|
@@ -0,0 +1,1131 @@
|
|
|
+/*
|
|
|
+ * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
|
|
|
+ *
|
|
|
+ * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
|
|
|
+ *
|
|
|
+ * Interactivity improvements by Mike Galbraith
|
|
|
+ * (C) 2007 Mike Galbraith <efault@gmx.de>
|
|
|
+ *
|
|
|
+ * Various enhancements by Dmitry Adamushko.
|
|
|
+ * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
|
|
|
+ *
|
|
|
+ * Group scheduling enhancements by Srivatsa Vaddagiri
|
|
|
+ * Copyright IBM Corporation, 2007
|
|
|
+ * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
|
|
|
+ *
|
|
|
+ * Scaled math optimizations by Thomas Gleixner
|
|
|
+ * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Preemption granularity:
|
|
|
+ * (default: 2 msec, units: nanoseconds)
|
|
|
+ *
|
|
|
+ * NOTE: this granularity value is not the same as the concept of
|
|
|
+ * 'timeslice length' - timeslices in CFS will typically be somewhat
|
|
|
+ * larger than this value. (to see the precise effective timeslice
|
|
|
+ * length of your workload, run vmstat and monitor the context-switches
|
|
|
+ * field)
|
|
|
+ *
|
|
|
+ * On SMP systems the value of this is multiplied by the log2 of the
|
|
|
+ * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
|
|
|
+ * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
|
|
|
+ */
|
|
|
+unsigned int sysctl_sched_granularity __read_mostly = 2000000000ULL/HZ;
|
|
|
+
|
|
|
+/*
|
|
|
+ * SCHED_BATCH wake-up granularity.
|
|
|
+ * (default: 10 msec, units: nanoseconds)
|
|
|
+ *
|
|
|
+ * This option delays the preemption effects of decoupled workloads
|
|
|
+ * and reduces their over-scheduling. Synchronous workloads will still
|
|
|
+ * have immediate wakeup/sleep latencies.
|
|
|
+ */
|
|
|
+unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly =
|
|
|
+ 10000000000ULL/HZ;
|
|
|
+
|
|
|
+/*
|
|
|
+ * SCHED_OTHER wake-up granularity.
|
|
|
+ * (default: 1 msec, units: nanoseconds)
|
|
|
+ *
|
|
|
+ * This option delays the preemption effects of decoupled workloads
|
|
|
+ * and reduces their over-scheduling. Synchronous workloads will still
|
|
|
+ * have immediate wakeup/sleep latencies.
|
|
|
+ */
|
|
|
+unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000000ULL/HZ;
|
|
|
+
|
|
|
+unsigned int sysctl_sched_stat_granularity __read_mostly;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initialized in sched_init_granularity():
|
|
|
+ */
|
|
|
+unsigned int sysctl_sched_runtime_limit __read_mostly;
|
|
|
+
|
|
|
+/*
|
|
|
+ * Debugging: various feature bits
|
|
|
+ */
|
|
|
+enum {
|
|
|
+ SCHED_FEAT_FAIR_SLEEPERS = 1,
|
|
|
+ SCHED_FEAT_SLEEPER_AVG = 2,
|
|
|
+ SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
|
|
|
+ SCHED_FEAT_PRECISE_CPU_LOAD = 8,
|
|
|
+ SCHED_FEAT_START_DEBIT = 16,
|
|
|
+ SCHED_FEAT_SKIP_INITIAL = 32,
|
|
|
+};
|
|
|
+
|
|
|
+unsigned int sysctl_sched_features __read_mostly =
|
|
|
+ SCHED_FEAT_FAIR_SLEEPERS *1 |
|
|
|
+ SCHED_FEAT_SLEEPER_AVG *1 |
|
|
|
+ SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
|
|
|
+ SCHED_FEAT_PRECISE_CPU_LOAD *1 |
|
|
|
+ SCHED_FEAT_START_DEBIT *1 |
|
|
|
+ SCHED_FEAT_SKIP_INITIAL *0;
|
|
|
+
|
|
|
+extern struct sched_class fair_sched_class;
|
|
|
+
|
|
|
+/**************************************************************
|
|
|
+ * CFS operations on generic schedulable entities:
|
|
|
+ */
|
|
|
+
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
+
|
|
|
+/* cpu runqueue to which this cfs_rq is attached */
|
|
|
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return cfs_rq->rq;
|
|
|
+}
|
|
|
+
|
|
|
+/* currently running entity (if any) on this cfs_rq */
|
|
|
+static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return cfs_rq->curr;
|
|
|
+}
|
|
|
+
|
|
|
+/* An entity is a task if it doesn't "own" a runqueue */
|
|
|
+#define entity_is_task(se) (!se->my_q)
|
|
|
+
|
|
|
+static inline void
|
|
|
+set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
+{
|
|
|
+ cfs_rq->curr = se;
|
|
|
+}
|
|
|
+
|
|
|
+#else /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
+
|
|
|
+static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return container_of(cfs_rq, struct rq, cfs);
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ struct rq *rq = rq_of(cfs_rq);
|
|
|
+
|
|
|
+ if (unlikely(rq->curr->sched_class != &fair_sched_class))
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ return &rq->curr->se;
|
|
|
+}
|
|
|
+
|
|
|
+#define entity_is_task(se) 1
|
|
|
+
|
|
|
+static inline void
|
|
|
+set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
|
|
|
+
|
|
|
+#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
+
|
|
|
+static inline struct task_struct *task_of(struct sched_entity *se)
|
|
|
+{
|
|
|
+ return container_of(se, struct task_struct, se);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+/**************************************************************
|
|
|
+ * Scheduling class tree data structure manipulation methods:
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Enqueue an entity into the rb-tree:
|
|
|
+ */
|
|
|
+static inline void
|
|
|
+__enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
+{
|
|
|
+ struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
|
|
|
+ struct rb_node *parent = NULL;
|
|
|
+ struct sched_entity *entry;
|
|
|
+ s64 key = se->fair_key;
|
|
|
+ int leftmost = 1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Find the right place in the rbtree:
|
|
|
+ */
|
|
|
+ while (*link) {
|
|
|
+ parent = *link;
|
|
|
+ entry = rb_entry(parent, struct sched_entity, run_node);
|
|
|
+ /*
|
|
|
+ * We dont care about collisions. Nodes with
|
|
|
+ * the same key stay together.
|
|
|
+ */
|
|
|
+ if (key - entry->fair_key < 0) {
|
|
|
+ link = &parent->rb_left;
|
|
|
+ } else {
|
|
|
+ link = &parent->rb_right;
|
|
|
+ leftmost = 0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Maintain a cache of leftmost tree entries (it is frequently
|
|
|
+ * used):
|
|
|
+ */
|
|
|
+ if (leftmost)
|
|
|
+ cfs_rq->rb_leftmost = &se->run_node;
|
|
|
+
|
|
|
+ rb_link_node(&se->run_node, parent, link);
|
|
|
+ rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
|
|
|
+ update_load_add(&cfs_rq->load, se->load.weight);
|
|
|
+ cfs_rq->nr_running++;
|
|
|
+ se->on_rq = 1;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+__dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
+{
|
|
|
+ if (cfs_rq->rb_leftmost == &se->run_node)
|
|
|
+ cfs_rq->rb_leftmost = rb_next(&se->run_node);
|
|
|
+ rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
|
|
|
+ update_load_sub(&cfs_rq->load, se->load.weight);
|
|
|
+ cfs_rq->nr_running--;
|
|
|
+ se->on_rq = 0;
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return cfs_rq->rb_leftmost;
|
|
|
+}
|
|
|
+
|
|
|
+static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
|
|
|
+}
|
|
|
+
|
|
|
+/**************************************************************
|
|
|
+ * Scheduling class statistics methods:
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * We rescale the rescheduling granularity of tasks according to their
|
|
|
+ * nice level, but only linearly, not exponentially:
|
|
|
+ */
|
|
|
+static long
|
|
|
+niced_granularity(struct sched_entity *curr, unsigned long granularity)
|
|
|
+{
|
|
|
+ u64 tmp;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Negative nice levels get the same granularity as nice-0:
|
|
|
+ */
|
|
|
+ if (likely(curr->load.weight >= NICE_0_LOAD))
|
|
|
+ return granularity;
|
|
|
+ /*
|
|
|
+ * Positive nice level tasks get linearly finer
|
|
|
+ * granularity:
|
|
|
+ */
|
|
|
+ tmp = curr->load.weight * (u64)granularity;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * It will always fit into 'long':
|
|
|
+ */
|
|
|
+ return (long) (tmp >> NICE_0_SHIFT);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
|
|
+{
|
|
|
+ long limit = sysctl_sched_runtime_limit;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Niced tasks have the same history dynamic range as
|
|
|
+ * non-niced tasks:
|
|
|
+ */
|
|
|
+ if (unlikely(se->wait_runtime > limit)) {
|
|
|
+ se->wait_runtime = limit;
|
|
|
+ schedstat_inc(se, wait_runtime_overruns);
|
|
|
+ schedstat_inc(cfs_rq, wait_runtime_overruns);
|
|
|
+ }
|
|
|
+ if (unlikely(se->wait_runtime < -limit)) {
|
|
|
+ se->wait_runtime = -limit;
|
|
|
+ schedstat_inc(se, wait_runtime_underruns);
|
|
|
+ schedstat_inc(cfs_rq, wait_runtime_underruns);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+__add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
|
|
|
+{
|
|
|
+ se->wait_runtime += delta;
|
|
|
+ schedstat_add(se, sum_wait_runtime, delta);
|
|
|
+ limit_wait_runtime(cfs_rq, se);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
|
|
|
+{
|
|
|
+ schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
|
|
|
+ __add_wait_runtime(cfs_rq, se, delta);
|
|
|
+ schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Update the current task's runtime statistics. Skip current tasks that
|
|
|
+ * are not in our scheduling class.
|
|
|
+ */
|
|
|
+static inline void
|
|
|
+__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, u64 now)
|
|
|
+{
|
|
|
+ unsigned long delta, delta_exec, delta_fair;
|
|
|
+ long delta_mine;
|
|
|
+ struct load_weight *lw = &cfs_rq->load;
|
|
|
+ unsigned long load = lw->weight;
|
|
|
+
|
|
|
+ if (unlikely(!load))
|
|
|
+ return;
|
|
|
+
|
|
|
+ delta_exec = curr->delta_exec;
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
+ if (unlikely(delta_exec > curr->exec_max))
|
|
|
+ curr->exec_max = delta_exec;
|
|
|
+#endif
|
|
|
+
|
|
|
+ curr->sum_exec_runtime += delta_exec;
|
|
|
+ cfs_rq->exec_clock += delta_exec;
|
|
|
+
|
|
|
+ delta_fair = calc_delta_fair(delta_exec, lw);
|
|
|
+ delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
|
|
|
+
|
|
|
+ if (cfs_rq->sleeper_bonus > sysctl_sched_stat_granularity) {
|
|
|
+ delta = calc_delta_mine(cfs_rq->sleeper_bonus,
|
|
|
+ curr->load.weight, lw);
|
|
|
+ if (unlikely(delta > cfs_rq->sleeper_bonus))
|
|
|
+ delta = cfs_rq->sleeper_bonus;
|
|
|
+
|
|
|
+ cfs_rq->sleeper_bonus -= delta;
|
|
|
+ delta_mine -= delta;
|
|
|
+ }
|
|
|
+
|
|
|
+ cfs_rq->fair_clock += delta_fair;
|
|
|
+ /*
|
|
|
+ * We executed delta_exec amount of time on the CPU,
|
|
|
+ * but we were only entitled to delta_mine amount of
|
|
|
+ * time during that period (if nr_running == 1 then
|
|
|
+ * the two values are equal)
|
|
|
+ * [Note: delta_mine - delta_exec is negative]:
|
|
|
+ */
|
|
|
+ add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
|
|
|
+}
|
|
|
+
|
|
|
+static void update_curr(struct cfs_rq *cfs_rq, u64 now)
|
|
|
+{
|
|
|
+ struct sched_entity *curr = cfs_rq_curr(cfs_rq);
|
|
|
+ unsigned long delta_exec;
|
|
|
+
|
|
|
+ if (unlikely(!curr))
|
|
|
+ return;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Get the amount of time the current task was running
|
|
|
+ * since the last time we changed load (this cannot
|
|
|
+ * overflow on 32 bits):
|
|
|
+ */
|
|
|
+ delta_exec = (unsigned long)(now - curr->exec_start);
|
|
|
+
|
|
|
+ curr->delta_exec += delta_exec;
|
|
|
+
|
|
|
+ if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
|
|
|
+ __update_curr(cfs_rq, curr, now);
|
|
|
+ curr->delta_exec = 0;
|
|
|
+ }
|
|
|
+ curr->exec_start = now;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ se->wait_start_fair = cfs_rq->fair_clock;
|
|
|
+ se->wait_start = now;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * We calculate fair deltas here, so protect against the random effects
|
|
|
+ * of a multiplication overflow by capping it to the runtime limit:
|
|
|
+ */
|
|
|
+#if BITS_PER_LONG == 32
|
|
|
+static inline unsigned long
|
|
|
+calc_weighted(unsigned long delta, unsigned long weight, int shift)
|
|
|
+{
|
|
|
+ u64 tmp = (u64)delta * weight >> shift;
|
|
|
+
|
|
|
+ if (unlikely(tmp > sysctl_sched_runtime_limit*2))
|
|
|
+ return sysctl_sched_runtime_limit*2;
|
|
|
+ return tmp;
|
|
|
+}
|
|
|
+#else
|
|
|
+static inline unsigned long
|
|
|
+calc_weighted(unsigned long delta, unsigned long weight, int shift)
|
|
|
+{
|
|
|
+ return delta * weight >> shift;
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * Task is being enqueued - update stats:
|
|
|
+ */
|
|
|
+static void
|
|
|
+update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ s64 key;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Are we enqueueing a waiting task? (for current tasks
|
|
|
+ * a dequeue/enqueue event is a NOP)
|
|
|
+ */
|
|
|
+ if (se != cfs_rq_curr(cfs_rq))
|
|
|
+ update_stats_wait_start(cfs_rq, se, now);
|
|
|
+ /*
|
|
|
+ * Update the key:
|
|
|
+ */
|
|
|
+ key = cfs_rq->fair_clock;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Optimize the common nice 0 case:
|
|
|
+ */
|
|
|
+ if (likely(se->load.weight == NICE_0_LOAD)) {
|
|
|
+ key -= se->wait_runtime;
|
|
|
+ } else {
|
|
|
+ u64 tmp;
|
|
|
+
|
|
|
+ if (se->wait_runtime < 0) {
|
|
|
+ tmp = -se->wait_runtime;
|
|
|
+ key += (tmp * se->load.inv_weight) >>
|
|
|
+ (WMULT_SHIFT - NICE_0_SHIFT);
|
|
|
+ } else {
|
|
|
+ tmp = se->wait_runtime;
|
|
|
+ key -= (tmp * se->load.weight) >> NICE_0_SHIFT;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ se->fair_key = key;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Note: must be called with a freshly updated rq->fair_clock.
|
|
|
+ */
|
|
|
+static inline void
|
|
|
+__update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ unsigned long delta_fair = se->delta_fair_run;
|
|
|
+
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
+ {
|
|
|
+ s64 delta_wait = now - se->wait_start;
|
|
|
+ if (unlikely(delta_wait > se->wait_max))
|
|
|
+ se->wait_max = delta_wait;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ if (unlikely(se->load.weight != NICE_0_LOAD))
|
|
|
+ delta_fair = calc_weighted(delta_fair, se->load.weight,
|
|
|
+ NICE_0_SHIFT);
|
|
|
+
|
|
|
+ add_wait_runtime(cfs_rq, se, delta_fair);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ unsigned long delta_fair;
|
|
|
+
|
|
|
+ delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
|
|
|
+ (u64)(cfs_rq->fair_clock - se->wait_start_fair));
|
|
|
+
|
|
|
+ se->delta_fair_run += delta_fair;
|
|
|
+ if (unlikely(abs(se->delta_fair_run) >=
|
|
|
+ sysctl_sched_stat_granularity)) {
|
|
|
+ __update_stats_wait_end(cfs_rq, se, now);
|
|
|
+ se->delta_fair_run = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ se->wait_start_fair = 0;
|
|
|
+ se->wait_start = 0;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ update_curr(cfs_rq, now);
|
|
|
+ /*
|
|
|
+ * Mark the end of the wait period if dequeueing a
|
|
|
+ * waiting task:
|
|
|
+ */
|
|
|
+ if (se != cfs_rq_curr(cfs_rq))
|
|
|
+ update_stats_wait_end(cfs_rq, se, now);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * We are picking a new current task - update its stats:
|
|
|
+ */
|
|
|
+static inline void
|
|
|
+update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * We are starting a new run period:
|
|
|
+ */
|
|
|
+ se->exec_start = now;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * We are descheduling a task - update its stats:
|
|
|
+ */
|
|
|
+static inline void
|
|
|
+update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ se->exec_start = 0;
|
|
|
+}
|
|
|
+
|
|
|
+/**************************************************
|
|
|
+ * Scheduling class queueing methods:
|
|
|
+ */
|
|
|
+
|
|
|
+static void
|
|
|
+__enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ unsigned long load = cfs_rq->load.weight, delta_fair;
|
|
|
+ long prev_runtime;
|
|
|
+
|
|
|
+ if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
|
|
|
+ load = rq_of(cfs_rq)->cpu_load[2];
|
|
|
+
|
|
|
+ delta_fair = se->delta_fair_sleep;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Fix up delta_fair with the effect of us running
|
|
|
+ * during the whole sleep period:
|
|
|
+ */
|
|
|
+ if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
|
|
|
+ delta_fair = div64_likely32((u64)delta_fair * load,
|
|
|
+ load + se->load.weight);
|
|
|
+
|
|
|
+ if (unlikely(se->load.weight != NICE_0_LOAD))
|
|
|
+ delta_fair = calc_weighted(delta_fair, se->load.weight,
|
|
|
+ NICE_0_SHIFT);
|
|
|
+
|
|
|
+ prev_runtime = se->wait_runtime;
|
|
|
+ __add_wait_runtime(cfs_rq, se, delta_fair);
|
|
|
+ delta_fair = se->wait_runtime - prev_runtime;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Track the amount of bonus we've given to sleepers:
|
|
|
+ */
|
|
|
+ cfs_rq->sleeper_bonus += delta_fair;
|
|
|
+
|
|
|
+ schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ struct task_struct *tsk = task_of(se);
|
|
|
+ unsigned long delta_fair;
|
|
|
+
|
|
|
+ if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
|
|
|
+ !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
|
|
|
+ return;
|
|
|
+
|
|
|
+ delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
|
|
|
+ (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
|
|
|
+
|
|
|
+ se->delta_fair_sleep += delta_fair;
|
|
|
+ if (unlikely(abs(se->delta_fair_sleep) >=
|
|
|
+ sysctl_sched_stat_granularity)) {
|
|
|
+ __enqueue_sleeper(cfs_rq, se, now);
|
|
|
+ se->delta_fair_sleep = 0;
|
|
|
+ }
|
|
|
+
|
|
|
+ se->sleep_start_fair = 0;
|
|
|
+
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
+ if (se->sleep_start) {
|
|
|
+ u64 delta = now - se->sleep_start;
|
|
|
+
|
|
|
+ if ((s64)delta < 0)
|
|
|
+ delta = 0;
|
|
|
+
|
|
|
+ if (unlikely(delta > se->sleep_max))
|
|
|
+ se->sleep_max = delta;
|
|
|
+
|
|
|
+ se->sleep_start = 0;
|
|
|
+ se->sum_sleep_runtime += delta;
|
|
|
+ }
|
|
|
+ if (se->block_start) {
|
|
|
+ u64 delta = now - se->block_start;
|
|
|
+
|
|
|
+ if ((s64)delta < 0)
|
|
|
+ delta = 0;
|
|
|
+
|
|
|
+ if (unlikely(delta > se->block_max))
|
|
|
+ se->block_max = delta;
|
|
|
+
|
|
|
+ se->block_start = 0;
|
|
|
+ se->sum_sleep_runtime += delta;
|
|
|
+ }
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
|
|
|
+ int wakeup, u64 now)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Update the fair clock.
|
|
|
+ */
|
|
|
+ update_curr(cfs_rq, now);
|
|
|
+
|
|
|
+ if (wakeup)
|
|
|
+ enqueue_sleeper(cfs_rq, se, now);
|
|
|
+
|
|
|
+ update_stats_enqueue(cfs_rq, se, now);
|
|
|
+ __enqueue_entity(cfs_rq, se);
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
|
|
|
+ int sleep, u64 now)
|
|
|
+{
|
|
|
+ update_stats_dequeue(cfs_rq, se, now);
|
|
|
+ if (sleep) {
|
|
|
+ se->sleep_start_fair = cfs_rq->fair_clock;
|
|
|
+#ifdef CONFIG_SCHEDSTATS
|
|
|
+ if (entity_is_task(se)) {
|
|
|
+ struct task_struct *tsk = task_of(se);
|
|
|
+
|
|
|
+ if (tsk->state & TASK_INTERRUPTIBLE)
|
|
|
+ se->sleep_start = now;
|
|
|
+ if (tsk->state & TASK_UNINTERRUPTIBLE)
|
|
|
+ se->block_start = now;
|
|
|
+ }
|
|
|
+ cfs_rq->wait_runtime -= se->wait_runtime;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ __dequeue_entity(cfs_rq, se);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Preempt the current task with a newly woken task if needed:
|
|
|
+ */
|
|
|
+static void
|
|
|
+__check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
|
|
|
+ struct sched_entity *curr, unsigned long granularity)
|
|
|
+{
|
|
|
+ s64 __delta = curr->fair_key - se->fair_key;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Take scheduling granularity into account - do not
|
|
|
+ * preempt the current task unless the best task has
|
|
|
+ * a larger than sched_granularity fairness advantage:
|
|
|
+ */
|
|
|
+ if (__delta > niced_granularity(curr, granularity))
|
|
|
+ resched_task(rq_of(cfs_rq)->curr);
|
|
|
+}
|
|
|
+
|
|
|
+static inline void
|
|
|
+set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, u64 now)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * Any task has to be enqueued before it get to execute on
|
|
|
+ * a CPU. So account for the time it spent waiting on the
|
|
|
+ * runqueue. (note, here we rely on pick_next_task() having
|
|
|
+ * done a put_prev_task_fair() shortly before this, which
|
|
|
+ * updated rq->fair_clock - used by update_stats_wait_end())
|
|
|
+ */
|
|
|
+ update_stats_wait_end(cfs_rq, se, now);
|
|
|
+ update_stats_curr_start(cfs_rq, se, now);
|
|
|
+ set_cfs_rq_curr(cfs_rq, se);
|
|
|
+}
|
|
|
+
|
|
|
+static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq, u64 now)
|
|
|
+{
|
|
|
+ struct sched_entity *se = __pick_next_entity(cfs_rq);
|
|
|
+
|
|
|
+ set_next_entity(cfs_rq, se, now);
|
|
|
+
|
|
|
+ return se;
|
|
|
+}
|
|
|
+
|
|
|
+static void
|
|
|
+put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev, u64 now)
|
|
|
+{
|
|
|
+ /*
|
|
|
+ * If still on the runqueue then deactivate_task()
|
|
|
+ * was not called and update_curr() has to be done:
|
|
|
+ */
|
|
|
+ if (prev->on_rq)
|
|
|
+ update_curr(cfs_rq, now);
|
|
|
+
|
|
|
+ update_stats_curr_end(cfs_rq, prev, now);
|
|
|
+
|
|
|
+ if (prev->on_rq)
|
|
|
+ update_stats_wait_start(cfs_rq, prev, now);
|
|
|
+ set_cfs_rq_curr(cfs_rq, NULL);
|
|
|
+}
|
|
|
+
|
|
|
+static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
|
|
+{
|
|
|
+ struct rq *rq = rq_of(cfs_rq);
|
|
|
+ struct sched_entity *next;
|
|
|
+ u64 now = __rq_clock(rq);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Dequeue and enqueue the task to update its
|
|
|
+ * position within the tree:
|
|
|
+ */
|
|
|
+ dequeue_entity(cfs_rq, curr, 0, now);
|
|
|
+ enqueue_entity(cfs_rq, curr, 0, now);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Reschedule if another task tops the current one.
|
|
|
+ */
|
|
|
+ next = __pick_next_entity(cfs_rq);
|
|
|
+ if (next == curr)
|
|
|
+ return;
|
|
|
+
|
|
|
+ __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
|
|
|
+}
|
|
|
+
|
|
|
+/**************************************************
|
|
|
+ * CFS operations on tasks:
|
|
|
+ */
|
|
|
+
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
+
|
|
|
+/* Walk up scheduling entities hierarchy */
|
|
|
+#define for_each_sched_entity(se) \
|
|
|
+ for (; se; se = se->parent)
|
|
|
+
|
|
|
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
|
+{
|
|
|
+ return p->se.cfs_rq;
|
|
|
+}
|
|
|
+
|
|
|
+/* runqueue on which this entity is (to be) queued */
|
|
|
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
|
+{
|
|
|
+ return se->cfs_rq;
|
|
|
+}
|
|
|
+
|
|
|
+/* runqueue "owned" by this group */
|
|
|
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
|
+{
|
|
|
+ return grp->my_q;
|
|
|
+}
|
|
|
+
|
|
|
+/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
|
|
|
+ * another cpu ('this_cpu')
|
|
|
+ */
|
|
|
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
|
|
|
+{
|
|
|
+ /* A later patch will take group into account */
|
|
|
+ return &cpu_rq(this_cpu)->cfs;
|
|
|
+}
|
|
|
+
|
|
|
+/* Iterate thr' all leaf cfs_rq's on a runqueue */
|
|
|
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
|
+ list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
|
|
|
+
|
|
|
+/* Do the two (enqueued) tasks belong to the same group ? */
|
|
|
+static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
|
|
|
+{
|
|
|
+ if (curr->se.cfs_rq == p->se.cfs_rq)
|
|
|
+ return 1;
|
|
|
+
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+#else /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
+
|
|
|
+#define for_each_sched_entity(se) \
|
|
|
+ for (; se; se = NULL)
|
|
|
+
|
|
|
+static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
|
|
|
+{
|
|
|
+ return &task_rq(p)->cfs;
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
|
|
|
+{
|
|
|
+ struct task_struct *p = task_of(se);
|
|
|
+ struct rq *rq = task_rq(p);
|
|
|
+
|
|
|
+ return &rq->cfs;
|
|
|
+}
|
|
|
+
|
|
|
+/* runqueue "owned" by this group */
|
|
|
+static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
|
|
|
+{
|
|
|
+ return NULL;
|
|
|
+}
|
|
|
+
|
|
|
+static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
|
|
|
+{
|
|
|
+ return &cpu_rq(this_cpu)->cfs;
|
|
|
+}
|
|
|
+
|
|
|
+#define for_each_leaf_cfs_rq(rq, cfs_rq) \
|
|
|
+ for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
|
|
|
+
|
|
|
+static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
|
|
|
+{
|
|
|
+ return 1;
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
+
|
|
|
+/*
|
|
|
+ * The enqueue_task method is called before nr_running is
|
|
|
+ * increased. Here we update the fair scheduling stats and
|
|
|
+ * then put the task into the rbtree:
|
|
|
+ */
|
|
|
+static void
|
|
|
+enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+ struct sched_entity *se = &p->se;
|
|
|
+
|
|
|
+ for_each_sched_entity(se) {
|
|
|
+ if (se->on_rq)
|
|
|
+ break;
|
|
|
+ cfs_rq = cfs_rq_of(se);
|
|
|
+ enqueue_entity(cfs_rq, se, wakeup, now);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * The dequeue_task method is called before nr_running is
|
|
|
+ * decreased. We remove the task from the rbtree and
|
|
|
+ * update the fair scheduling stats:
|
|
|
+ */
|
|
|
+static void
|
|
|
+dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep, u64 now)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+ struct sched_entity *se = &p->se;
|
|
|
+
|
|
|
+ for_each_sched_entity(se) {
|
|
|
+ cfs_rq = cfs_rq_of(se);
|
|
|
+ dequeue_entity(cfs_rq, se, sleep, now);
|
|
|
+ /* Don't dequeue parent if it has other entities besides us */
|
|
|
+ if (cfs_rq->load.weight)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * sched_yield() support is very simple - we dequeue and enqueue
|
|
|
+ */
|
|
|
+static void yield_task_fair(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
|
+ u64 now = __rq_clock(rq);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Dequeue and enqueue the task to update its
|
|
|
+ * position within the tree:
|
|
|
+ */
|
|
|
+ dequeue_entity(cfs_rq, &p->se, 0, now);
|
|
|
+ enqueue_entity(cfs_rq, &p->se, 0, now);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Preempt the current task with a newly woken task if needed:
|
|
|
+ */
|
|
|
+static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ struct task_struct *curr = rq->curr;
|
|
|
+ struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
|
|
+ unsigned long gran;
|
|
|
+
|
|
|
+ if (unlikely(rt_prio(p->prio))) {
|
|
|
+ update_curr(cfs_rq, rq_clock(rq));
|
|
|
+ resched_task(curr);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ gran = sysctl_sched_wakeup_granularity;
|
|
|
+ /*
|
|
|
+ * Batch tasks prefer throughput over latency:
|
|
|
+ */
|
|
|
+ if (unlikely(p->policy == SCHED_BATCH))
|
|
|
+ gran = sysctl_sched_batch_wakeup_granularity;
|
|
|
+
|
|
|
+ if (is_same_group(curr, p))
|
|
|
+ __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *pick_next_task_fair(struct rq *rq, u64 now)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq = &rq->cfs;
|
|
|
+ struct sched_entity *se;
|
|
|
+
|
|
|
+ if (unlikely(!cfs_rq->nr_running))
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ do {
|
|
|
+ se = pick_next_entity(cfs_rq, now);
|
|
|
+ cfs_rq = group_cfs_rq(se);
|
|
|
+ } while (cfs_rq);
|
|
|
+
|
|
|
+ return task_of(se);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Account for a descheduled task:
|
|
|
+ */
|
|
|
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, u64 now)
|
|
|
+{
|
|
|
+ struct sched_entity *se = &prev->se;
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+
|
|
|
+ for_each_sched_entity(se) {
|
|
|
+ cfs_rq = cfs_rq_of(se);
|
|
|
+ put_prev_entity(cfs_rq, se, now);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/**************************************************
|
|
|
+ * Fair scheduling class load-balancing methods:
|
|
|
+ */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Load-balancing iterator. Note: while the runqueue stays locked
|
|
|
+ * during the whole iteration, the current task might be
|
|
|
+ * dequeued so the iterator has to be dequeue-safe. Here we
|
|
|
+ * achieve that by always pre-iterating before returning
|
|
|
+ * the current task:
|
|
|
+ */
|
|
|
+static inline struct task_struct *
|
|
|
+__load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
|
|
|
+{
|
|
|
+ struct task_struct *p;
|
|
|
+
|
|
|
+ if (!curr)
|
|
|
+ return NULL;
|
|
|
+
|
|
|
+ p = rb_entry(curr, struct task_struct, se.run_node);
|
|
|
+ cfs_rq->rb_load_balance_curr = rb_next(curr);
|
|
|
+
|
|
|
+ return p;
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *load_balance_start_fair(void *arg)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq = arg;
|
|
|
+
|
|
|
+ return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
|
|
|
+}
|
|
|
+
|
|
|
+static struct task_struct *load_balance_next_fair(void *arg)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq = arg;
|
|
|
+
|
|
|
+ return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
|
|
|
+}
|
|
|
+
|
|
|
+static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
|
|
|
+{
|
|
|
+ struct sched_entity *curr;
|
|
|
+ struct task_struct *p;
|
|
|
+
|
|
|
+ if (!cfs_rq->nr_running)
|
|
|
+ return MAX_PRIO;
|
|
|
+
|
|
|
+ curr = __pick_next_entity(cfs_rq);
|
|
|
+ p = task_of(curr);
|
|
|
+
|
|
|
+ return p->prio;
|
|
|
+}
|
|
|
+
|
|
|
+static int
|
|
|
+load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
|
|
|
+ unsigned long max_nr_move, unsigned long max_load_move,
|
|
|
+ struct sched_domain *sd, enum cpu_idle_type idle,
|
|
|
+ int *all_pinned, unsigned long *total_load_moved)
|
|
|
+{
|
|
|
+ struct cfs_rq *busy_cfs_rq;
|
|
|
+ unsigned long load_moved, total_nr_moved = 0, nr_moved;
|
|
|
+ long rem_load_move = max_load_move;
|
|
|
+ struct rq_iterator cfs_rq_iterator;
|
|
|
+
|
|
|
+ cfs_rq_iterator.start = load_balance_start_fair;
|
|
|
+ cfs_rq_iterator.next = load_balance_next_fair;
|
|
|
+
|
|
|
+ for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
|
|
|
+ struct cfs_rq *this_cfs_rq;
|
|
|
+ long imbalance;
|
|
|
+ unsigned long maxload;
|
|
|
+ int this_best_prio, best_prio, best_prio_seen = 0;
|
|
|
+
|
|
|
+ this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
|
|
|
+
|
|
|
+ imbalance = busy_cfs_rq->load.weight -
|
|
|
+ this_cfs_rq->load.weight;
|
|
|
+ /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
|
|
|
+ if (imbalance <= 0)
|
|
|
+ continue;
|
|
|
+
|
|
|
+ /* Don't pull more than imbalance/2 */
|
|
|
+ imbalance /= 2;
|
|
|
+ maxload = min(rem_load_move, imbalance);
|
|
|
+
|
|
|
+ this_best_prio = cfs_rq_best_prio(this_cfs_rq);
|
|
|
+ best_prio = cfs_rq_best_prio(busy_cfs_rq);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Enable handling of the case where there is more than one task
|
|
|
+ * with the best priority. If the current running task is one
|
|
|
+ * of those with prio==best_prio we know it won't be moved
|
|
|
+ * and therefore it's safe to override the skip (based on load)
|
|
|
+ * of any task we find with that prio.
|
|
|
+ */
|
|
|
+ if (cfs_rq_curr(busy_cfs_rq) == &busiest->curr->se)
|
|
|
+ best_prio_seen = 1;
|
|
|
+
|
|
|
+ /* pass busy_cfs_rq argument into
|
|
|
+ * load_balance_[start|next]_fair iterators
|
|
|
+ */
|
|
|
+ cfs_rq_iterator.arg = busy_cfs_rq;
|
|
|
+ nr_moved = balance_tasks(this_rq, this_cpu, busiest,
|
|
|
+ max_nr_move, maxload, sd, idle, all_pinned,
|
|
|
+ &load_moved, this_best_prio, best_prio,
|
|
|
+ best_prio_seen, &cfs_rq_iterator);
|
|
|
+
|
|
|
+ total_nr_moved += nr_moved;
|
|
|
+ max_nr_move -= nr_moved;
|
|
|
+ rem_load_move -= load_moved;
|
|
|
+
|
|
|
+ if (max_nr_move <= 0 || rem_load_move <= 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ *total_load_moved = max_load_move - rem_load_move;
|
|
|
+
|
|
|
+ return total_nr_moved;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * scheduler tick hitting a task of our scheduling class:
|
|
|
+ */
|
|
|
+static void task_tick_fair(struct rq *rq, struct task_struct *curr)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+ struct sched_entity *se = &curr->se;
|
|
|
+
|
|
|
+ for_each_sched_entity(se) {
|
|
|
+ cfs_rq = cfs_rq_of(se);
|
|
|
+ entity_tick(cfs_rq, se);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Share the fairness runtime between parent and child, thus the
|
|
|
+ * total amount of pressure for CPU stays equal - new tasks
|
|
|
+ * get a chance to run but frequent forkers are not allowed to
|
|
|
+ * monopolize the CPU. Note: the parent runqueue is locked,
|
|
|
+ * the child is not running yet.
|
|
|
+ */
|
|
|
+static void task_new_fair(struct rq *rq, struct task_struct *p)
|
|
|
+{
|
|
|
+ struct cfs_rq *cfs_rq = task_cfs_rq(p);
|
|
|
+ struct sched_entity *se = &p->se;
|
|
|
+ u64 now = rq_clock(rq);
|
|
|
+
|
|
|
+ sched_info_queued(p);
|
|
|
+
|
|
|
+ update_stats_enqueue(cfs_rq, se, now);
|
|
|
+ /*
|
|
|
+ * Child runs first: we let it run before the parent
|
|
|
+ * until it reschedules once. We set up the key so that
|
|
|
+ * it will preempt the parent:
|
|
|
+ */
|
|
|
+ p->se.fair_key = current->se.fair_key -
|
|
|
+ niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
|
|
|
+ /*
|
|
|
+ * The first wait is dominated by the child-runs-first logic,
|
|
|
+ * so do not credit it with that waiting time yet:
|
|
|
+ */
|
|
|
+ if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
|
|
|
+ p->se.wait_start_fair = 0;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * The statistical average of wait_runtime is about
|
|
|
+ * -granularity/2, so initialize the task with that:
|
|
|
+ */
|
|
|
+ if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
|
|
|
+ p->se.wait_runtime = -(sysctl_sched_granularity / 2);
|
|
|
+
|
|
|
+ __enqueue_entity(cfs_rq, se);
|
|
|
+ inc_nr_running(p, rq, now);
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
|
+/* Account for a task changing its policy or group.
|
|
|
+ *
|
|
|
+ * This routine is mostly called to set cfs_rq->curr field when a task
|
|
|
+ * migrates between groups/classes.
|
|
|
+ */
|
|
|
+static void set_curr_task_fair(struct rq *rq)
|
|
|
+{
|
|
|
+ struct task_struct *curr = rq->curr;
|
|
|
+ struct sched_entity *se = &curr->se;
|
|
|
+ u64 now = rq_clock(rq);
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+
|
|
|
+ for_each_sched_entity(se) {
|
|
|
+ cfs_rq = cfs_rq_of(se);
|
|
|
+ set_next_entity(cfs_rq, se, now);
|
|
|
+ }
|
|
|
+}
|
|
|
+#else
|
|
|
+static void set_curr_task_fair(struct rq *rq)
|
|
|
+{
|
|
|
+}
|
|
|
+#endif
|
|
|
+
|
|
|
+/*
|
|
|
+ * All the scheduling class methods:
|
|
|
+ */
|
|
|
+struct sched_class fair_sched_class __read_mostly = {
|
|
|
+ .enqueue_task = enqueue_task_fair,
|
|
|
+ .dequeue_task = dequeue_task_fair,
|
|
|
+ .yield_task = yield_task_fair,
|
|
|
+
|
|
|
+ .check_preempt_curr = check_preempt_curr_fair,
|
|
|
+
|
|
|
+ .pick_next_task = pick_next_task_fair,
|
|
|
+ .put_prev_task = put_prev_task_fair,
|
|
|
+
|
|
|
+ .load_balance = load_balance_fair,
|
|
|
+
|
|
|
+ .set_curr_task = set_curr_task_fair,
|
|
|
+ .task_tick = task_tick_fair,
|
|
|
+ .task_new = task_new_fair,
|
|
|
+};
|
|
|
+
|
|
|
+#ifdef CONFIG_SCHED_DEBUG
|
|
|
+void print_cfs_stats(struct seq_file *m, int cpu, u64 now)
|
|
|
+{
|
|
|
+ struct rq *rq = cpu_rq(cpu);
|
|
|
+ struct cfs_rq *cfs_rq;
|
|
|
+
|
|
|
+ for_each_leaf_cfs_rq(rq, cfs_rq)
|
|
|
+ print_cfs_rq(m, cpu, cfs_rq, now);
|
|
|
+}
|
|
|
+#endif
|