io.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are no relevant to the sub-page are 0xFF. So, basically, writing
  67. * 4x512 sub-pages is 4 times slower then writing one 2KiB NAND page. Thus, we
  68. * prefer to use sub-pages only for EV and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include "ubi.h"
  90. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  91. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. #else
  99. #define paranoid_check_not_bad(ubi, pnum) 0
  100. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  101. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  102. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  103. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  104. #endif
  105. /**
  106. * ubi_io_read - read data from a physical eraseblock.
  107. * @ubi: UBI device description object
  108. * @buf: buffer where to store the read data
  109. * @pnum: physical eraseblock number to read from
  110. * @offset: offset within the physical eraseblock from where to read
  111. * @len: how many bytes to read
  112. *
  113. * This function reads data from offset @offset of physical eraseblock @pnum
  114. * and stores the read data in the @buf buffer. The following return codes are
  115. * possible:
  116. *
  117. * o %0 if all the requested data were successfully read;
  118. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  119. * correctable bit-flips were detected; this is harmless but may indicate
  120. * that this eraseblock may become bad soon (but do not have to);
  121. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  122. * example it can be an ECC error in case of NAND; this most probably means
  123. * that the data is corrupted;
  124. * o %-EIO if some I/O error occurred;
  125. * o other negative error codes in case of other errors.
  126. */
  127. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  128. int len)
  129. {
  130. int err, retries = 0;
  131. size_t read;
  132. loff_t addr;
  133. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  134. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  135. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  136. ubi_assert(len > 0);
  137. err = paranoid_check_not_bad(ubi, pnum);
  138. if (err)
  139. return err > 0 ? -EINVAL : err;
  140. addr = (loff_t)pnum * ubi->peb_size + offset;
  141. retry:
  142. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  143. if (err) {
  144. if (err == -EUCLEAN) {
  145. /*
  146. * -EUCLEAN is reported if there was a bit-flip which
  147. * was corrected, so this is harmless.
  148. *
  149. * We do not report about it here unless debugging is
  150. * enabled. A corresponding message will be printed
  151. * later, when it is has been scrubbed.
  152. */
  153. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  154. ubi_assert(len == read);
  155. return UBI_IO_BITFLIPS;
  156. }
  157. if (read != len && retries++ < UBI_IO_RETRIES) {
  158. dbg_io("error %d while reading %d bytes from PEB %d:%d,"
  159. " read only %zd bytes, retry",
  160. err, len, pnum, offset, read);
  161. yield();
  162. goto retry;
  163. }
  164. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  165. "read %zd bytes", err, len, pnum, offset, read);
  166. ubi_dbg_dump_stack();
  167. /*
  168. * The driver should never return -EBADMSG if it failed to read
  169. * all the requested data. But some buggy drivers might do
  170. * this, so we change it to -EIO.
  171. */
  172. if (read != len && err == -EBADMSG) {
  173. ubi_assert(0);
  174. err = -EIO;
  175. }
  176. } else {
  177. ubi_assert(len == read);
  178. if (ubi_dbg_is_bitflip()) {
  179. dbg_gen("bit-flip (emulated)");
  180. err = UBI_IO_BITFLIPS;
  181. }
  182. }
  183. return err;
  184. }
  185. /**
  186. * ubi_io_write - write data to a physical eraseblock.
  187. * @ubi: UBI device description object
  188. * @buf: buffer with the data to write
  189. * @pnum: physical eraseblock number to write to
  190. * @offset: offset within the physical eraseblock where to write
  191. * @len: how many bytes to write
  192. *
  193. * This function writes @len bytes of data from buffer @buf to offset @offset
  194. * of physical eraseblock @pnum. If all the data were successfully written,
  195. * zero is returned. If an error occurred, this function returns a negative
  196. * error code. If %-EIO is returned, the physical eraseblock most probably went
  197. * bad.
  198. *
  199. * Note, in case of an error, it is possible that something was still written
  200. * to the flash media, but may be some garbage.
  201. */
  202. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  203. int len)
  204. {
  205. int err;
  206. size_t written;
  207. loff_t addr;
  208. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  209. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  210. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  211. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  212. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  213. if (ubi->ro_mode) {
  214. ubi_err("read-only mode");
  215. return -EROFS;
  216. }
  217. /* The below has to be compiled out if paranoid checks are disabled */
  218. err = paranoid_check_not_bad(ubi, pnum);
  219. if (err)
  220. return err > 0 ? -EINVAL : err;
  221. /* The area we are writing to has to contain all 0xFF bytes */
  222. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  223. if (err)
  224. return err > 0 ? -EINVAL : err;
  225. if (offset >= ubi->leb_start) {
  226. /*
  227. * We write to the data area of the physical eraseblock. Make
  228. * sure it has valid EC and VID headers.
  229. */
  230. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  231. if (err)
  232. return err > 0 ? -EINVAL : err;
  233. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  234. if (err)
  235. return err > 0 ? -EINVAL : err;
  236. }
  237. if (ubi_dbg_is_write_failure()) {
  238. dbg_err("cannot write %d bytes to PEB %d:%d "
  239. "(emulated)", len, pnum, offset);
  240. ubi_dbg_dump_stack();
  241. return -EIO;
  242. }
  243. addr = (loff_t)pnum * ubi->peb_size + offset;
  244. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  245. if (err) {
  246. ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
  247. "%zd bytes", err, len, pnum, offset, written);
  248. ubi_dbg_dump_stack();
  249. ubi_dbg_dump_flash(ubi, pnum, offset, len);
  250. } else
  251. ubi_assert(written == len);
  252. return err;
  253. }
  254. /**
  255. * erase_callback - MTD erasure call-back.
  256. * @ei: MTD erase information object.
  257. *
  258. * Note, even though MTD erase interface is asynchronous, all the current
  259. * implementations are synchronous anyway.
  260. */
  261. static void erase_callback(struct erase_info *ei)
  262. {
  263. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  264. }
  265. /**
  266. * do_sync_erase - synchronously erase a physical eraseblock.
  267. * @ubi: UBI device description object
  268. * @pnum: the physical eraseblock number to erase
  269. *
  270. * This function synchronously erases physical eraseblock @pnum and returns
  271. * zero in case of success and a negative error code in case of failure. If
  272. * %-EIO is returned, the physical eraseblock most probably went bad.
  273. */
  274. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  275. {
  276. int err, retries = 0;
  277. struct erase_info ei;
  278. wait_queue_head_t wq;
  279. dbg_io("erase PEB %d", pnum);
  280. retry:
  281. init_waitqueue_head(&wq);
  282. memset(&ei, 0, sizeof(struct erase_info));
  283. ei.mtd = ubi->mtd;
  284. ei.addr = (loff_t)pnum * ubi->peb_size;
  285. ei.len = ubi->peb_size;
  286. ei.callback = erase_callback;
  287. ei.priv = (unsigned long)&wq;
  288. err = ubi->mtd->erase(ubi->mtd, &ei);
  289. if (err) {
  290. if (retries++ < UBI_IO_RETRIES) {
  291. dbg_io("error %d while erasing PEB %d, retry",
  292. err, pnum);
  293. yield();
  294. goto retry;
  295. }
  296. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  297. ubi_dbg_dump_stack();
  298. return err;
  299. }
  300. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  301. ei.state == MTD_ERASE_FAILED);
  302. if (err) {
  303. ubi_err("interrupted PEB %d erasure", pnum);
  304. return -EINTR;
  305. }
  306. if (ei.state == MTD_ERASE_FAILED) {
  307. if (retries++ < UBI_IO_RETRIES) {
  308. dbg_io("error while erasing PEB %d, retry", pnum);
  309. yield();
  310. goto retry;
  311. }
  312. ubi_err("cannot erase PEB %d", pnum);
  313. ubi_dbg_dump_stack();
  314. return -EIO;
  315. }
  316. err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  317. if (err)
  318. return err > 0 ? -EINVAL : err;
  319. if (ubi_dbg_is_erase_failure() && !err) {
  320. dbg_err("cannot erase PEB %d (emulated)", pnum);
  321. return -EIO;
  322. }
  323. return 0;
  324. }
  325. /**
  326. * check_pattern - check if buffer contains only a certain byte pattern.
  327. * @buf: buffer to check
  328. * @patt: the pattern to check
  329. * @size: buffer size in bytes
  330. *
  331. * This function returns %1 in there are only @patt bytes in @buf, and %0 if
  332. * something else was also found.
  333. */
  334. static int check_pattern(const void *buf, uint8_t patt, int size)
  335. {
  336. int i;
  337. for (i = 0; i < size; i++)
  338. if (((const uint8_t *)buf)[i] != patt)
  339. return 0;
  340. return 1;
  341. }
  342. /* Patterns to write to a physical eraseblock when torturing it */
  343. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  344. /**
  345. * torture_peb - test a supposedly bad physical eraseblock.
  346. * @ubi: UBI device description object
  347. * @pnum: the physical eraseblock number to test
  348. *
  349. * This function returns %-EIO if the physical eraseblock did not pass the
  350. * test, a positive number of erase operations done if the test was
  351. * successfully passed, and other negative error codes in case of other errors.
  352. */
  353. static int torture_peb(struct ubi_device *ubi, int pnum)
  354. {
  355. int err, i, patt_count;
  356. ubi_msg("run torture test for PEB %d", pnum);
  357. patt_count = ARRAY_SIZE(patterns);
  358. ubi_assert(patt_count > 0);
  359. mutex_lock(&ubi->buf_mutex);
  360. for (i = 0; i < patt_count; i++) {
  361. err = do_sync_erase(ubi, pnum);
  362. if (err)
  363. goto out;
  364. /* Make sure the PEB contains only 0xFF bytes */
  365. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  366. if (err)
  367. goto out;
  368. err = check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  369. if (err == 0) {
  370. ubi_err("erased PEB %d, but a non-0xFF byte found",
  371. pnum);
  372. err = -EIO;
  373. goto out;
  374. }
  375. /* Write a pattern and check it */
  376. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  377. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  378. if (err)
  379. goto out;
  380. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  381. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  382. if (err)
  383. goto out;
  384. err = check_pattern(ubi->peb_buf1, patterns[i], ubi->peb_size);
  385. if (err == 0) {
  386. ubi_err("pattern %x checking failed for PEB %d",
  387. patterns[i], pnum);
  388. err = -EIO;
  389. goto out;
  390. }
  391. }
  392. err = patt_count;
  393. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  394. out:
  395. mutex_unlock(&ubi->buf_mutex);
  396. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  397. /*
  398. * If a bit-flip or data integrity error was detected, the test
  399. * has not passed because it happened on a freshly erased
  400. * physical eraseblock which means something is wrong with it.
  401. */
  402. ubi_err("read problems on freshly erased PEB %d, must be bad",
  403. pnum);
  404. err = -EIO;
  405. }
  406. return err;
  407. }
  408. /**
  409. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  410. * @ubi: UBI device description object
  411. * @pnum: physical eraseblock number to prepare
  412. *
  413. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  414. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  415. * filling with zeroes starts from the end of the PEB. This was observed with
  416. * Spansion S29GL512N NOR flash.
  417. *
  418. * This means that in case of a power cut we may end up with intact data at the
  419. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  420. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  421. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  422. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  423. *
  424. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  425. * magic numbers in order to invalidate them and prevent the failures. Returns
  426. * zero in case of success and a negative error code in case of failure.
  427. */
  428. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  429. {
  430. int err, err1;
  431. size_t written;
  432. loff_t addr;
  433. uint32_t data = 0;
  434. struct ubi_vid_hdr vid_hdr;
  435. addr = (loff_t)pnum * ubi->peb_size + ubi->vid_hdr_aloffset;
  436. err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
  437. if (!err) {
  438. addr -= ubi->vid_hdr_aloffset;
  439. err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
  440. (void *)&data);
  441. if (!err)
  442. return 0;
  443. }
  444. /*
  445. * We failed to write to the media. This was observed with Spansion
  446. * S29GL512N NOR flash. Most probably the eraseblock erasure was
  447. * interrupted at a very inappropriate moment, so it became unwritable.
  448. * In this case we probably anyway have garbage in this PEB.
  449. */
  450. err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  451. if (err1 == UBI_IO_BAD_VID_HDR)
  452. /*
  453. * The VID header is corrupted, so we can safely erase this
  454. * PEB and not afraid that it will be treated as a valid PEB in
  455. * case of an unclean reboot.
  456. */
  457. return 0;
  458. /*
  459. * The PEB contains a valid VID header, but we cannot invalidate it.
  460. * Supposedly the flash media or the driver is screwed up, so return an
  461. * error.
  462. */
  463. ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
  464. pnum, err, err1);
  465. ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
  466. return -EIO;
  467. }
  468. /**
  469. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  470. * @ubi: UBI device description object
  471. * @pnum: physical eraseblock number to erase
  472. * @torture: if this physical eraseblock has to be tortured
  473. *
  474. * This function synchronously erases physical eraseblock @pnum. If @torture
  475. * flag is not zero, the physical eraseblock is checked by means of writing
  476. * different patterns to it and reading them back. If the torturing is enabled,
  477. * the physical eraseblock is erased more than once.
  478. *
  479. * This function returns the number of erasures made in case of success, %-EIO
  480. * if the erasure failed or the torturing test failed, and other negative error
  481. * codes in case of other errors. Note, %-EIO means that the physical
  482. * eraseblock is bad.
  483. */
  484. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  485. {
  486. int err, ret = 0;
  487. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  488. err = paranoid_check_not_bad(ubi, pnum);
  489. if (err != 0)
  490. return err > 0 ? -EINVAL : err;
  491. if (ubi->ro_mode) {
  492. ubi_err("read-only mode");
  493. return -EROFS;
  494. }
  495. if (ubi->nor_flash) {
  496. err = nor_erase_prepare(ubi, pnum);
  497. if (err)
  498. return err;
  499. }
  500. if (torture) {
  501. ret = torture_peb(ubi, pnum);
  502. if (ret < 0)
  503. return ret;
  504. }
  505. err = do_sync_erase(ubi, pnum);
  506. if (err)
  507. return err;
  508. return ret + 1;
  509. }
  510. /**
  511. * ubi_io_is_bad - check if a physical eraseblock is bad.
  512. * @ubi: UBI device description object
  513. * @pnum: the physical eraseblock number to check
  514. *
  515. * This function returns a positive number if the physical eraseblock is bad,
  516. * zero if not, and a negative error code if an error occurred.
  517. */
  518. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  519. {
  520. struct mtd_info *mtd = ubi->mtd;
  521. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  522. if (ubi->bad_allowed) {
  523. int ret;
  524. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  525. if (ret < 0)
  526. ubi_err("error %d while checking if PEB %d is bad",
  527. ret, pnum);
  528. else if (ret)
  529. dbg_io("PEB %d is bad", pnum);
  530. return ret;
  531. }
  532. return 0;
  533. }
  534. /**
  535. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  536. * @ubi: UBI device description object
  537. * @pnum: the physical eraseblock number to mark
  538. *
  539. * This function returns zero in case of success and a negative error code in
  540. * case of failure.
  541. */
  542. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  543. {
  544. int err;
  545. struct mtd_info *mtd = ubi->mtd;
  546. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  547. if (ubi->ro_mode) {
  548. ubi_err("read-only mode");
  549. return -EROFS;
  550. }
  551. if (!ubi->bad_allowed)
  552. return 0;
  553. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  554. if (err)
  555. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  556. return err;
  557. }
  558. /**
  559. * validate_ec_hdr - validate an erase counter header.
  560. * @ubi: UBI device description object
  561. * @ec_hdr: the erase counter header to check
  562. *
  563. * This function returns zero if the erase counter header is OK, and %1 if
  564. * not.
  565. */
  566. static int validate_ec_hdr(const struct ubi_device *ubi,
  567. const struct ubi_ec_hdr *ec_hdr)
  568. {
  569. long long ec;
  570. int vid_hdr_offset, leb_start;
  571. ec = be64_to_cpu(ec_hdr->ec);
  572. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  573. leb_start = be32_to_cpu(ec_hdr->data_offset);
  574. if (ec_hdr->version != UBI_VERSION) {
  575. ubi_err("node with incompatible UBI version found: "
  576. "this UBI version is %d, image version is %d",
  577. UBI_VERSION, (int)ec_hdr->version);
  578. goto bad;
  579. }
  580. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  581. ubi_err("bad VID header offset %d, expected %d",
  582. vid_hdr_offset, ubi->vid_hdr_offset);
  583. goto bad;
  584. }
  585. if (leb_start != ubi->leb_start) {
  586. ubi_err("bad data offset %d, expected %d",
  587. leb_start, ubi->leb_start);
  588. goto bad;
  589. }
  590. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  591. ubi_err("bad erase counter %lld", ec);
  592. goto bad;
  593. }
  594. return 0;
  595. bad:
  596. ubi_err("bad EC header");
  597. ubi_dbg_dump_ec_hdr(ec_hdr);
  598. ubi_dbg_dump_stack();
  599. return 1;
  600. }
  601. /**
  602. * ubi_io_read_ec_hdr - read and check an erase counter header.
  603. * @ubi: UBI device description object
  604. * @pnum: physical eraseblock to read from
  605. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  606. * header
  607. * @verbose: be verbose if the header is corrupted or was not found
  608. *
  609. * This function reads erase counter header from physical eraseblock @pnum and
  610. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  611. * erase counter header. The following codes may be returned:
  612. *
  613. * o %0 if the CRC checksum is correct and the header was successfully read;
  614. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  615. * and corrected by the flash driver; this is harmless but may indicate that
  616. * this eraseblock may become bad soon (but may be not);
  617. * o %UBI_IO_BAD_EC_HDR if the erase counter header is corrupted (a CRC error);
  618. * o %UBI_IO_PEB_EMPTY if the physical eraseblock is empty;
  619. * o a negative error code in case of failure.
  620. */
  621. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  622. struct ubi_ec_hdr *ec_hdr, int verbose)
  623. {
  624. int err, read_err = 0;
  625. uint32_t crc, magic, hdr_crc;
  626. dbg_io("read EC header from PEB %d", pnum);
  627. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  628. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  629. if (err) {
  630. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  631. return err;
  632. /*
  633. * We read all the data, but either a correctable bit-flip
  634. * occurred, or MTD reported about some data integrity error,
  635. * like an ECC error in case of NAND. The former is harmless,
  636. * the later may mean that the read data is corrupted. But we
  637. * have a CRC check-sum and we will detect this. If the EC
  638. * header is still OK, we just report this as there was a
  639. * bit-flip.
  640. */
  641. read_err = err;
  642. }
  643. magic = be32_to_cpu(ec_hdr->magic);
  644. if (magic != UBI_EC_HDR_MAGIC) {
  645. /*
  646. * The magic field is wrong. Let's check if we have read all
  647. * 0xFF. If yes, this physical eraseblock is assumed to be
  648. * empty.
  649. *
  650. * But if there was a read error, we do not test it for all
  651. * 0xFFs. Even if it does contain all 0xFFs, this error
  652. * indicates that something is still wrong with this physical
  653. * eraseblock and we anyway cannot treat it as empty.
  654. */
  655. if (read_err != -EBADMSG &&
  656. check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  657. /* The physical eraseblock is supposedly empty */
  658. if (verbose)
  659. ubi_warn("no EC header found at PEB %d, "
  660. "only 0xFF bytes", pnum);
  661. else if (UBI_IO_DEBUG)
  662. dbg_msg("no EC header found at PEB %d, "
  663. "only 0xFF bytes", pnum);
  664. return UBI_IO_PEB_EMPTY;
  665. }
  666. /*
  667. * This is not a valid erase counter header, and these are not
  668. * 0xFF bytes. Report that the header is corrupted.
  669. */
  670. if (verbose) {
  671. ubi_warn("bad magic number at PEB %d: %08x instead of "
  672. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  673. ubi_dbg_dump_ec_hdr(ec_hdr);
  674. } else if (UBI_IO_DEBUG)
  675. dbg_msg("bad magic number at PEB %d: %08x instead of "
  676. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  677. return UBI_IO_BAD_EC_HDR;
  678. }
  679. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  680. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  681. if (hdr_crc != crc) {
  682. if (verbose) {
  683. ubi_warn("bad EC header CRC at PEB %d, calculated "
  684. "%#08x, read %#08x", pnum, crc, hdr_crc);
  685. ubi_dbg_dump_ec_hdr(ec_hdr);
  686. } else if (UBI_IO_DEBUG)
  687. dbg_msg("bad EC header CRC at PEB %d, calculated "
  688. "%#08x, read %#08x", pnum, crc, hdr_crc);
  689. return UBI_IO_BAD_EC_HDR;
  690. }
  691. /* And of course validate what has just been read from the media */
  692. err = validate_ec_hdr(ubi, ec_hdr);
  693. if (err) {
  694. ubi_err("validation failed for PEB %d", pnum);
  695. return -EINVAL;
  696. }
  697. return read_err ? UBI_IO_BITFLIPS : 0;
  698. }
  699. /**
  700. * ubi_io_write_ec_hdr - write an erase counter header.
  701. * @ubi: UBI device description object
  702. * @pnum: physical eraseblock to write to
  703. * @ec_hdr: the erase counter header to write
  704. *
  705. * This function writes erase counter header described by @ec_hdr to physical
  706. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  707. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  708. * field.
  709. *
  710. * This function returns zero in case of success and a negative error code in
  711. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  712. * went bad.
  713. */
  714. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  715. struct ubi_ec_hdr *ec_hdr)
  716. {
  717. int err;
  718. uint32_t crc;
  719. dbg_io("write EC header to PEB %d", pnum);
  720. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  721. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  722. ec_hdr->version = UBI_VERSION;
  723. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  724. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  725. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  726. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  727. ec_hdr->hdr_crc = cpu_to_be32(crc);
  728. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  729. if (err)
  730. return -EINVAL;
  731. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  732. return err;
  733. }
  734. /**
  735. * validate_vid_hdr - validate a volume identifier header.
  736. * @ubi: UBI device description object
  737. * @vid_hdr: the volume identifier header to check
  738. *
  739. * This function checks that data stored in the volume identifier header
  740. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  741. */
  742. static int validate_vid_hdr(const struct ubi_device *ubi,
  743. const struct ubi_vid_hdr *vid_hdr)
  744. {
  745. int vol_type = vid_hdr->vol_type;
  746. int copy_flag = vid_hdr->copy_flag;
  747. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  748. int lnum = be32_to_cpu(vid_hdr->lnum);
  749. int compat = vid_hdr->compat;
  750. int data_size = be32_to_cpu(vid_hdr->data_size);
  751. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  752. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  753. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  754. int usable_leb_size = ubi->leb_size - data_pad;
  755. if (copy_flag != 0 && copy_flag != 1) {
  756. dbg_err("bad copy_flag");
  757. goto bad;
  758. }
  759. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  760. data_pad < 0) {
  761. dbg_err("negative values");
  762. goto bad;
  763. }
  764. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  765. dbg_err("bad vol_id");
  766. goto bad;
  767. }
  768. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  769. dbg_err("bad compat");
  770. goto bad;
  771. }
  772. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  773. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  774. compat != UBI_COMPAT_REJECT) {
  775. dbg_err("bad compat");
  776. goto bad;
  777. }
  778. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  779. dbg_err("bad vol_type");
  780. goto bad;
  781. }
  782. if (data_pad >= ubi->leb_size / 2) {
  783. dbg_err("bad data_pad");
  784. goto bad;
  785. }
  786. if (vol_type == UBI_VID_STATIC) {
  787. /*
  788. * Although from high-level point of view static volumes may
  789. * contain zero bytes of data, but no VID headers can contain
  790. * zero at these fields, because they empty volumes do not have
  791. * mapped logical eraseblocks.
  792. */
  793. if (used_ebs == 0) {
  794. dbg_err("zero used_ebs");
  795. goto bad;
  796. }
  797. if (data_size == 0) {
  798. dbg_err("zero data_size");
  799. goto bad;
  800. }
  801. if (lnum < used_ebs - 1) {
  802. if (data_size != usable_leb_size) {
  803. dbg_err("bad data_size");
  804. goto bad;
  805. }
  806. } else if (lnum == used_ebs - 1) {
  807. if (data_size == 0) {
  808. dbg_err("bad data_size at last LEB");
  809. goto bad;
  810. }
  811. } else {
  812. dbg_err("too high lnum");
  813. goto bad;
  814. }
  815. } else {
  816. if (copy_flag == 0) {
  817. if (data_crc != 0) {
  818. dbg_err("non-zero data CRC");
  819. goto bad;
  820. }
  821. if (data_size != 0) {
  822. dbg_err("non-zero data_size");
  823. goto bad;
  824. }
  825. } else {
  826. if (data_size == 0) {
  827. dbg_err("zero data_size of copy");
  828. goto bad;
  829. }
  830. }
  831. if (used_ebs != 0) {
  832. dbg_err("bad used_ebs");
  833. goto bad;
  834. }
  835. }
  836. return 0;
  837. bad:
  838. ubi_err("bad VID header");
  839. ubi_dbg_dump_vid_hdr(vid_hdr);
  840. ubi_dbg_dump_stack();
  841. return 1;
  842. }
  843. /**
  844. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  845. * @ubi: UBI device description object
  846. * @pnum: physical eraseblock number to read from
  847. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  848. * identifier header
  849. * @verbose: be verbose if the header is corrupted or wasn't found
  850. *
  851. * This function reads the volume identifier header from physical eraseblock
  852. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  853. * volume identifier header. The following codes may be returned:
  854. *
  855. * o %0 if the CRC checksum is correct and the header was successfully read;
  856. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  857. * and corrected by the flash driver; this is harmless but may indicate that
  858. * this eraseblock may become bad soon;
  859. * o %UBI_IO_BAD_VID_HDR if the volume identifier header is corrupted (a CRC
  860. * error detected);
  861. * o %UBI_IO_PEB_FREE if the physical eraseblock is free (i.e., there is no VID
  862. * header there);
  863. * o a negative error code in case of failure.
  864. */
  865. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  866. struct ubi_vid_hdr *vid_hdr, int verbose)
  867. {
  868. int err, read_err = 0;
  869. uint32_t crc, magic, hdr_crc;
  870. void *p;
  871. dbg_io("read VID header from PEB %d", pnum);
  872. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  873. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  874. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  875. ubi->vid_hdr_alsize);
  876. if (err) {
  877. if (err != UBI_IO_BITFLIPS && err != -EBADMSG)
  878. return err;
  879. /*
  880. * We read all the data, but either a correctable bit-flip
  881. * occurred, or MTD reported about some data integrity error,
  882. * like an ECC error in case of NAND. The former is harmless,
  883. * the later may mean the read data is corrupted. But we have a
  884. * CRC check-sum and we will identify this. If the VID header is
  885. * still OK, we just report this as there was a bit-flip.
  886. */
  887. read_err = err;
  888. }
  889. magic = be32_to_cpu(vid_hdr->magic);
  890. if (magic != UBI_VID_HDR_MAGIC) {
  891. /*
  892. * If we have read all 0xFF bytes, the VID header probably does
  893. * not exist and the physical eraseblock is assumed to be free.
  894. *
  895. * But if there was a read error, we do not test the data for
  896. * 0xFFs. Even if it does contain all 0xFFs, this error
  897. * indicates that something is still wrong with this physical
  898. * eraseblock and it cannot be regarded as free.
  899. */
  900. if (read_err != -EBADMSG &&
  901. check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  902. /* The physical eraseblock is supposedly free */
  903. if (verbose)
  904. ubi_warn("no VID header found at PEB %d, "
  905. "only 0xFF bytes", pnum);
  906. else if (UBI_IO_DEBUG)
  907. dbg_msg("no VID header found at PEB %d, "
  908. "only 0xFF bytes", pnum);
  909. return UBI_IO_PEB_FREE;
  910. }
  911. /*
  912. * This is not a valid VID header, and these are not 0xFF
  913. * bytes. Report that the header is corrupted.
  914. */
  915. if (verbose) {
  916. ubi_warn("bad magic number at PEB %d: %08x instead of "
  917. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  918. ubi_dbg_dump_vid_hdr(vid_hdr);
  919. } else if (UBI_IO_DEBUG)
  920. dbg_msg("bad magic number at PEB %d: %08x instead of "
  921. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  922. return UBI_IO_BAD_VID_HDR;
  923. }
  924. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  925. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  926. if (hdr_crc != crc) {
  927. if (verbose) {
  928. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  929. "read %#08x", pnum, crc, hdr_crc);
  930. ubi_dbg_dump_vid_hdr(vid_hdr);
  931. } else if (UBI_IO_DEBUG)
  932. dbg_msg("bad CRC at PEB %d, calculated %#08x, "
  933. "read %#08x", pnum, crc, hdr_crc);
  934. return UBI_IO_BAD_VID_HDR;
  935. }
  936. /* Validate the VID header that we have just read */
  937. err = validate_vid_hdr(ubi, vid_hdr);
  938. if (err) {
  939. ubi_err("validation failed for PEB %d", pnum);
  940. return -EINVAL;
  941. }
  942. return read_err ? UBI_IO_BITFLIPS : 0;
  943. }
  944. /**
  945. * ubi_io_write_vid_hdr - write a volume identifier header.
  946. * @ubi: UBI device description object
  947. * @pnum: the physical eraseblock number to write to
  948. * @vid_hdr: the volume identifier header to write
  949. *
  950. * This function writes the volume identifier header described by @vid_hdr to
  951. * physical eraseblock @pnum. This function automatically fills the
  952. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  953. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  954. *
  955. * This function returns zero in case of success and a negative error code in
  956. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  957. * bad.
  958. */
  959. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  960. struct ubi_vid_hdr *vid_hdr)
  961. {
  962. int err;
  963. uint32_t crc;
  964. void *p;
  965. dbg_io("write VID header to PEB %d", pnum);
  966. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  967. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  968. if (err)
  969. return err > 0 ? -EINVAL : err;
  970. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  971. vid_hdr->version = UBI_VERSION;
  972. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  973. vid_hdr->hdr_crc = cpu_to_be32(crc);
  974. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  975. if (err)
  976. return -EINVAL;
  977. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  978. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  979. ubi->vid_hdr_alsize);
  980. return err;
  981. }
  982. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  983. /**
  984. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  985. * @ubi: UBI device description object
  986. * @pnum: physical eraseblock number to check
  987. *
  988. * This function returns zero if the physical eraseblock is good, a positive
  989. * number if it is bad and a negative error code if an error occurred.
  990. */
  991. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  992. {
  993. int err;
  994. err = ubi_io_is_bad(ubi, pnum);
  995. if (!err)
  996. return err;
  997. ubi_err("paranoid check failed for PEB %d", pnum);
  998. ubi_dbg_dump_stack();
  999. return err;
  1000. }
  1001. /**
  1002. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  1003. * @ubi: UBI device description object
  1004. * @pnum: physical eraseblock number the erase counter header belongs to
  1005. * @ec_hdr: the erase counter header to check
  1006. *
  1007. * This function returns zero if the erase counter header contains valid
  1008. * values, and %1 if not.
  1009. */
  1010. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1011. const struct ubi_ec_hdr *ec_hdr)
  1012. {
  1013. int err;
  1014. uint32_t magic;
  1015. magic = be32_to_cpu(ec_hdr->magic);
  1016. if (magic != UBI_EC_HDR_MAGIC) {
  1017. ubi_err("bad magic %#08x, must be %#08x",
  1018. magic, UBI_EC_HDR_MAGIC);
  1019. goto fail;
  1020. }
  1021. err = validate_ec_hdr(ubi, ec_hdr);
  1022. if (err) {
  1023. ubi_err("paranoid check failed for PEB %d", pnum);
  1024. goto fail;
  1025. }
  1026. return 0;
  1027. fail:
  1028. ubi_dbg_dump_ec_hdr(ec_hdr);
  1029. ubi_dbg_dump_stack();
  1030. return 1;
  1031. }
  1032. /**
  1033. * paranoid_check_peb_ec_hdr - check erase counter header.
  1034. * @ubi: UBI device description object
  1035. * @pnum: the physical eraseblock number to check
  1036. *
  1037. * This function returns zero if the erase counter header is all right, %1 if
  1038. * not, and a negative error code if an error occurred.
  1039. */
  1040. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1041. {
  1042. int err;
  1043. uint32_t crc, hdr_crc;
  1044. struct ubi_ec_hdr *ec_hdr;
  1045. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1046. if (!ec_hdr)
  1047. return -ENOMEM;
  1048. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1049. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1050. goto exit;
  1051. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1052. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1053. if (hdr_crc != crc) {
  1054. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1055. ubi_err("paranoid check failed for PEB %d", pnum);
  1056. ubi_dbg_dump_ec_hdr(ec_hdr);
  1057. ubi_dbg_dump_stack();
  1058. err = 1;
  1059. goto exit;
  1060. }
  1061. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  1062. exit:
  1063. kfree(ec_hdr);
  1064. return err;
  1065. }
  1066. /**
  1067. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1068. * @ubi: UBI device description object
  1069. * @pnum: physical eraseblock number the volume identifier header belongs to
  1070. * @vid_hdr: the volume identifier header to check
  1071. *
  1072. * This function returns zero if the volume identifier header is all right, and
  1073. * %1 if not.
  1074. */
  1075. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1076. const struct ubi_vid_hdr *vid_hdr)
  1077. {
  1078. int err;
  1079. uint32_t magic;
  1080. magic = be32_to_cpu(vid_hdr->magic);
  1081. if (magic != UBI_VID_HDR_MAGIC) {
  1082. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1083. magic, pnum, UBI_VID_HDR_MAGIC);
  1084. goto fail;
  1085. }
  1086. err = validate_vid_hdr(ubi, vid_hdr);
  1087. if (err) {
  1088. ubi_err("paranoid check failed for PEB %d", pnum);
  1089. goto fail;
  1090. }
  1091. return err;
  1092. fail:
  1093. ubi_err("paranoid check failed for PEB %d", pnum);
  1094. ubi_dbg_dump_vid_hdr(vid_hdr);
  1095. ubi_dbg_dump_stack();
  1096. return 1;
  1097. }
  1098. /**
  1099. * paranoid_check_peb_vid_hdr - check volume identifier header.
  1100. * @ubi: UBI device description object
  1101. * @pnum: the physical eraseblock number to check
  1102. *
  1103. * This function returns zero if the volume identifier header is all right,
  1104. * %1 if not, and a negative error code if an error occurred.
  1105. */
  1106. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1107. {
  1108. int err;
  1109. uint32_t crc, hdr_crc;
  1110. struct ubi_vid_hdr *vid_hdr;
  1111. void *p;
  1112. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1113. if (!vid_hdr)
  1114. return -ENOMEM;
  1115. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1116. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1117. ubi->vid_hdr_alsize);
  1118. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1119. goto exit;
  1120. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1121. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1122. if (hdr_crc != crc) {
  1123. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1124. "read %#08x", pnum, crc, hdr_crc);
  1125. ubi_err("paranoid check failed for PEB %d", pnum);
  1126. ubi_dbg_dump_vid_hdr(vid_hdr);
  1127. ubi_dbg_dump_stack();
  1128. err = 1;
  1129. goto exit;
  1130. }
  1131. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1132. exit:
  1133. ubi_free_vid_hdr(ubi, vid_hdr);
  1134. return err;
  1135. }
  1136. /**
  1137. * ubi_dbg_check_all_ff - check that a region of flash is empty.
  1138. * @ubi: UBI device description object
  1139. * @pnum: the physical eraseblock number to check
  1140. * @offset: the starting offset within the physical eraseblock to check
  1141. * @len: the length of the region to check
  1142. *
  1143. * This function returns zero if only 0xFF bytes are present at offset
  1144. * @offset of the physical eraseblock @pnum, %1 if not, and a negative error
  1145. * code if an error occurred.
  1146. */
  1147. int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1148. {
  1149. size_t read;
  1150. int err;
  1151. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1152. mutex_lock(&ubi->dbg_buf_mutex);
  1153. err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
  1154. if (err && err != -EUCLEAN) {
  1155. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1156. "read %zd bytes", err, len, pnum, offset, read);
  1157. goto error;
  1158. }
  1159. err = check_pattern(ubi->dbg_peb_buf, 0xFF, len);
  1160. if (err == 0) {
  1161. ubi_err("flash region at PEB %d:%d, length %d does not "
  1162. "contain all 0xFF bytes", pnum, offset, len);
  1163. goto fail;
  1164. }
  1165. mutex_unlock(&ubi->dbg_buf_mutex);
  1166. return 0;
  1167. fail:
  1168. ubi_err("paranoid check failed for PEB %d", pnum);
  1169. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1170. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1171. ubi->dbg_peb_buf, len, 1);
  1172. err = 1;
  1173. error:
  1174. ubi_dbg_dump_stack();
  1175. mutex_unlock(&ubi->dbg_buf_mutex);
  1176. return err;
  1177. }
  1178. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */