|
@@ -0,0 +1,255 @@
|
|
|
+/*
|
|
|
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
|
|
|
+ * policies)
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Update the current task's runtime statistics. Skip current tasks that
|
|
|
+ * are not in our scheduling class.
|
|
|
+ */
|
|
|
+static inline void update_curr_rt(struct rq *rq, u64 now)
|
|
|
+{
|
|
|
+ struct task_struct *curr = rq->curr;
|
|
|
+ u64 delta_exec;
|
|
|
+
|
|
|
+ if (!task_has_rt_policy(curr))
|
|
|
+ return;
|
|
|
+
|
|
|
+ delta_exec = now - curr->se.exec_start;
|
|
|
+ if (unlikely((s64)delta_exec < 0))
|
|
|
+ delta_exec = 0;
|
|
|
+ if (unlikely(delta_exec > curr->se.exec_max))
|
|
|
+ curr->se.exec_max = delta_exec;
|
|
|
+
|
|
|
+ curr->se.sum_exec_runtime += delta_exec;
|
|
|
+ curr->se.exec_start = now;
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
|
|
|
+{
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+
|
|
|
+ list_add_tail(&p->run_list, array->queue + p->prio);
|
|
|
+ __set_bit(p->prio, array->bitmap);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Adding/removing a task to/from a priority array:
|
|
|
+ */
|
|
|
+static void
|
|
|
+dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
|
|
|
+{
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+
|
|
|
+ update_curr_rt(rq, now);
|
|
|
+
|
|
|
+ list_del(&p->run_list);
|
|
|
+ if (list_empty(array->queue + p->prio))
|
|
|
+ __clear_bit(p->prio, array->bitmap);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Put task to the end of the run list without the overhead of dequeue
|
|
|
+ * followed by enqueue.
|
|
|
+ */
|
|
|
+static void requeue_task_rt(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+
|
|
|
+ list_move_tail(&p->run_list, array->queue + p->prio);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+yield_task_rt(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ requeue_task_rt(rq, p);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Preempt the current task with a newly woken task if needed:
|
|
|
+ */
|
|
|
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ if (p->prio < rq->curr->prio)
|
|
|
+ resched_task(rq->curr);
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
|
|
|
+{
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+ struct task_struct *next;
|
|
|
+ struct list_head *queue;
|
|
|
+ int idx;
|
|
|
+
|
|
|
+ idx = sched_find_first_bit(array->bitmap);
|
|
|
+ if (idx >= MAX_RT_PRIO)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ queue = array->queue + idx;
|
|
|
+ next = list_entry(queue->next, struct task_struct, run_list);
|
|
|
+
|
|
|
+ next->se.exec_start = now;
|
|
|
+
|
|
|
+ return next;
|
|
|
+}
|
|
|
+
|
|
|
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
|
|
|
+{
|
|
|
+ update_curr_rt(rq, now);
|
|
|
+ p->se.exec_start = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Load-balancing iterator. Note: while the runqueue stays locked
|
|
|
+ * during the whole iteration, the current task might be
|
|
|
+ * dequeued so the iterator has to be dequeue-safe. Here we
|
|
|
+ * achieve that by always pre-iterating before returning
|
|
|
+ * the current task:
|
|
|
+ */
|
|
|
+static struct task_struct *load_balance_start_rt(void *arg)
|
|
|
+{
|
|
|
+ struct rq *rq = arg;
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+ struct list_head *head, *curr;
|
|
|
+ struct task_struct *p;
|
|
|
+ int idx;
|
|
|
+
|
|
|
+ idx = sched_find_first_bit(array->bitmap);
|
|
|
+ if (idx >= MAX_RT_PRIO)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ head = array->queue + idx;
|
|
|
+ curr = head->prev;
|
|
|
+
|
|
|
+ p = list_entry(curr, struct task_struct, run_list);
|
|
|
+
|
|
|
+ curr = curr->prev;
|
|
|
+
|
|
|
+ rq->rt.rt_load_balance_idx = idx;
|
|
|
+ rq->rt.rt_load_balance_head = head;
|
|
|
+ rq->rt.rt_load_balance_curr = curr;
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *load_balance_next_rt(void *arg)
|
|
|
+{
|
|
|
+ struct rq *rq = arg;
|
|
|
+ struct rt_prio_array *array = &rq->rt.active;
|
|
|
+ struct list_head *head, *curr;
|
|
|
+ struct task_struct *p;
|
|
|
+ int idx;
|
|
|
+
|
|
|
+ idx = rq->rt.rt_load_balance_idx;
|
|
|
+ head = rq->rt.rt_load_balance_head;
|
|
|
+ curr = rq->rt.rt_load_balance_curr;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If we arrived back to the head again then
|
|
|
+ * iterate to the next queue (if any):
|
|
|
+ */
|
|
|
+ if (unlikely(head == curr)) {
|
|
|
+ int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
|
|
|
+
|
|
|
+ if (next_idx >= MAX_RT_PRIO)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ idx = next_idx;
|
|
|
+ head = array->queue + idx;
|
|
|
+ curr = head->prev;
|
|
|
+
|
|
|
+ rq->rt.rt_load_balance_idx = idx;
|
|
|
+ rq->rt.rt_load_balance_head = head;
|
|
|
+ }
|
|
|
+
|
|
|
+ p = list_entry(curr, struct task_struct, run_list);
|
|
|
+
|
|
|
+ curr = curr->prev;
|
|
|
+
|
|
|
+ rq->rt.rt_load_balance_curr = curr;
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+static int
|
|
|
+load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+ unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
+ struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
+ int *all_pinned, unsigned long *load_moved)
|
|
|
+{
|
|
|
+ int this_best_prio, best_prio, best_prio_seen = 0;
|
|
|
+ int nr_moved;
|
|
|
+ struct rq_iterator rt_rq_iterator;
|
|
|
+
|
|
|
+ best_prio = sched_find_first_bit(busiest->rt.active.bitmap);
|
|
|
+ this_best_prio = sched_find_first_bit(this_rq->rt.active.bitmap);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Enable handling of the case where there is more than one task
|
|
|
+ * with the best priority. If the current running task is one
|
|
|
+ * of those with prio==best_prio we know it won't be moved
|
|
|
+ * and therefore it's safe to override the skip (based on load)
|
|
|
+ * of any task we find with that prio.
|
|
|
+ */
|
|
|
+ if (busiest->curr->prio == best_prio)
|
|
|
+ best_prio_seen = 1;
|
|
|
+
|
|
|
+ rt_rq_iterator.start = load_balance_start_rt;
|
|
|
+ rt_rq_iterator.next = load_balance_next_rt;
|
|
|
+ /* pass 'busiest' rq argument into
|
|
|
+ * load_balance_[start|next]_rt iterators
|
|
|
+ */
|
|
|
+ rt_rq_iterator.arg = busiest;
|
|
|
+
|
|
|
+ nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
|
|
|
+ max_load_move, sd, idle, all_pinned, load_moved,
|
|
|
+ this_best_prio, best_prio, best_prio_seen,
|
|
|
+ &rt_rq_iterator);
|
|
|
+
|
|
|
+ return nr_moved;
|
|
|
+}
|
|
|
+
|
|
|
+static void task_tick_rt(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * RR tasks need a special form of timeslice management.
|
|
|
+ * FIFO tasks have no timeslices.
|
|
|
+ */
|
|
|
+ if (p->policy != SCHED_RR)
|
|
|
+ return;
|
|
|
+
|
|
|
+ if (--p->time_slice)
|
|
|
+ return;
|
|
|
+
|
|
|
+ p->time_slice = static_prio_timeslice(p->static_prio);
|
|
|
+ set_tsk_need_resched(p);
|
|
|
+
|
|
|
+ /* put it at the end of the queue: */
|
|
|
+ requeue_task_rt(rq, p);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * No parent/child timeslice management necessary for RT tasks,
|
|
|
+ * just activate them:
|
|
|
+ */
|
|
|
+static void task_new_rt(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ activate_task(rq, p, 1);
|
|
|
+}
|
|
|
+
|
|
|
+static struct sched_class rt_sched_class __read_mostly = {
|
|
|
+ .enqueue_task = enqueue_task_rt,
|
|
|
+ .dequeue_task = dequeue_task_rt,
|
|
|
+ .yield_task = yield_task_rt,
|
|
|
+
|
|
|
+ .check_preempt_curr = check_preempt_curr_rt,
|
|
|
+
|
|
|
+ .pick_next_task = pick_next_task_rt,
|
|
|
+ .put_prev_task = put_prev_task_rt,
|
|
|
+
|
|
|
+ .load_balance = load_balance_rt,
|
|
|
+
|
|
|
+ .task_tick = task_tick_rt,
|
|
|
+ .task_new = task_new_rt,
|
|
|
+};
|