|
@@ -45,7 +45,7 @@
|
|
#define DPLL_MIN_DIVIDER 1
|
|
#define DPLL_MIN_DIVIDER 1
|
|
|
|
|
|
/* Possible error results from _dpll_test_mult */
|
|
/* Possible error results from _dpll_test_mult */
|
|
-#define DPLL_MULT_UNDERFLOW (1 << 0)
|
|
|
|
|
|
+#define DPLL_MULT_UNDERFLOW -1
|
|
|
|
|
|
/*
|
|
/*
|
|
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
|
|
* Scale factor to mitigate roundoff errors in DPLL rate rounding.
|
|
@@ -826,7 +826,7 @@ static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
|
|
unsigned long target_rate,
|
|
unsigned long target_rate,
|
|
unsigned long parent_rate)
|
|
unsigned long parent_rate)
|
|
{
|
|
{
|
|
- int flags = 0, carry = 0;
|
|
|
|
|
|
+ int r = 0, carry = 0;
|
|
|
|
|
|
/* Unscale m and round if necessary */
|
|
/* Unscale m and round if necessary */
|
|
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
|
|
if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
|
|
@@ -847,13 +847,13 @@ static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
|
|
if (*m < DPLL_MIN_MULTIPLIER) {
|
|
if (*m < DPLL_MIN_MULTIPLIER) {
|
|
*m = DPLL_MIN_MULTIPLIER;
|
|
*m = DPLL_MIN_MULTIPLIER;
|
|
*new_rate = 0;
|
|
*new_rate = 0;
|
|
- flags = DPLL_MULT_UNDERFLOW;
|
|
|
|
|
|
+ r = DPLL_MULT_UNDERFLOW;
|
|
}
|
|
}
|
|
|
|
|
|
if (*new_rate == 0)
|
|
if (*new_rate == 0)
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
*new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
|
|
|
|
|
|
- return flags;
|
|
|
|
|
|
+ return r;
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
/**
|
|
@@ -892,21 +892,27 @@ long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
|
|
|
|
|
|
dd->last_rounded_rate = 0;
|
|
dd->last_rounded_rate = 0;
|
|
|
|
|
|
- for (n = dd->max_divider; n >= DPLL_MIN_DIVIDER; n--) {
|
|
|
|
|
|
+ for (n = DPLL_MIN_DIVIDER; n <= dd->max_divider; n++) {
|
|
|
|
|
|
/* Compute the scaled DPLL multiplier, based on the divider */
|
|
/* Compute the scaled DPLL multiplier, based on the divider */
|
|
m = scaled_rt_rp * n;
|
|
m = scaled_rt_rp * n;
|
|
|
|
|
|
/*
|
|
/*
|
|
- * Since we're counting n down, a m overflow means we can
|
|
|
|
- * can immediately skip to the next n
|
|
|
|
|
|
+ * Since we're counting n up, a m overflow means we
|
|
|
|
+ * can bail out completely (since as n increases in
|
|
|
|
+ * the next iteration, there's no way that m can
|
|
|
|
+ * increase beyond the current m)
|
|
*/
|
|
*/
|
|
if (m > scaled_max_m)
|
|
if (m > scaled_max_m)
|
|
- continue;
|
|
|
|
|
|
+ break;
|
|
|
|
|
|
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
|
|
r = _dpll_test_mult(&m, n, &new_rate, target_rate,
|
|
clk->parent->rate);
|
|
clk->parent->rate);
|
|
|
|
|
|
|
|
+ /* m can't be set low enough for this n - try with a larger n */
|
|
|
|
+ if (r == DPLL_MULT_UNDERFLOW)
|
|
|
|
+ continue;
|
|
|
|
+
|
|
e = target_rate - new_rate;
|
|
e = target_rate - new_rate;
|
|
pr_debug("clock: n = %d: m = %d: rate error is %d "
|
|
pr_debug("clock: n = %d: m = %d: rate error is %d "
|
|
"(new_rate = %ld)\n", n, m, e, new_rate);
|
|
"(new_rate = %ld)\n", n, m, e, new_rate);
|
|
@@ -918,16 +924,11 @@ long omap2_dpll_round_rate(struct clk *clk, unsigned long target_rate)
|
|
min_e_n = n;
|
|
min_e_n = n;
|
|
|
|
|
|
pr_debug("clock: found new least error %d\n", min_e);
|
|
pr_debug("clock: found new least error %d\n", min_e);
|
|
- }
|
|
|
|
|
|
|
|
- /*
|
|
|
|
- * Since we're counting n down, a m underflow means we
|
|
|
|
- * can bail out completely (since as n decreases in
|
|
|
|
- * the next iteration, there's no way that m can
|
|
|
|
- * increase beyond the current m)
|
|
|
|
- */
|
|
|
|
- if (r & DPLL_MULT_UNDERFLOW)
|
|
|
|
- break;
|
|
|
|
|
|
+ /* We found good settings -- bail out now */
|
|
|
|
+ if (min_e <= clk->dpll_data->rate_tolerance)
|
|
|
|
+ break;
|
|
|
|
+ }
|
|
}
|
|
}
|
|
|
|
|
|
if (min_e < 0) {
|
|
if (min_e < 0) {
|