|
@@ -1398,6 +1398,10 @@ static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
|
|
|
debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
|
|
|
}
|
|
|
|
|
|
+/*
|
|
|
+ * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
|
|
|
+ * Interleaving Modes.
|
|
|
+ */
|
|
|
static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
|
|
|
int hi_range_sel, u32 intlv_en)
|
|
|
{
|
|
@@ -1408,6 +1412,9 @@ static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
|
|
|
else if (hi_range_sel)
|
|
|
cs = dct_sel_high;
|
|
|
else if (dct_interleave_enabled(pvt)) {
|
|
|
+ /*
|
|
|
+ * see F2x110[DctSelIntLvAddr] - channel interleave mode
|
|
|
+ */
|
|
|
if (dct_sel_interleave_addr(pvt) == 0)
|
|
|
cs = sys_addr >> 6 & 1;
|
|
|
else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
|
|
@@ -1445,22 +1452,23 @@ static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static inline u64 f10_determine_base_addr_offset(u64 sys_addr, int hi_range_sel,
|
|
|
+/* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
|
|
|
+static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
|
|
|
u32 dct_sel_base_addr,
|
|
|
u64 dct_sel_base_off,
|
|
|
- u32 hole_en, u32 hole_off,
|
|
|
+ u32 hole_valid, u32 hole_off,
|
|
|
u64 dram_base)
|
|
|
{
|
|
|
u64 chan_off;
|
|
|
|
|
|
if (hi_range_sel) {
|
|
|
if (!(dct_sel_base_addr & 0xFFFFF800) &&
|
|
|
- (hole_en & 1) && (sys_addr >= 0x100000000ULL))
|
|
|
+ hole_valid && (sys_addr >= 0x100000000ULL))
|
|
|
chan_off = hole_off << 16;
|
|
|
else
|
|
|
chan_off = dct_sel_base_off;
|
|
|
} else {
|
|
|
- if ((hole_en & 1) && (sys_addr >= 0x100000000ULL))
|
|
|
+ if (hole_valid && (sys_addr >= 0x100000000ULL))
|
|
|
chan_off = hole_off << 16;
|
|
|
else
|
|
|
chan_off = dram_base & 0xFFFFF8000000ULL;
|
|
@@ -1562,4 +1570,257 @@ static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
|
|
|
return cs_found;
|
|
|
}
|
|
|
|
|
|
+/* For a given @dram_range, check if @sys_addr falls within it. */
|
|
|
+static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
|
|
|
+ u64 sys_addr, int *nid, int *chan_sel)
|
|
|
+{
|
|
|
+ int node_id, cs_found = -EINVAL, high_range = 0;
|
|
|
+ u32 intlv_en, intlv_sel, intlv_shift, hole_off;
|
|
|
+ u32 hole_valid, tmp, dct_sel_base, channel;
|
|
|
+ u64 dram_base, chan_addr, dct_sel_base_off;
|
|
|
+
|
|
|
+ dram_base = pvt->dram_base[dram_range];
|
|
|
+ intlv_en = pvt->dram_IntlvEn[dram_range];
|
|
|
+
|
|
|
+ node_id = pvt->dram_DstNode[dram_range];
|
|
|
+ intlv_sel = pvt->dram_IntlvSel[dram_range];
|
|
|
+
|
|
|
+ debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
|
|
|
+ dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * This assumes that one node's DHAR is the same as all the other
|
|
|
+ * nodes' DHAR.
|
|
|
+ */
|
|
|
+ hole_off = (pvt->dhar & 0x0000FF80);
|
|
|
+ hole_valid = (pvt->dhar & 0x1);
|
|
|
+ dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
|
|
|
+
|
|
|
+ debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
|
|
|
+ hole_off, hole_valid, intlv_sel);
|
|
|
+
|
|
|
+ if (intlv_en ||
|
|
|
+ (intlv_sel != ((sys_addr >> 12) & intlv_en)))
|
|
|
+ return -EINVAL;
|
|
|
+
|
|
|
+ dct_sel_base = dct_sel_baseaddr(pvt);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
|
|
|
+ * select between DCT0 and DCT1.
|
|
|
+ */
|
|
|
+ if (dct_high_range_enabled(pvt) &&
|
|
|
+ !dct_ganging_enabled(pvt) &&
|
|
|
+ ((sys_addr >> 27) >= (dct_sel_base >> 11)))
|
|
|
+ high_range = 1;
|
|
|
+
|
|
|
+ channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
|
|
|
+
|
|
|
+ chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
|
|
|
+ dct_sel_base_off, hole_valid,
|
|
|
+ hole_off, dram_base);
|
|
|
+
|
|
|
+ intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
|
|
|
+
|
|
|
+ /* remove Node ID (in case of memory interleaving) */
|
|
|
+ tmp = chan_addr & 0xFC0;
|
|
|
+
|
|
|
+ chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
|
|
|
+
|
|
|
+ /* remove channel interleave and hash */
|
|
|
+ if (dct_interleave_enabled(pvt) &&
|
|
|
+ !dct_high_range_enabled(pvt) &&
|
|
|
+ !dct_ganging_enabled(pvt)) {
|
|
|
+ if (dct_sel_interleave_addr(pvt) != 1)
|
|
|
+ chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
|
|
|
+ else {
|
|
|
+ tmp = chan_addr & 0xFC0;
|
|
|
+ chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
|
|
|
+ | tmp;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
|
|
|
+ chan_addr, (u32)(chan_addr >> 8));
|
|
|
+
|
|
|
+ cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
|
|
|
+
|
|
|
+ if (cs_found >= 0) {
|
|
|
+ *nid = node_id;
|
|
|
+ *chan_sel = channel;
|
|
|
+ }
|
|
|
+ return cs_found;
|
|
|
+}
|
|
|
+
|
|
|
+static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
|
|
|
+ int *node, int *chan_sel)
|
|
|
+{
|
|
|
+ int dram_range, cs_found = -EINVAL;
|
|
|
+ u64 dram_base, dram_limit;
|
|
|
+
|
|
|
+ for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
|
|
|
+
|
|
|
+ if (!pvt->dram_rw_en[dram_range])
|
|
|
+ continue;
|
|
|
+
|
|
|
+ dram_base = pvt->dram_base[dram_range];
|
|
|
+ dram_limit = pvt->dram_limit[dram_range];
|
|
|
+
|
|
|
+ if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
|
|
|
+
|
|
|
+ cs_found = f10_match_to_this_node(pvt, dram_range,
|
|
|
+ sys_addr, node,
|
|
|
+ chan_sel);
|
|
|
+ if (cs_found >= 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return cs_found;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * This the F10h reference code from AMD to map a @sys_addr to NodeID,
|
|
|
+ * CSROW, Channel.
|
|
|
+ *
|
|
|
+ * The @sys_addr is usually an error address received from the hardware.
|
|
|
+ */
|
|
|
+static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
|
|
|
+ struct amd64_error_info_regs *info,
|
|
|
+ u64 sys_addr)
|
|
|
+{
|
|
|
+ struct amd64_pvt *pvt = mci->pvt_info;
|
|
|
+ u32 page, offset;
|
|
|
+ unsigned short syndrome;
|
|
|
+ int nid, csrow, chan = 0;
|
|
|
+
|
|
|
+ csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
|
|
|
+
|
|
|
+ if (csrow >= 0) {
|
|
|
+ error_address_to_page_and_offset(sys_addr, &page, &offset);
|
|
|
+
|
|
|
+ syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
|
|
|
+ syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Is CHIPKILL on? If so, then we can attempt to use the
|
|
|
+ * syndrome to isolate which channel the error was on.
|
|
|
+ */
|
|
|
+ if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
|
|
|
+ chan = get_channel_from_ecc_syndrome(syndrome);
|
|
|
+
|
|
|
+ if (chan >= 0) {
|
|
|
+ edac_mc_handle_ce(mci, page, offset, syndrome,
|
|
|
+ csrow, chan, EDAC_MOD_STR);
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * Channel unknown, report all channels on this
|
|
|
+ * CSROW as failed.
|
|
|
+ */
|
|
|
+ for (chan = 0; chan < mci->csrows[csrow].nr_channels;
|
|
|
+ chan++) {
|
|
|
+ edac_mc_handle_ce(mci, page, offset,
|
|
|
+ syndrome,
|
|
|
+ csrow, chan,
|
|
|
+ EDAC_MOD_STR);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ } else {
|
|
|
+ edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
|
|
|
+ * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
|
|
|
+ * indicates an empty DIMM slot, as reported by Hardware on empty slots.
|
|
|
+ *
|
|
|
+ * Normalize to 128MB by subracting 27 bit shift.
|
|
|
+ */
|
|
|
+static int map_dbam_to_csrow_size(int index)
|
|
|
+{
|
|
|
+ int mega_bytes = 0;
|
|
|
+
|
|
|
+ if (index > 0 && index <= DBAM_MAX_VALUE)
|
|
|
+ mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
|
|
|
+
|
|
|
+ return mega_bytes;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * debug routine to display the memory sizes of a DIMM (ganged or not) and it
|
|
|
+ * CSROWs as well
|
|
|
+ */
|
|
|
+static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
|
|
|
+ int ganged)
|
|
|
+{
|
|
|
+ int dimm, size0, size1;
|
|
|
+ u32 dbam;
|
|
|
+ u32 *dcsb;
|
|
|
+
|
|
|
+ debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
|
|
|
+ ctrl ? pvt->dbam1 : pvt->dbam0,
|
|
|
+ ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
|
|
|
+
|
|
|
+ dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
|
|
|
+ dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
|
|
|
+
|
|
|
+ /* Dump memory sizes for DIMM and its CSROWs */
|
|
|
+ for (dimm = 0; dimm < 4; dimm++) {
|
|
|
+
|
|
|
+ size0 = 0;
|
|
|
+ if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
|
|
|
+ size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
|
|
|
+
|
|
|
+ size1 = 0;
|
|
|
+ if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
|
|
|
+ size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
|
|
|
+
|
|
|
+ debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
|
|
|
+ "CSROW-%d=%5dMB\n",
|
|
|
+ ctrl,
|
|
|
+ dimm,
|
|
|
+ size0 + size1,
|
|
|
+ dimm * 2,
|
|
|
+ size0,
|
|
|
+ dimm * 2 + 1,
|
|
|
+ size1);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Very early hardware probe on pci_probe thread to determine if this module
|
|
|
+ * supports the hardware.
|
|
|
+ *
|
|
|
+ * Return:
|
|
|
+ * 0 for OK
|
|
|
+ * 1 for error
|
|
|
+ */
|
|
|
+static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
|
|
|
+{
|
|
|
+ int ret = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If we are on a DDR3 machine, we don't know yet if
|
|
|
+ * we support that properly at this time
|
|
|
+ */
|
|
|
+ if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
|
|
|
+ (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
|
|
|
+
|
|
|
+ amd64_printk(KERN_WARNING,
|
|
|
+ "%s() This machine is running with DDR3 memory. "
|
|
|
+ "This is not currently supported. "
|
|
|
+ "DCHR0=0x%x DCHR1=0x%x\n",
|
|
|
+ __func__, pvt->dchr0, pvt->dchr1);
|
|
|
+
|
|
|
+ amd64_printk(KERN_WARNING,
|
|
|
+ " Contact '%s' module MAINTAINER to help add"
|
|
|
+ " support.\n",
|
|
|
+ EDAC_MOD_STR);
|
|
|
+
|
|
|
+ ret = 1;
|
|
|
+
|
|
|
+ }
|
|
|
+ return ret;
|
|
|
+}
|
|
|
|