq)
- kfree(tg->rt_rq[i]);
- if (tg->rt_se)
- kfree(tg->rt_se[i]);
- }
- kfree(tg->rt_rq);
- kfree(tg->rt_se);
- }
- static
- int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
- {
- struct rt_rq *rt_rq;
- struct sched_rt_entity *rt_se, *parent_se;
- struct rq *rq;
- int i;
- tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_rq)
- goto err;
- tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
- if (!tg->rt_se)
- goto err;
- init_rt_bandwidth(&tg->rt_bandwidth,
- ktime_to_ns(def_rt_bandwidth.rt_period), 0);
- for_each_possible_cpu(i) {
- rq = cpu_rq(i);
- rt_rq = kmalloc_node(sizeof(struct rt_rq),
- GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
- if (!rt_rq)
- goto err;
- rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
- GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
- if (!rt_se)
- goto err;
- parent_se = parent ? parent->rt_se[i] : NULL;
- init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
- }
- return 1;
- err:
- return 0;
- }
- static inline void register_rt_sched_group(struct task_group *tg, int cpu)
- {
- list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
- &cpu_rq(cpu)->leaf_rt_rq_list);
- }
- static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
- {
- list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static inline void free_rt_sched_group(struct task_group *tg)
- {
- }
- static inline
- int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
- {
- return 1;
- }
- static inline void register_rt_sched_group(struct task_group *tg, int cpu)
- {
- }
- static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
- {
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_GROUP_SCHED
- static void free_sched_group(struct task_group *tg)
- {
- free_fair_sched_group(tg);
- free_rt_sched_group(tg);
- kfree(tg);
- }
- /* allocate runqueue etc for a new task group */
- struct task_group *sched_create_group(struct task_group *parent)
- {
- struct task_group *tg;
- unsigned long flags;
- int i;
- tg = kzalloc(sizeof(*tg), GFP_KERNEL);
- if (!tg)
- return ERR_PTR(-ENOMEM);
- if (!alloc_fair_sched_group(tg, parent))
- goto err;
- if (!alloc_rt_sched_group(tg, parent))
- goto err;
- spin_lock_irqsave(&task_group_lock, flags);
- for_each_possible_cpu(i) {
- register_fair_sched_group(tg, i);
- register_rt_sched_group(tg, i);
- }
- list_add_rcu(&tg->list, &task_groups);
- WARN_ON(!parent); /* root should already exist */
- tg->parent = parent;
- list_add_rcu(&tg->siblings, &parent->children);
- INIT_LIST_HEAD(&tg->children);
- spin_unlock_irqrestore(&task_group_lock, flags);
- return tg;
- err:
- free_sched_group(tg);
- return ERR_PTR(-ENOMEM);
- }
- /* rcu callback to free various structures associated with a task group */
- static void free_sched_group_rcu(struct rcu_head *rhp)
- {
- /* now it should be safe to free those cfs_rqs */
- free_sched_group(container_of(rhp, struct task_group, rcu));
- }
- /* Destroy runqueue etc associated with a task group */
- void sched_destroy_group(struct task_group *tg)
- {
- unsigned long flags;
- int i;
- spin_lock_irqsave(&task_group_lock, flags);
- for_each_possible_cpu(i) {
- unregister_fair_sched_group(tg, i);
- unregister_rt_sched_group(tg, i);
- }
- list_del_rcu(&tg->list);
- list_del_rcu(&tg->siblings);
- spin_unlock_irqrestore(&task_group_lock, flags);
- /* wait for possible concurrent references to cfs_rqs complete */
- call_rcu(&tg->rcu, free_sched_group_rcu);
- }
- /* change task's runqueue when it moves between groups.
- * The caller of this function should have put the task in its new group
- * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
- * reflect its new group.
- */
- void sched_move_task(struct task_struct *tsk)
- {
- int on_rq, running;
- unsigned long flags;
- struct rq *rq;
- rq = task_rq_lock(tsk, &flags);
- update_rq_clock(rq);
- running = task_current(rq, tsk);
- on_rq = tsk->se.on_rq;
- if (on_rq)
- dequeue_task(rq, tsk, 0);
- if (unlikely(running))
- tsk->sched_class->put_prev_task(rq, tsk);
- set_task_rq(tsk, task_cpu(tsk));
- #ifdef CONFIG_FAIR_GROUP_SCHED
- if (tsk->sched_class->moved_group)
- tsk->sched_class->moved_group(tsk);
- #endif
- if (unlikely(running))
- tsk->sched_class->set_curr_task(rq);
- if (on_rq)
- enqueue_task(rq, tsk, 0);
- task_rq_unlock(rq, &flags);
- }
- #endif /* CONFIG_GROUP_SCHED */
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static void __set_se_shares(struct sched_entity *se, unsigned long shares)
- {
- struct cfs_rq *cfs_rq = se->cfs_rq;
- int on_rq;
- on_rq = se->on_rq;
- if (on_rq)
- dequeue_entity(cfs_rq, se, 0);
- se->load.weight = shares;
- se->load.inv_weight = 0;
- if (on_rq)
- enqueue_entity(cfs_rq, se, 0);
- }
- static void set_se_shares(struct sched_entity *se, unsigned long shares)
- {
- struct cfs_rq *cfs_rq = se->cfs_rq;
- struct rq *rq = cfs_rq->rq;
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __set_se_shares(se, shares);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static DEFINE_MUTEX(shares_mutex);
- int sched_group_set_shares(struct task_group *tg, unsigned long shares)
- {
- int i;
- unsigned long flags;
- /*
- * We can't change the weight of the root cgroup.
- */
- if (!tg->se[0])
- return -EINVAL;
- if (shares < MIN_SHARES)
- shares = MIN_SHARES;
- else if (shares > MAX_SHARES)
- shares = MAX_SHARES;
- mutex_lock(&shares_mutex);
- if (tg->shares == shares)
- goto done;
- spin_lock_irqsave(&task_group_lock, flags);
- for_each_possible_cpu(i)
- unregister_fair_sched_group(tg, i);
- list_del_rcu(&tg->siblings);
- spin_unlock_irqrestore(&task_group_lock, flags);
- /* wait for any ongoing reference to this group to finish */
- synchronize_sched();
- /*
- * Now we are free to modify the group's share on each cpu
- * w/o tripping rebalance_share or load_balance_fair.
- */
- tg->shares = shares;
- for_each_possible_cpu(i) {
- /*
- * force a rebalance
- */
- cfs_rq_set_shares(tg->cfs_rq[i], 0);
- set_se_shares(tg->se[i], shares);
- }
- /*
- * Enable load balance activity on this group, by inserting it back on
- * each cpu's rq->leaf_cfs_rq_list.
- */
- spin_lock_irqsave(&task_group_lock, flags);
- for_each_possible_cpu(i)
- register_fair_sched_group(tg, i);
- list_add_rcu(&tg->siblings, &tg->parent->children);
- spin_unlock_irqrestore(&task_group_lock, flags);
- done:
- mutex_unlock(&shares_mutex);
- return 0;
- }
- unsigned long sched_group_shares(struct task_group *tg)
- {
- return tg->shares;
- }
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- /*
- * Ensure that the real time constraints are schedulable.
- */
- static DEFINE_MUTEX(rt_constraints_mutex);
- static unsigned long to_ratio(u64 period, u64 runtime)
- {
- if (runtime == RUNTIME_INF)
- return 1ULL << 16;
- return div64_u64(runtime << 16, period);
- }
- #ifdef CONFIG_CGROUP_SCHED
- static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
- {
- struct task_group *tgi, *parent = tg->parent;
- unsigned long total = 0;
- if (!parent) {
- if (global_rt_period() < period)
- return 0;
- return to_ratio(period, runtime) <
- to_ratio(global_rt_period(), global_rt_runtime());
- }
- if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
- return 0;
- rcu_read_lock();
- list_for_each_entry_rcu(tgi, &parent->children, siblings) {
- if (tgi == tg)
- continue;
- total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
- tgi->rt_bandwidth.rt_runtime);
- }
- rcu_read_unlock();
- return total + to_ratio(period, runtime) <=
- to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
- parent->rt_bandwidth.rt_runtime);
- }
- #elif defined CONFIG_USER_SCHED
- static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
- {
- struct task_group *tgi;
- unsigned long total = 0;
- unsigned long global_ratio =
- to_ratio(global_rt_period(), global_rt_runtime());
- rcu_read_lock();
- list_for_each_entry_rcu(tgi, &task_groups, list) {
- if (tgi == tg)
- continue;
- total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
- tgi->rt_bandwidth.rt_runtime);
- }
- rcu_read_unlock();
- return total + to_ratio(period, runtime) < global_ratio;
- }
- #endif
- /* Must be called with tasklist_lock held */
- static inline int tg_has_rt_tasks(struct task_group *tg)
- {
- struct task_struct *g, *p;
- do_each_thread(g, p) {
- if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
- return 1;
- } while_each_thread(g, p);
- return 0;
- }
- static int tg_set_bandwidth(struct task_group *tg,
- u64 rt_period, u64 rt_runtime)
- {
- int i, err = 0;
- mutex_lock(&rt_constraints_mutex);
- read_lock(&tasklist_lock);
- if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
- err = -EBUSY;
- goto unlock;
- }
- if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
- err = -EINVAL;
- goto unlock;
- }
- spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
- tg->rt_bandwidth.rt_runtime = rt_runtime;
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = tg->rt_rq[i];
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_runtime;
- spin_unlock(&rt_rq->rt_runtime_lock);
- }
- spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
- unlock:
- read_unlock(&tasklist_lock);
- mutex_unlock(&rt_constraints_mutex);
- return err;
- }
- int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
- {
- u64 rt_runtime, rt_period;
- rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
- rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
- if (rt_runtime_us < 0)
- rt_runtime = RUNTIME_INF;
- return tg_set_bandwidth(tg, rt_period, rt_runtime);
- }
- long sched_group_rt_runtime(struct task_group *tg)
- {
- u64 rt_runtime_us;
- if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
- return -1;
- rt_runtime_us = tg->rt_bandwidth.rt_runtime;
- do_div(rt_runtime_us, NSEC_PER_USEC);
- return rt_runtime_us;
- }
- int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
- {
- u64 rt_runtime, rt_period;
- rt_period = (u64)rt_period_us * NSEC_PER_USEC;
- rt_runtime = tg->rt_bandwidth.rt_runtime;
- if (rt_period == 0)
- return -EINVAL;
- return tg_set_bandwidth(tg, rt_period, rt_runtime);
- }
- long sched_group_rt_period(struct task_group *tg)
- {
- u64 rt_period_us;
- rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
- do_div(rt_period_us, NSEC_PER_USEC);
- return rt_period_us;
- }
- static int sched_rt_global_constraints(void)
- {
- struct task_group *tg = &root_task_group;
- u64 rt_runtime, rt_period;
- int ret = 0;
- rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
- rt_runtime = tg->rt_bandwidth.rt_runtime;
- mutex_lock(&rt_constraints_mutex);
- if (!__rt_schedulable(tg, rt_period, rt_runtime))
- ret = -EINVAL;
- mutex_unlock(&rt_constraints_mutex);
- return ret;
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static int sched_rt_global_constraints(void)
- {
- unsigned long flags;
- int i;
- spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
- for_each_possible_cpu(i) {
- struct rt_rq *rt_rq = &cpu_rq(i)->rt;
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = global_rt_runtime();
- spin_unlock(&rt_rq->rt_runtime_lock);
- }
- spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
- return 0;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- int sched_rt_handler(struct ctl_table *table, int write,
- struct file *filp, void __user *buffer, size_t *lenp,
- loff_t *ppos)
- {
- int ret;
- int old_period, old_runtime;
- static DEFINE_MUTEX(mutex);
- mutex_lock(&mutex);
- old_period = sysctl_sched_rt_period;
- old_runtime = sysctl_sched_rt_runtime;
- ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
- if (!ret && write) {
- ret = sched_rt_global_constraints();
- if (ret) {
- sysctl_sched_rt_period = old_period;
- sysctl_sched_rt_runtime = old_runtime;
- } else {
- def_rt_bandwidth.rt_runtime = global_rt_runtime();
- def_rt_bandwidth.rt_period =
- ns_to_ktime(global_rt_period());
- }
- }
- mutex_unlock(&mutex);
- return ret;
- }
- #ifdef CONFIG_CGROUP_SCHED
- /* return corresponding task_group object of a cgroup */
- static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
- {
- return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
- struct task_group, css);
- }
- static struct cgroup_subsys_state *
- cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
- {
- struct task_group *tg, *parent;
- if (!cgrp->parent) {
- /* This is early initialization for the top cgroup */
- init_task_group.css.cgroup = cgrp;
- return &init_task_group.css;
- }
- parent = cgroup_tg(cgrp->parent);
- tg = sched_create_group(parent);
- if (IS_ERR(tg))
- return ERR_PTR(-ENOMEM);
- /* Bind the cgroup to task_group object we just created */
- tg->css.cgroup = cgrp;
- return &tg->css;
- }
- static void
- cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
- {
- struct task_group *tg = cgroup_tg(cgrp);
- sched_destroy_group(tg);
- }
- static int
- cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
- struct task_struct *tsk)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- /* Don't accept realtime tasks when there is no way for them to run */
- if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
- return -EINVAL;
- #else
- /* We don't support RT-tasks being in separate groups */
- if (tsk->sched_class != &fair_sched_class)
- return -EINVAL;
- #endif
- return 0;
- }
- static void
- cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
- struct cgroup *old_cont, struct task_struct *tsk)
- {
- sched_move_task(tsk);
- }
- #ifdef CONFIG_FAIR_GROUP_SCHED
- static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
- u64 shareval)
- {
- return sched_group_set_shares(cgroup_tg(cgrp), shareval);
- }
- static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
- {
- struct task_group *tg = cgroup_tg(cgrp);
- return (u64) tg->shares;
- }
- #endif /* CONFIG_FAIR_GROUP_SCHED */
- #ifdef CONFIG_RT_GROUP_SCHED
- static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
- s64 val)
- {
- return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
- }
- static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
- {
- return sched_group_rt_runtime(cgroup_tg(cgrp));
- }
- static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
- u64 rt_period_us)
- {
- return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
- }
- static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
- {
- return sched_group_rt_period(cgroup_tg(cgrp));
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- static struct cftype cpu_files[] = {
- #ifdef CONFIG_FAIR_GROUP_SCHED
- {
- .name = "shares",
- .read_u64 = cpu_shares_read_u64,
- .write_u64 = cpu_shares_write_u64,
- },
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- {
- .name = "rt_runtime_us",
- .read_s64 = cpu_rt_runtime_read,
- .write_s64 = cpu_rt_runtime_write,
- },
- {
- .name = "rt_period_us",
- .read_u64 = cpu_rt_period_read_uint,
- .write_u64 = cpu_rt_period_write_uint,
- },
- #endif
- };
- static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
- {
- return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
- }
- struct cgroup_subsys cpu_cgroup_subsys = {
- .name = "cpu",
- .create = cpu_cgroup_create,
- .destroy = cpu_cgroup_destroy,
- .can_attach = cpu_cgroup_can_attach,
- .attach = cpu_cgroup_attach,
- .populate = cpu_cgroup_populate,
- .subsys_id = cpu_cgroup_subsys_id,
- .early_init = 1,
- };
- #endif /* CONFIG_CGROUP_SCHED */
- #ifdef CONFIG_CGROUP_CPUACCT
- /*
- * CPU accounting code for task groups.
- *
- * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
- * (balbir@in.ibm.com).
- */
- /* track cpu usage of a group of tasks */
- struct cpuacct {
- struct cgroup_subsys_state css;
- /* cpuusage holds pointer to a u64-type object on every cpu */
- u64 *cpuusage;
- };
- struct cgroup_subsys cpuacct_subsys;
- /* return cpu accounting group corresponding to this container */
- static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
- {
- return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
- struct cpuacct, css);
- }
- /* return cpu accounting group to which this task belongs */
- static inline struct cpuacct *task_ca(struct task_struct *tsk)
- {
- return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
- struct cpuacct, css);
- }
- /* create a new cpu accounting group */
- static struct cgroup_subsys_state *cpuacct_create(
- struct cgroup_subsys *ss, struct cgroup *cgrp)
- {
- struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
- if (!ca)
- return ERR_PTR(-ENOMEM);
- ca->cpuusage = alloc_percpu(u64);
- if (!ca->cpuusage) {
- kfree(ca);
- return ERR_PTR(-ENOMEM);
- }
- return &ca->css;
- }
- /* destroy an existing cpu accounting group */
- static void
- cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
- {
- struct cpuacct *ca = cgroup_ca(cgrp);
- free_percpu(ca->cpuusage);
- kfree(ca);
- }
- /* return total cpu usage (in nanoseconds) of a group */
- static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
- {
- struct cpuacct *ca = cgroup_ca(cgrp);
- u64 totalcpuusage = 0;
- int i;
- for_each_possible_cpu(i) {
- u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
- /*
- * Take rq->lock to make 64-bit addition safe on 32-bit
- * platforms.
- */
- spin_lock_irq(&cpu_rq(i)->lock);
- totalcpuusage += *cpuusage;
- spin_unlock_irq(&cpu_rq(i)->lock);
- }
- return totalcpuusage;
- }
- static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
- u64 reset)
- {
- struct cpuacct *ca = cgroup_ca(cgrp);
- int err = 0;
- int i;
- if (reset) {
- err = -EINVAL;
- goto out;
- }
- for_each_possible_cpu(i) {
- u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
- spin_lock_irq(&cpu_rq(i)->lock);
- *cpuusage = 0;
- spin_unlock_irq(&cpu_rq(i)->lock);
- }
- out:
- return err;
- }
- static struct cftype files[] = {
- {
- .name = "usage",
- .read_u64 = cpuusage_read,
- .write_u64 = cpuusage_write,
- },
- };
- static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
- {
- return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
- }
- /*
- * charge this task's execution time to its accounting group.
- *
- * called with rq->lock held.
- */
- static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
- {
- struct cpuacct *ca;
- if (!cpuacct_subsys.active)
- return;
- ca = task_ca(tsk);
- if (ca) {
- u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
- *cpuusage += cputime;
- }
- }
- struct cgroup_subsys cpuacct_subsys = {
- .name = "cpuacct",
- .create = cpuacct_create,
- .destroy = cpuacct_destroy,
- .populate = cpuacct_populate,
- .subsys_id = cpuacct_subsys_id,
- };
- #endif /* CONFIG_CGROUP_CPUACCT */
|