|
@@ -0,0 +1,1672 @@
|
|
|
|
+/*
|
|
|
|
+ * Generic ring buffer
|
|
|
|
+ *
|
|
|
|
+ * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
|
|
|
|
+ */
|
|
|
|
+#include <linux/ring_buffer.h>
|
|
|
|
+#include <linux/spinlock.h>
|
|
|
|
+#include <linux/debugfs.h>
|
|
|
|
+#include <linux/uaccess.h>
|
|
|
|
+#include <linux/module.h>
|
|
|
|
+#include <linux/percpu.h>
|
|
|
|
+#include <linux/mutex.h>
|
|
|
|
+#include <linux/sched.h> /* used for sched_clock() (for now) */
|
|
|
|
+#include <linux/init.h>
|
|
|
|
+#include <linux/hash.h>
|
|
|
|
+#include <linux/list.h>
|
|
|
|
+#include <linux/fs.h>
|
|
|
|
+
|
|
|
|
+/* Up this if you want to test the TIME_EXTENTS and normalization */
|
|
|
|
+#define DEBUG_SHIFT 0
|
|
|
|
+
|
|
|
|
+/* FIXME!!! */
|
|
|
|
+u64 ring_buffer_time_stamp(int cpu)
|
|
|
|
+{
|
|
|
|
+ /* shift to debug/test normalization and TIME_EXTENTS */
|
|
|
|
+ return sched_clock() << DEBUG_SHIFT;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ /* Just stupid testing the normalize function and deltas */
|
|
|
|
+ *ts >>= DEBUG_SHIFT;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
|
|
|
|
+#define RB_ALIGNMENT_SHIFT 2
|
|
|
|
+#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
|
|
|
|
+#define RB_MAX_SMALL_DATA 28
|
|
|
|
+
|
|
|
|
+enum {
|
|
|
|
+ RB_LEN_TIME_EXTEND = 8,
|
|
|
|
+ RB_LEN_TIME_STAMP = 16,
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/* inline for ring buffer fast paths */
|
|
|
|
+static inline unsigned
|
|
|
|
+rb_event_length(struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ unsigned length;
|
|
|
|
+
|
|
|
|
+ switch (event->type) {
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ /* undefined */
|
|
|
|
+ return -1;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ return RB_LEN_TIME_EXTEND;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ return RB_LEN_TIME_STAMP;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ if (event->len)
|
|
|
|
+ length = event->len << RB_ALIGNMENT_SHIFT;
|
|
|
|
+ else
|
|
|
|
+ length = event->array[0];
|
|
|
|
+ return length + RB_EVNT_HDR_SIZE;
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+ /* not hit */
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_event_length - return the length of the event
|
|
|
|
+ * @event: the event to get the length of
|
|
|
|
+ */
|
|
|
|
+unsigned ring_buffer_event_length(struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ return rb_event_length(event);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/* inline for ring buffer fast paths */
|
|
|
|
+static inline void *
|
|
|
|
+rb_event_data(struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ BUG_ON(event->type != RINGBUF_TYPE_DATA);
|
|
|
|
+ /* If length is in len field, then array[0] has the data */
|
|
|
|
+ if (event->len)
|
|
|
|
+ return (void *)&event->array[0];
|
|
|
|
+ /* Otherwise length is in array[0] and array[1] has the data */
|
|
|
|
+ return (void *)&event->array[1];
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_event_data - return the data of the event
|
|
|
|
+ * @event: the event to get the data from
|
|
|
|
+ */
|
|
|
|
+void *ring_buffer_event_data(struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ return rb_event_data(event);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define for_each_buffer_cpu(buffer, cpu) \
|
|
|
|
+ for_each_cpu_mask(cpu, buffer->cpumask)
|
|
|
|
+
|
|
|
|
+#define TS_SHIFT 27
|
|
|
|
+#define TS_MASK ((1ULL << TS_SHIFT) - 1)
|
|
|
|
+#define TS_DELTA_TEST (~TS_MASK)
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * This hack stolen from mm/slob.c.
|
|
|
|
+ * We can store per page timing information in the page frame of the page.
|
|
|
|
+ * Thanks to Peter Zijlstra for suggesting this idea.
|
|
|
|
+ */
|
|
|
|
+struct buffer_page {
|
|
|
|
+ union {
|
|
|
|
+ struct {
|
|
|
|
+ unsigned long flags; /* mandatory */
|
|
|
|
+ atomic_t _count; /* mandatory */
|
|
|
|
+ u64 time_stamp; /* page time stamp */
|
|
|
|
+ unsigned size; /* size of page data */
|
|
|
|
+ struct list_head list; /* list of free pages */
|
|
|
|
+ };
|
|
|
|
+ struct page page;
|
|
|
|
+ };
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * We need to fit the time_stamp delta into 27 bits.
|
|
|
|
+ */
|
|
|
|
+static inline int test_time_stamp(u64 delta)
|
|
|
|
+{
|
|
|
|
+ if (delta & TS_DELTA_TEST)
|
|
|
|
+ return 1;
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+#define BUF_PAGE_SIZE PAGE_SIZE
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * head_page == tail_page && head == tail then buffer is empty.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_per_cpu {
|
|
|
|
+ int cpu;
|
|
|
|
+ struct ring_buffer *buffer;
|
|
|
|
+ spinlock_t lock;
|
|
|
|
+ struct lock_class_key lock_key;
|
|
|
|
+ struct list_head pages;
|
|
|
|
+ unsigned long head; /* read from head */
|
|
|
|
+ unsigned long tail; /* write to tail */
|
|
|
|
+ struct buffer_page *head_page;
|
|
|
|
+ struct buffer_page *tail_page;
|
|
|
|
+ unsigned long overrun;
|
|
|
|
+ unsigned long entries;
|
|
|
|
+ u64 write_stamp;
|
|
|
|
+ u64 read_stamp;
|
|
|
|
+ atomic_t record_disabled;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+struct ring_buffer {
|
|
|
|
+ unsigned long size;
|
|
|
|
+ unsigned pages;
|
|
|
|
+ unsigned flags;
|
|
|
|
+ int cpus;
|
|
|
|
+ cpumask_t cpumask;
|
|
|
|
+ atomic_t record_disabled;
|
|
|
|
+
|
|
|
|
+ struct mutex mutex;
|
|
|
|
+
|
|
|
|
+ struct ring_buffer_per_cpu **buffers;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+struct ring_buffer_iter {
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ unsigned long head;
|
|
|
|
+ struct buffer_page *head_page;
|
|
|
|
+ u64 read_stamp;
|
|
|
|
+};
|
|
|
|
+
|
|
|
|
+#define RB_WARN_ON(buffer, cond) \
|
|
|
|
+ if (unlikely(cond)) { \
|
|
|
|
+ atomic_inc(&buffer->record_disabled); \
|
|
|
|
+ WARN_ON(1); \
|
|
|
|
+ return -1; \
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * check_pages - integrity check of buffer pages
|
|
|
|
+ * @cpu_buffer: CPU buffer with pages to test
|
|
|
|
+ *
|
|
|
|
+ * As a safty measure we check to make sure the data pages have not
|
|
|
|
+ * been corrupted.
|
|
|
|
+ */
|
|
|
|
+static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ struct list_head *head = &cpu_buffer->pages;
|
|
|
|
+ struct buffer_page *page, *tmp;
|
|
|
|
+
|
|
|
|
+ RB_WARN_ON(cpu_buffer, head->next->prev != head);
|
|
|
|
+ RB_WARN_ON(cpu_buffer, head->prev->next != head);
|
|
|
|
+
|
|
|
|
+ list_for_each_entry_safe(page, tmp, head, list) {
|
|
|
|
+ RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
|
|
|
|
+ RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ return cpu_buffer->head_page->size;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ unsigned nr_pages)
|
|
|
|
+{
|
|
|
|
+ struct list_head *head = &cpu_buffer->pages;
|
|
|
|
+ struct buffer_page *page, *tmp;
|
|
|
|
+ unsigned long addr;
|
|
|
|
+ LIST_HEAD(pages);
|
|
|
|
+ unsigned i;
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < nr_pages; i++) {
|
|
|
|
+ addr = __get_free_page(GFP_KERNEL);
|
|
|
|
+ if (!addr)
|
|
|
|
+ goto free_pages;
|
|
|
|
+ page = (struct buffer_page *)virt_to_page(addr);
|
|
|
|
+ list_add(&page->list, &pages);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ list_splice(&pages, head);
|
|
|
|
+
|
|
|
|
+ rb_check_pages(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ free_pages:
|
|
|
|
+ list_for_each_entry_safe(page, tmp, &pages, list) {
|
|
|
|
+ list_del_init(&page->list);
|
|
|
|
+ __free_page(&page->page);
|
|
|
|
+ }
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct ring_buffer_per_cpu *
|
|
|
|
+rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
|
|
|
|
+ GFP_KERNEL, cpu_to_node(cpu));
|
|
|
|
+ if (!cpu_buffer)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer->cpu = cpu;
|
|
|
|
+ cpu_buffer->buffer = buffer;
|
|
|
|
+ spin_lock_init(&cpu_buffer->lock);
|
|
|
|
+ INIT_LIST_HEAD(&cpu_buffer->pages);
|
|
|
|
+
|
|
|
|
+ ret = rb_allocate_pages(cpu_buffer, buffer->pages);
|
|
|
|
+ if (ret < 0)
|
|
|
|
+ goto fail_free_buffer;
|
|
|
|
+
|
|
|
|
+ cpu_buffer->head_page
|
|
|
|
+ = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
|
|
+ cpu_buffer->tail_page
|
|
|
|
+ = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
|
|
+
|
|
|
|
+ return cpu_buffer;
|
|
|
|
+
|
|
|
|
+ fail_free_buffer:
|
|
|
|
+ kfree(cpu_buffer);
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ struct list_head *head = &cpu_buffer->pages;
|
|
|
|
+ struct buffer_page *page, *tmp;
|
|
|
|
+
|
|
|
|
+ list_for_each_entry_safe(page, tmp, head, list) {
|
|
|
|
+ list_del_init(&page->list);
|
|
|
|
+ __free_page(&page->page);
|
|
|
|
+ }
|
|
|
|
+ kfree(cpu_buffer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_alloc - allocate a new ring_buffer
|
|
|
|
+ * @size: the size in bytes that is needed.
|
|
|
|
+ * @flags: attributes to set for the ring buffer.
|
|
|
|
+ *
|
|
|
|
+ * Currently the only flag that is available is the RB_FL_OVERWRITE
|
|
|
|
+ * flag. This flag means that the buffer will overwrite old data
|
|
|
|
+ * when the buffer wraps. If this flag is not set, the buffer will
|
|
|
|
+ * drop data when the tail hits the head.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer *buffer;
|
|
|
|
+ int bsize;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ /* keep it in its own cache line */
|
|
|
|
+ buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
|
|
|
|
+ GFP_KERNEL);
|
|
|
|
+ if (!buffer)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
|
|
+ buffer->flags = flags;
|
|
|
|
+
|
|
|
|
+ /* need at least two pages */
|
|
|
|
+ if (buffer->pages == 1)
|
|
|
|
+ buffer->pages++;
|
|
|
|
+
|
|
|
|
+ buffer->cpumask = cpu_possible_map;
|
|
|
|
+ buffer->cpus = nr_cpu_ids;
|
|
|
|
+
|
|
|
|
+ bsize = sizeof(void *) * nr_cpu_ids;
|
|
|
|
+ buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
|
|
|
|
+ GFP_KERNEL);
|
|
|
|
+ if (!buffer->buffers)
|
|
|
|
+ goto fail_free_buffer;
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ buffer->buffers[cpu] =
|
|
|
|
+ rb_allocate_cpu_buffer(buffer, cpu);
|
|
|
|
+ if (!buffer->buffers[cpu])
|
|
|
|
+ goto fail_free_buffers;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ mutex_init(&buffer->mutex);
|
|
|
|
+
|
|
|
|
+ return buffer;
|
|
|
|
+
|
|
|
|
+ fail_free_buffers:
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ if (buffer->buffers[cpu])
|
|
|
|
+ rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
|
|
+ }
|
|
|
|
+ kfree(buffer->buffers);
|
|
|
|
+
|
|
|
|
+ fail_free_buffer:
|
|
|
|
+ kfree(buffer);
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_free - free a ring buffer.
|
|
|
|
+ * @buffer: the buffer to free.
|
|
|
|
+ */
|
|
|
|
+void
|
|
|
|
+ring_buffer_free(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu)
|
|
|
|
+ rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
|
|
+
|
|
|
|
+ kfree(buffer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
|
|
|
|
+{
|
|
|
|
+ struct buffer_page *page;
|
|
|
|
+ struct list_head *p;
|
|
|
|
+ unsigned i;
|
|
|
|
+
|
|
|
|
+ atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
+ synchronize_sched();
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < nr_pages; i++) {
|
|
|
|
+ BUG_ON(list_empty(&cpu_buffer->pages));
|
|
|
|
+ p = cpu_buffer->pages.next;
|
|
|
|
+ page = list_entry(p, struct buffer_page, list);
|
|
|
|
+ list_del_init(&page->list);
|
|
|
|
+ __free_page(&page->page);
|
|
|
|
+ }
|
|
|
|
+ BUG_ON(list_empty(&cpu_buffer->pages));
|
|
|
|
+
|
|
|
|
+ rb_reset_cpu(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ rb_check_pages(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
+
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ struct list_head *pages, unsigned nr_pages)
|
|
|
|
+{
|
|
|
|
+ struct buffer_page *page;
|
|
|
|
+ struct list_head *p;
|
|
|
|
+ unsigned i;
|
|
|
|
+
|
|
|
|
+ atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
+ synchronize_sched();
|
|
|
|
+
|
|
|
|
+ for (i = 0; i < nr_pages; i++) {
|
|
|
|
+ BUG_ON(list_empty(pages));
|
|
|
|
+ p = pages->next;
|
|
|
|
+ page = list_entry(p, struct buffer_page, list);
|
|
|
|
+ list_del_init(&page->list);
|
|
|
|
+ list_add_tail(&page->list, &cpu_buffer->pages);
|
|
|
|
+ }
|
|
|
|
+ rb_reset_cpu(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ rb_check_pages(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_resize - resize the ring buffer
|
|
|
|
+ * @buffer: the buffer to resize.
|
|
|
|
+ * @size: the new size.
|
|
|
|
+ *
|
|
|
|
+ * The tracer is responsible for making sure that the buffer is
|
|
|
|
+ * not being used while changing the size.
|
|
|
|
+ * Note: We may be able to change the above requirement by using
|
|
|
|
+ * RCU synchronizations.
|
|
|
|
+ *
|
|
|
|
+ * Minimum size is 2 * BUF_PAGE_SIZE.
|
|
|
|
+ *
|
|
|
|
+ * Returns -1 on failure.
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ unsigned nr_pages, rm_pages, new_pages;
|
|
|
|
+ struct buffer_page *page, *tmp;
|
|
|
|
+ unsigned long buffer_size;
|
|
|
|
+ unsigned long addr;
|
|
|
|
+ LIST_HEAD(pages);
|
|
|
|
+ int i, cpu;
|
|
|
|
+
|
|
|
|
+ size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
|
|
+ size *= BUF_PAGE_SIZE;
|
|
|
|
+ buffer_size = buffer->pages * BUF_PAGE_SIZE;
|
|
|
|
+
|
|
|
|
+ /* we need a minimum of two pages */
|
|
|
|
+ if (size < BUF_PAGE_SIZE * 2)
|
|
|
|
+ size = BUF_PAGE_SIZE * 2;
|
|
|
|
+
|
|
|
|
+ if (size == buffer_size)
|
|
|
|
+ return size;
|
|
|
|
+
|
|
|
|
+ mutex_lock(&buffer->mutex);
|
|
|
|
+
|
|
|
|
+ nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
|
|
+
|
|
|
|
+ if (size < buffer_size) {
|
|
|
|
+
|
|
|
|
+ /* easy case, just free pages */
|
|
|
|
+ BUG_ON(nr_pages >= buffer->pages);
|
|
|
|
+
|
|
|
|
+ rm_pages = buffer->pages - nr_pages;
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ rb_remove_pages(cpu_buffer, rm_pages);
|
|
|
|
+ }
|
|
|
|
+ goto out;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * This is a bit more difficult. We only want to add pages
|
|
|
|
+ * when we can allocate enough for all CPUs. We do this
|
|
|
|
+ * by allocating all the pages and storing them on a local
|
|
|
|
+ * link list. If we succeed in our allocation, then we
|
|
|
|
+ * add these pages to the cpu_buffers. Otherwise we just free
|
|
|
|
+ * them all and return -ENOMEM;
|
|
|
|
+ */
|
|
|
|
+ BUG_ON(nr_pages <= buffer->pages);
|
|
|
|
+ new_pages = nr_pages - buffer->pages;
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ for (i = 0; i < new_pages; i++) {
|
|
|
|
+ addr = __get_free_page(GFP_KERNEL);
|
|
|
|
+ if (!addr)
|
|
|
|
+ goto free_pages;
|
|
|
|
+ page = (struct buffer_page *)virt_to_page(addr);
|
|
|
|
+ list_add(&page->list, &pages);
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ rb_insert_pages(cpu_buffer, &pages, new_pages);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ BUG_ON(!list_empty(&pages));
|
|
|
|
+
|
|
|
|
+ out:
|
|
|
|
+ buffer->pages = nr_pages;
|
|
|
|
+ mutex_unlock(&buffer->mutex);
|
|
|
|
+
|
|
|
|
+ return size;
|
|
|
|
+
|
|
|
|
+ free_pages:
|
|
|
|
+ list_for_each_entry_safe(page, tmp, &pages, list) {
|
|
|
|
+ list_del_init(&page->list);
|
|
|
|
+ __free_page(&page->page);
|
|
|
|
+ }
|
|
|
|
+ return -ENOMEM;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ return cpu_buffer->head_page == cpu_buffer->tail_page &&
|
|
|
|
+ cpu_buffer->head == cpu_buffer->tail;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline int rb_null_event(struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ return event->type == RINGBUF_TYPE_PADDING;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void *rb_page_index(struct buffer_page *page, unsigned index)
|
|
|
|
+{
|
|
|
|
+ void *addr = page_address(&page->page);
|
|
|
|
+
|
|
|
|
+ return addr + index;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct ring_buffer_event *
|
|
|
|
+rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ return rb_page_index(cpu_buffer->head_page,
|
|
|
|
+ cpu_buffer->head);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline struct ring_buffer_event *
|
|
|
|
+rb_iter_head_event(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ return rb_page_index(iter->head_page,
|
|
|
|
+ iter->head);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/*
|
|
|
|
+ * When the tail hits the head and the buffer is in overwrite mode,
|
|
|
|
+ * the head jumps to the next page and all content on the previous
|
|
|
|
+ * page is discarded. But before doing so, we update the overrun
|
|
|
|
+ * variable of the buffer.
|
|
|
|
+ */
|
|
|
|
+static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ unsigned long head;
|
|
|
|
+
|
|
|
|
+ for (head = 0; head < rb_head_size(cpu_buffer);
|
|
|
|
+ head += rb_event_length(event)) {
|
|
|
|
+
|
|
|
|
+ event = rb_page_index(cpu_buffer->head_page, head);
|
|
|
|
+ BUG_ON(rb_null_event(event));
|
|
|
|
+ /* Only count data entries */
|
|
|
|
+ if (event->type != RINGBUF_TYPE_DATA)
|
|
|
|
+ continue;
|
|
|
|
+ cpu_buffer->overrun++;
|
|
|
|
+ cpu_buffer->entries--;
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ struct buffer_page **page)
|
|
|
|
+{
|
|
|
|
+ struct list_head *p = (*page)->list.next;
|
|
|
|
+
|
|
|
|
+ if (p == &cpu_buffer->pages)
|
|
|
|
+ p = p->next;
|
|
|
|
+
|
|
|
|
+ *page = list_entry(p, struct buffer_page, list);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline void
|
|
|
|
+rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ cpu_buffer->tail_page->time_stamp = *ts;
|
|
|
|
+ cpu_buffer->write_stamp = *ts;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
|
|
|
|
+ cpu_buffer->head = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_reset_iter_read_page(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ iter->read_stamp = iter->head_page->time_stamp;
|
|
|
|
+ iter->head = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_update_event - update event type and data
|
|
|
|
+ * @event: the even to update
|
|
|
|
+ * @type: the type of event
|
|
|
|
+ * @length: the size of the event field in the ring buffer
|
|
|
|
+ *
|
|
|
|
+ * Update the type and data fields of the event. The length
|
|
|
|
+ * is the actual size that is written to the ring buffer,
|
|
|
|
+ * and with this, we can determine what to place into the
|
|
|
|
+ * data field.
|
|
|
|
+ */
|
|
|
|
+static inline void
|
|
|
|
+rb_update_event(struct ring_buffer_event *event,
|
|
|
|
+ unsigned type, unsigned length)
|
|
|
|
+{
|
|
|
|
+ event->type = type;
|
|
|
|
+
|
|
|
|
+ switch (type) {
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ event->len =
|
|
|
|
+ (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
|
|
|
|
+ >> RB_ALIGNMENT_SHIFT;
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ event->len =
|
|
|
|
+ (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
|
|
|
|
+ >> RB_ALIGNMENT_SHIFT;
|
|
|
|
+ break;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ length -= RB_EVNT_HDR_SIZE;
|
|
|
|
+ if (length > RB_MAX_SMALL_DATA) {
|
|
|
|
+ event->len = 0;
|
|
|
|
+ event->array[0] = length;
|
|
|
|
+ } else
|
|
|
|
+ event->len =
|
|
|
|
+ (length + (RB_ALIGNMENT-1))
|
|
|
|
+ >> RB_ALIGNMENT_SHIFT;
|
|
|
|
+ break;
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static inline unsigned rb_calculate_event_length(unsigned length)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event event; /* Used only for sizeof array */
|
|
|
|
+
|
|
|
|
+ /* zero length can cause confusions */
|
|
|
|
+ if (!length)
|
|
|
|
+ length = 1;
|
|
|
|
+
|
|
|
|
+ if (length > RB_MAX_SMALL_DATA)
|
|
|
|
+ length += sizeof(event.array[0]);
|
|
|
|
+
|
|
|
|
+ length += RB_EVNT_HDR_SIZE;
|
|
|
|
+ length = ALIGN(length, RB_ALIGNMENT);
|
|
|
|
+
|
|
|
|
+ return length;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct ring_buffer_event *
|
|
|
|
+__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ unsigned type, unsigned long length, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ struct buffer_page *head_page, *tail_page;
|
|
|
|
+ unsigned long tail;
|
|
|
|
+ struct ring_buffer *buffer = cpu_buffer->buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+
|
|
|
|
+ tail_page = cpu_buffer->tail_page;
|
|
|
|
+ head_page = cpu_buffer->head_page;
|
|
|
|
+ tail = cpu_buffer->tail;
|
|
|
|
+
|
|
|
|
+ if (tail + length > BUF_PAGE_SIZE) {
|
|
|
|
+ struct buffer_page *next_page = tail_page;
|
|
|
|
+
|
|
|
|
+ rb_inc_page(cpu_buffer, &next_page);
|
|
|
|
+
|
|
|
|
+ if (next_page == head_page) {
|
|
|
|
+ if (!(buffer->flags & RB_FL_OVERWRITE))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ /* count overflows */
|
|
|
|
+ rb_update_overflow(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ rb_inc_page(cpu_buffer, &head_page);
|
|
|
|
+ cpu_buffer->head_page = head_page;
|
|
|
|
+ rb_reset_read_page(cpu_buffer);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ if (tail != BUF_PAGE_SIZE) {
|
|
|
|
+ event = rb_page_index(tail_page, tail);
|
|
|
|
+ /* page padding */
|
|
|
|
+ event->type = RINGBUF_TYPE_PADDING;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ tail_page->size = tail;
|
|
|
|
+ tail_page = next_page;
|
|
|
|
+ tail_page->size = 0;
|
|
|
|
+ tail = 0;
|
|
|
|
+ cpu_buffer->tail_page = tail_page;
|
|
|
|
+ cpu_buffer->tail = tail;
|
|
|
|
+ rb_add_stamp(cpu_buffer, ts);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ BUG_ON(tail + length > BUF_PAGE_SIZE);
|
|
|
|
+
|
|
|
|
+ event = rb_page_index(tail_page, tail);
|
|
|
|
+ rb_update_event(event, type, length);
|
|
|
|
+
|
|
|
|
+ return event;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static int
|
|
|
|
+rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ u64 *ts, u64 *delta)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ static int once;
|
|
|
|
+
|
|
|
|
+ if (unlikely(*delta > (1ULL << 59) && !once++)) {
|
|
|
|
+ printk(KERN_WARNING "Delta way too big! %llu"
|
|
|
|
+ " ts=%llu write stamp = %llu\n",
|
|
|
|
+ *delta, *ts, cpu_buffer->write_stamp);
|
|
|
|
+ WARN_ON(1);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * The delta is too big, we to add a
|
|
|
|
+ * new timestamp.
|
|
|
|
+ */
|
|
|
|
+ event = __rb_reserve_next(cpu_buffer,
|
|
|
|
+ RINGBUF_TYPE_TIME_EXTEND,
|
|
|
|
+ RB_LEN_TIME_EXTEND,
|
|
|
|
+ ts);
|
|
|
|
+ if (!event)
|
|
|
|
+ return -1;
|
|
|
|
+
|
|
|
|
+ /* check to see if we went to the next page */
|
|
|
|
+ if (cpu_buffer->tail) {
|
|
|
|
+ /* Still on same page, update timestamp */
|
|
|
|
+ event->time_delta = *delta & TS_MASK;
|
|
|
|
+ event->array[0] = *delta >> TS_SHIFT;
|
|
|
|
+ /* commit the time event */
|
|
|
|
+ cpu_buffer->tail +=
|
|
|
|
+ rb_event_length(event);
|
|
|
|
+ cpu_buffer->write_stamp = *ts;
|
|
|
|
+ *delta = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static struct ring_buffer_event *
|
|
|
|
+rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ unsigned type, unsigned long length)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ u64 ts, delta;
|
|
|
|
+
|
|
|
|
+ ts = ring_buffer_time_stamp(cpu_buffer->cpu);
|
|
|
|
+
|
|
|
|
+ if (cpu_buffer->tail) {
|
|
|
|
+ delta = ts - cpu_buffer->write_stamp;
|
|
|
|
+
|
|
|
|
+ if (test_time_stamp(delta)) {
|
|
|
|
+ int ret;
|
|
|
|
+
|
|
|
|
+ ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
|
|
|
|
+ if (ret < 0)
|
|
|
|
+ return NULL;
|
|
|
|
+ }
|
|
|
|
+ } else {
|
|
|
|
+ rb_add_stamp(cpu_buffer, &ts);
|
|
|
|
+ delta = 0;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ event = __rb_reserve_next(cpu_buffer, type, length, &ts);
|
|
|
|
+ if (!event)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ /* If the reserve went to the next page, our delta is zero */
|
|
|
|
+ if (!cpu_buffer->tail)
|
|
|
|
+ delta = 0;
|
|
|
|
+
|
|
|
|
+ event->time_delta = delta;
|
|
|
|
+
|
|
|
|
+ return event;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_lock_reserve - reserve a part of the buffer
|
|
|
|
+ * @buffer: the ring buffer to reserve from
|
|
|
|
+ * @length: the length of the data to reserve (excluding event header)
|
|
|
|
+ * @flags: a pointer to save the interrupt flags
|
|
|
|
+ *
|
|
|
|
+ * Returns a reseverd event on the ring buffer to copy directly to.
|
|
|
|
+ * The user of this interface will need to get the body to write into
|
|
|
|
+ * and can use the ring_buffer_event_data() interface.
|
|
|
|
+ *
|
|
|
|
+ * The length is the length of the data needed, not the event length
|
|
|
|
+ * which also includes the event header.
|
|
|
|
+ *
|
|
|
|
+ * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
|
|
|
|
+ * If NULL is returned, then nothing has been allocated or locked.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_event *
|
|
|
|
+ring_buffer_lock_reserve(struct ring_buffer *buffer,
|
|
|
|
+ unsigned long length,
|
|
|
|
+ unsigned long *flags)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&buffer->record_disabled))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ raw_local_irq_save(*flags);
|
|
|
|
+ cpu = raw_smp_processor_id();
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ goto out_irq;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ spin_lock(&cpu_buffer->lock);
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&cpu_buffer->record_disabled))
|
|
|
|
+ goto no_record;
|
|
|
|
+
|
|
|
|
+ length = rb_calculate_event_length(length);
|
|
|
|
+ if (length > BUF_PAGE_SIZE)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
|
|
|
|
+ if (!event)
|
|
|
|
+ goto no_record;
|
|
|
|
+
|
|
|
|
+ return event;
|
|
|
|
+
|
|
|
|
+ no_record:
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+ out_irq:
|
|
|
|
+ local_irq_restore(*flags);
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ cpu_buffer->tail += rb_event_length(event);
|
|
|
|
+ cpu_buffer->tail_page->size = cpu_buffer->tail;
|
|
|
|
+ cpu_buffer->write_stamp += event->time_delta;
|
|
|
|
+ cpu_buffer->entries++;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_unlock_commit - commit a reserved
|
|
|
|
+ * @buffer: The buffer to commit to
|
|
|
|
+ * @event: The event pointer to commit.
|
|
|
|
+ * @flags: the interrupt flags received from ring_buffer_lock_reserve.
|
|
|
|
+ *
|
|
|
|
+ * This commits the data to the ring buffer, and releases any locks held.
|
|
|
|
+ *
|
|
|
|
+ * Must be paired with ring_buffer_lock_reserve.
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_unlock_commit(struct ring_buffer *buffer,
|
|
|
|
+ struct ring_buffer_event *event,
|
|
|
|
+ unsigned long flags)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ int cpu = raw_smp_processor_id();
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+
|
|
|
|
+ assert_spin_locked(&cpu_buffer->lock);
|
|
|
|
+
|
|
|
|
+ rb_commit(cpu_buffer, event);
|
|
|
|
+
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+ raw_local_irq_restore(flags);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_write - write data to the buffer without reserving
|
|
|
|
+ * @buffer: The ring buffer to write to.
|
|
|
|
+ * @length: The length of the data being written (excluding the event header)
|
|
|
|
+ * @data: The data to write to the buffer.
|
|
|
|
+ *
|
|
|
|
+ * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
|
|
|
|
+ * one function. If you already have the data to write to the buffer, it
|
|
|
|
+ * may be easier to simply call this function.
|
|
|
|
+ *
|
|
|
|
+ * Note, like ring_buffer_lock_reserve, the length is the length of the data
|
|
|
|
+ * and not the length of the event which would hold the header.
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_write(struct ring_buffer *buffer,
|
|
|
|
+ unsigned long length,
|
|
|
|
+ void *data)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ unsigned long event_length, flags;
|
|
|
|
+ void *body;
|
|
|
|
+ int ret = -EBUSY;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&buffer->record_disabled))
|
|
|
|
+ return -EBUSY;
|
|
|
|
+
|
|
|
|
+ local_irq_save(flags);
|
|
|
|
+ cpu = raw_smp_processor_id();
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ goto out_irq;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ spin_lock(&cpu_buffer->lock);
|
|
|
|
+
|
|
|
|
+ if (atomic_read(&cpu_buffer->record_disabled))
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ event_length = rb_calculate_event_length(length);
|
|
|
|
+ event = rb_reserve_next_event(cpu_buffer,
|
|
|
|
+ RINGBUF_TYPE_DATA, event_length);
|
|
|
|
+ if (!event)
|
|
|
|
+ goto out;
|
|
|
|
+
|
|
|
|
+ body = rb_event_data(event);
|
|
|
|
+
|
|
|
|
+ memcpy(body, data, length);
|
|
|
|
+
|
|
|
|
+ rb_commit(cpu_buffer, event);
|
|
|
|
+
|
|
|
|
+ ret = 0;
|
|
|
|
+ out:
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+ out_irq:
|
|
|
|
+ local_irq_restore(flags);
|
|
|
|
+
|
|
|
|
+ return ret;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_lock - lock the ring buffer
|
|
|
|
+ * @buffer: The ring buffer to lock
|
|
|
|
+ * @flags: The place to store the interrupt flags
|
|
|
|
+ *
|
|
|
|
+ * This locks all the per CPU buffers.
|
|
|
|
+ *
|
|
|
|
+ * Must be unlocked by ring_buffer_unlock.
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ local_irq_save(*flags);
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ spin_lock(&cpu_buffer->lock);
|
|
|
|
+ }
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_unlock - unlock a locked buffer
|
|
|
|
+ * @buffer: The locked buffer to unlock
|
|
|
|
+ * @flags: The interrupt flags received by ring_buffer_lock
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ continue;
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ local_irq_restore(flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_record_disable - stop all writes into the buffer
|
|
|
|
+ * @buffer: The ring buffer to stop writes to.
|
|
|
|
+ *
|
|
|
|
+ * This prevents all writes to the buffer. Any attempt to write
|
|
|
|
+ * to the buffer after this will fail and return NULL.
|
|
|
|
+ *
|
|
|
|
+ * The caller should call synchronize_sched() after this.
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_record_disable(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ atomic_inc(&buffer->record_disabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_record_enable - enable writes to the buffer
|
|
|
|
+ * @buffer: The ring buffer to enable writes
|
|
|
|
+ *
|
|
|
|
+ * Note, multiple disables will need the same number of enables
|
|
|
|
+ * to truely enable the writing (much like preempt_disable).
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_record_enable(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ atomic_dec(&buffer->record_disabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
|
|
|
|
+ * @buffer: The ring buffer to stop writes to.
|
|
|
|
+ * @cpu: The CPU buffer to stop
|
|
|
|
+ *
|
|
|
|
+ * This prevents all writes to the buffer. Any attempt to write
|
|
|
|
+ * to the buffer after this will fail and return NULL.
|
|
|
|
+ *
|
|
|
|
+ * The caller should call synchronize_sched() after this.
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_record_enable_cpu - enable writes to the buffer
|
|
|
|
+ * @buffer: The ring buffer to enable writes
|
|
|
|
+ * @cpu: The CPU to enable.
|
|
|
|
+ *
|
|
|
|
+ * Note, multiple disables will need the same number of enables
|
|
|
|
+ * to truely enable the writing (much like preempt_disable).
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
|
|
|
|
+ * @buffer: The ring buffer
|
|
|
|
+ * @cpu: The per CPU buffer to get the entries from.
|
|
|
|
+ */
|
|
|
|
+unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ return cpu_buffer->entries;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
|
|
|
|
+ * @buffer: The ring buffer
|
|
|
|
+ * @cpu: The per CPU buffer to get the number of overruns from
|
|
|
|
+ */
|
|
|
|
+unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return 0;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ return cpu_buffer->overrun;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_entries - get the number of entries in a buffer
|
|
|
|
+ * @buffer: The ring buffer
|
|
|
|
+ *
|
|
|
|
+ * Returns the total number of entries in the ring buffer
|
|
|
|
+ * (all CPU entries)
|
|
|
|
+ */
|
|
|
|
+unsigned long ring_buffer_entries(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ unsigned long entries = 0;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ /* if you care about this being correct, lock the buffer */
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ entries += cpu_buffer->entries;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return entries;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_overrun_cpu - get the number of overruns in buffer
|
|
|
|
+ * @buffer: The ring buffer
|
|
|
|
+ *
|
|
|
|
+ * Returns the total number of overruns in the ring buffer
|
|
|
|
+ * (all CPU entries)
|
|
|
|
+ */
|
|
|
|
+unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ unsigned long overruns = 0;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ /* if you care about this being correct, lock the buffer */
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ overruns += cpu_buffer->overrun;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return overruns;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_iter_reset - reset an iterator
|
|
|
|
+ * @iter: The iterator to reset
|
|
|
|
+ *
|
|
|
|
+ * Resets the iterator, so that it will start from the beginning
|
|
|
|
+ * again.
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
+
|
|
|
|
+ iter->head_page = cpu_buffer->head_page;
|
|
|
|
+ iter->head = cpu_buffer->head;
|
|
|
|
+ rb_reset_iter_read_page(iter);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_iter_empty - check if an iterator has no more to read
|
|
|
|
+ * @iter: The iterator to check
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = iter->cpu_buffer;
|
|
|
|
+
|
|
|
|
+ return iter->head_page == cpu_buffer->tail_page &&
|
|
|
|
+ iter->head == cpu_buffer->tail;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
|
|
+ struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ u64 delta;
|
|
|
|
+
|
|
|
|
+ switch (event->type) {
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ delta = event->array[0];
|
|
|
|
+ delta <<= TS_SHIFT;
|
|
|
|
+ delta += event->time_delta;
|
|
|
|
+ cpu_buffer->read_stamp += delta;
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ /* FIXME: not implemented */
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ cpu_buffer->read_stamp += event->time_delta;
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
|
|
|
|
+ struct ring_buffer_event *event)
|
|
|
|
+{
|
|
|
|
+ u64 delta;
|
|
|
|
+
|
|
|
|
+ switch (event->type) {
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ delta = event->array[0];
|
|
|
|
+ delta <<= TS_SHIFT;
|
|
|
|
+ delta += event->time_delta;
|
|
|
|
+ iter->read_stamp += delta;
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ /* FIXME: not implemented */
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ iter->read_stamp += event->time_delta;
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+ return;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ unsigned length;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Check if we are at the end of the buffer.
|
|
|
|
+ */
|
|
|
|
+ if (cpu_buffer->head >= cpu_buffer->head_page->size) {
|
|
|
|
+ BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
|
|
|
|
+ rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
|
|
|
+ rb_reset_read_page(cpu_buffer);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ event = rb_head_event(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ if (event->type == RINGBUF_TYPE_DATA)
|
|
|
|
+ cpu_buffer->entries--;
|
|
|
|
+
|
|
|
|
+ length = rb_event_length(event);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * This should not be called to advance the header if we are
|
|
|
|
+ * at the tail of the buffer.
|
|
|
|
+ */
|
|
|
|
+ BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
|
|
|
|
+ (cpu_buffer->head + length > cpu_buffer->tail));
|
|
|
|
+
|
|
|
|
+ rb_update_read_stamp(cpu_buffer, event);
|
|
|
|
+
|
|
|
|
+ cpu_buffer->head += length;
|
|
|
|
+
|
|
|
|
+ /* check for end of page */
|
|
|
|
+ if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
|
|
|
|
+ (cpu_buffer->head_page != cpu_buffer->tail_page))
|
|
|
|
+ rb_advance_head(cpu_buffer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void rb_advance_iter(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer *buffer;
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+ unsigned length;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = iter->cpu_buffer;
|
|
|
|
+ buffer = cpu_buffer->buffer;
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * Check if we are at the end of the buffer.
|
|
|
|
+ */
|
|
|
|
+ if (iter->head >= iter->head_page->size) {
|
|
|
|
+ BUG_ON(iter->head_page == cpu_buffer->tail_page);
|
|
|
|
+ rb_inc_page(cpu_buffer, &iter->head_page);
|
|
|
|
+ rb_reset_iter_read_page(iter);
|
|
|
|
+ return;
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ event = rb_iter_head_event(iter);
|
|
|
|
+
|
|
|
|
+ length = rb_event_length(event);
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * This should not be called to advance the header if we are
|
|
|
|
+ * at the tail of the buffer.
|
|
|
|
+ */
|
|
|
|
+ BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
|
|
|
|
+ (iter->head + length > cpu_buffer->tail));
|
|
|
|
+
|
|
|
|
+ rb_update_iter_read_stamp(iter, event);
|
|
|
|
+
|
|
|
|
+ iter->head += length;
|
|
|
|
+
|
|
|
|
+ /* check for end of page padding */
|
|
|
|
+ if ((iter->head >= iter->head_page->size) &&
|
|
|
|
+ (iter->head_page != cpu_buffer->tail_page))
|
|
|
|
+ rb_advance_iter(iter);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_peek - peek at the next event to be read
|
|
|
|
+ * @buffer: The ring buffer to read
|
|
|
|
+ * @cpu: The cpu to peak at
|
|
|
|
+ * @ts: The timestamp counter of this event.
|
|
|
|
+ *
|
|
|
|
+ * This will return the event that will be read next, but does
|
|
|
|
+ * not consume the data.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_event *
|
|
|
|
+ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+
|
|
|
|
+ again:
|
|
|
|
+ if (rb_per_cpu_empty(cpu_buffer))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ event = rb_head_event(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ switch (event->type) {
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
|
|
|
+ rb_reset_read_page(cpu_buffer);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ /* Internal data, OK to advance */
|
|
|
|
+ rb_advance_head(cpu_buffer);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ /* FIXME: not implemented */
|
|
|
|
+ rb_advance_head(cpu_buffer);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ if (ts) {
|
|
|
|
+ *ts = cpu_buffer->read_stamp + event->time_delta;
|
|
|
|
+ ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
|
|
|
+ }
|
|
|
|
+ return event;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_iter_peek - peek at the next event to be read
|
|
|
|
+ * @iter: The ring buffer iterator
|
|
|
|
+ * @ts: The timestamp counter of this event.
|
|
|
|
+ *
|
|
|
|
+ * This will return the event that will be read next, but does
|
|
|
|
+ * not increment the iterator.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_event *
|
|
|
|
+ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer *buffer;
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+
|
|
|
|
+ if (ring_buffer_iter_empty(iter))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = iter->cpu_buffer;
|
|
|
|
+ buffer = cpu_buffer->buffer;
|
|
|
|
+
|
|
|
|
+ again:
|
|
|
|
+ if (rb_per_cpu_empty(cpu_buffer))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ event = rb_iter_head_event(iter);
|
|
|
|
+
|
|
|
|
+ switch (event->type) {
|
|
|
|
+ case RINGBUF_TYPE_PADDING:
|
|
|
|
+ rb_inc_page(cpu_buffer, &iter->head_page);
|
|
|
|
+ rb_reset_iter_read_page(iter);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_EXTEND:
|
|
|
|
+ /* Internal data, OK to advance */
|
|
|
|
+ rb_advance_iter(iter);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_TIME_STAMP:
|
|
|
|
+ /* FIXME: not implemented */
|
|
|
|
+ rb_advance_iter(iter);
|
|
|
|
+ goto again;
|
|
|
|
+
|
|
|
|
+ case RINGBUF_TYPE_DATA:
|
|
|
|
+ if (ts) {
|
|
|
|
+ *ts = iter->read_stamp + event->time_delta;
|
|
|
|
+ ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
|
|
|
+ }
|
|
|
|
+ return event;
|
|
|
|
+
|
|
|
|
+ default:
|
|
|
|
+ BUG();
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return NULL;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_consume - return an event and consume it
|
|
|
|
+ * @buffer: The ring buffer to get the next event from
|
|
|
|
+ *
|
|
|
|
+ * Returns the next event in the ring buffer, and that event is consumed.
|
|
|
|
+ * Meaning, that sequential reads will keep returning a different event,
|
|
|
|
+ * and eventually empty the ring buffer if the producer is slower.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_event *
|
|
|
|
+ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ event = ring_buffer_peek(buffer, cpu, ts);
|
|
|
|
+ if (!event)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ rb_advance_head(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ return event;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_read_start - start a non consuming read of the buffer
|
|
|
|
+ * @buffer: The ring buffer to read from
|
|
|
|
+ * @cpu: The cpu buffer to iterate over
|
|
|
|
+ *
|
|
|
|
+ * This starts up an iteration through the buffer. It also disables
|
|
|
|
+ * the recording to the buffer until the reading is finished.
|
|
|
|
+ * This prevents the reading from being corrupted. This is not
|
|
|
|
+ * a consuming read, so a producer is not expected.
|
|
|
|
+ *
|
|
|
|
+ * Must be paired with ring_buffer_finish.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_iter *
|
|
|
|
+ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ struct ring_buffer_iter *iter;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ iter = kmalloc(sizeof(*iter), GFP_KERNEL);
|
|
|
|
+ if (!iter)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+
|
|
|
|
+ iter->cpu_buffer = cpu_buffer;
|
|
|
|
+
|
|
|
|
+ atomic_inc(&cpu_buffer->record_disabled);
|
|
|
|
+ synchronize_sched();
|
|
|
|
+
|
|
|
|
+ spin_lock(&cpu_buffer->lock);
|
|
|
|
+ iter->head = cpu_buffer->head;
|
|
|
|
+ iter->head_page = cpu_buffer->head_page;
|
|
|
|
+ rb_reset_iter_read_page(iter);
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+
|
|
|
|
+ return iter;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_finish - finish reading the iterator of the buffer
|
|
|
|
+ * @iter: The iterator retrieved by ring_buffer_start
|
|
|
|
+ *
|
|
|
|
+ * This re-enables the recording to the buffer, and frees the
|
|
|
|
+ * iterator.
|
|
|
|
+ */
|
|
|
|
+void
|
|
|
|
+ring_buffer_read_finish(struct ring_buffer_iter *iter)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
+
|
|
|
|
+ atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
+ kfree(iter);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_read - read the next item in the ring buffer by the iterator
|
|
|
|
+ * @iter: The ring buffer iterator
|
|
|
|
+ * @ts: The time stamp of the event read.
|
|
|
|
+ *
|
|
|
|
+ * This reads the next event in the ring buffer and increments the iterator.
|
|
|
|
+ */
|
|
|
|
+struct ring_buffer_event *
|
|
|
|
+ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_event *event;
|
|
|
|
+
|
|
|
|
+ event = ring_buffer_iter_peek(iter, ts);
|
|
|
|
+ if (!event)
|
|
|
|
+ return NULL;
|
|
|
|
+
|
|
|
|
+ rb_advance_iter(iter);
|
|
|
|
+
|
|
|
|
+ return event;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_size - return the size of the ring buffer (in bytes)
|
|
|
|
+ * @buffer: The ring buffer.
|
|
|
|
+ */
|
|
|
|
+unsigned long ring_buffer_size(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ return BUF_PAGE_SIZE * buffer->pages;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+static void
|
|
|
|
+rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
|
|
|
|
+{
|
|
|
|
+ cpu_buffer->head_page
|
|
|
|
+ = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
|
|
+ cpu_buffer->tail_page
|
|
|
|
+ = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
|
|
+
|
|
|
|
+ cpu_buffer->head = cpu_buffer->tail = 0;
|
|
|
|
+ cpu_buffer->overrun = 0;
|
|
|
|
+ cpu_buffer->entries = 0;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
|
|
|
|
+ * @buffer: The ring buffer to reset a per cpu buffer of
|
|
|
|
+ * @cpu: The CPU buffer to be reset
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ unsigned long flags;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return;
|
|
|
|
+
|
|
|
|
+ raw_local_irq_save(flags);
|
|
|
|
+ spin_lock(&cpu_buffer->lock);
|
|
|
|
+
|
|
|
|
+ rb_reset_cpu(cpu_buffer);
|
|
|
|
+
|
|
|
|
+ spin_unlock(&cpu_buffer->lock);
|
|
|
|
+ raw_local_irq_restore(flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_reset - reset a ring buffer
|
|
|
|
+ * @buffer: The ring buffer to reset all cpu buffers
|
|
|
|
+ */
|
|
|
|
+void ring_buffer_reset(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ unsigned long flags;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ ring_buffer_lock(buffer, &flags);
|
|
|
|
+
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu)
|
|
|
|
+ rb_reset_cpu(buffer->buffers[cpu]);
|
|
|
|
+
|
|
|
|
+ ring_buffer_unlock(buffer, flags);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * rind_buffer_empty - is the ring buffer empty?
|
|
|
|
+ * @buffer: The ring buffer to test
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_empty(struct ring_buffer *buffer)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+ int cpu;
|
|
|
|
+
|
|
|
|
+ /* yes this is racy, but if you don't like the race, lock the buffer */
|
|
|
|
+ for_each_buffer_cpu(buffer, cpu) {
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ if (!rb_per_cpu_empty(cpu_buffer))
|
|
|
|
+ return 0;
|
|
|
|
+ }
|
|
|
|
+ return 1;
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
|
|
|
|
+ * @buffer: The ring buffer
|
|
|
|
+ * @cpu: The CPU buffer to test
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer->cpumask))
|
|
|
|
+ return 1;
|
|
|
|
+
|
|
|
|
+ cpu_buffer = buffer->buffers[cpu];
|
|
|
|
+ return rb_per_cpu_empty(cpu_buffer);
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+/**
|
|
|
|
+ * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
|
|
|
|
+ * @buffer_a: One buffer to swap with
|
|
|
|
+ * @buffer_b: The other buffer to swap with
|
|
|
|
+ *
|
|
|
|
+ * This function is useful for tracers that want to take a "snapshot"
|
|
|
|
+ * of a CPU buffer and has another back up buffer lying around.
|
|
|
|
+ * it is expected that the tracer handles the cpu buffer not being
|
|
|
|
+ * used at the moment.
|
|
|
|
+ */
|
|
|
|
+int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
|
|
|
|
+ struct ring_buffer *buffer_b, int cpu)
|
|
|
|
+{
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer_a;
|
|
|
|
+ struct ring_buffer_per_cpu *cpu_buffer_b;
|
|
|
|
+
|
|
|
|
+ if (!cpu_isset(cpu, buffer_a->cpumask) ||
|
|
|
|
+ !cpu_isset(cpu, buffer_b->cpumask))
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ /* At least make sure the two buffers are somewhat the same */
|
|
|
|
+ if (buffer_a->size != buffer_b->size ||
|
|
|
|
+ buffer_a->pages != buffer_b->pages)
|
|
|
|
+ return -EINVAL;
|
|
|
|
+
|
|
|
|
+ cpu_buffer_a = buffer_a->buffers[cpu];
|
|
|
|
+ cpu_buffer_b = buffer_b->buffers[cpu];
|
|
|
|
+
|
|
|
|
+ /*
|
|
|
|
+ * We can't do a synchronize_sched here because this
|
|
|
|
+ * function can be called in atomic context.
|
|
|
|
+ * Normally this will be called from the same CPU as cpu.
|
|
|
|
+ * If not it's up to the caller to protect this.
|
|
|
|
+ */
|
|
|
|
+ atomic_inc(&cpu_buffer_a->record_disabled);
|
|
|
|
+ atomic_inc(&cpu_buffer_b->record_disabled);
|
|
|
|
+
|
|
|
|
+ buffer_a->buffers[cpu] = cpu_buffer_b;
|
|
|
|
+ buffer_b->buffers[cpu] = cpu_buffer_a;
|
|
|
|
+
|
|
|
|
+ cpu_buffer_b->buffer = buffer_a;
|
|
|
|
+ cpu_buffer_a->buffer = buffer_b;
|
|
|
|
+
|
|
|
|
+ atomic_dec(&cpu_buffer_a->record_disabled);
|
|
|
|
+ atomic_dec(&cpu_buffer_b->record_disabled);
|
|
|
|
+
|
|
|
|
+ return 0;
|
|
|
|
+}
|
|
|
|
+
|