ring_buffer.c 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. /* Up this if you want to test the TIME_EXTENTS and normalization */
  19. #define DEBUG_SHIFT 0
  20. /* FIXME!!! */
  21. u64 ring_buffer_time_stamp(int cpu)
  22. {
  23. /* shift to debug/test normalization and TIME_EXTENTS */
  24. return sched_clock() << DEBUG_SHIFT;
  25. }
  26. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  27. {
  28. /* Just stupid testing the normalize function and deltas */
  29. *ts >>= DEBUG_SHIFT;
  30. }
  31. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  32. #define RB_ALIGNMENT_SHIFT 2
  33. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  34. #define RB_MAX_SMALL_DATA 28
  35. enum {
  36. RB_LEN_TIME_EXTEND = 8,
  37. RB_LEN_TIME_STAMP = 16,
  38. };
  39. /* inline for ring buffer fast paths */
  40. static inline unsigned
  41. rb_event_length(struct ring_buffer_event *event)
  42. {
  43. unsigned length;
  44. switch (event->type) {
  45. case RINGBUF_TYPE_PADDING:
  46. /* undefined */
  47. return -1;
  48. case RINGBUF_TYPE_TIME_EXTEND:
  49. return RB_LEN_TIME_EXTEND;
  50. case RINGBUF_TYPE_TIME_STAMP:
  51. return RB_LEN_TIME_STAMP;
  52. case RINGBUF_TYPE_DATA:
  53. if (event->len)
  54. length = event->len << RB_ALIGNMENT_SHIFT;
  55. else
  56. length = event->array[0];
  57. return length + RB_EVNT_HDR_SIZE;
  58. default:
  59. BUG();
  60. }
  61. /* not hit */
  62. return 0;
  63. }
  64. /**
  65. * ring_buffer_event_length - return the length of the event
  66. * @event: the event to get the length of
  67. */
  68. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  69. {
  70. return rb_event_length(event);
  71. }
  72. /* inline for ring buffer fast paths */
  73. static inline void *
  74. rb_event_data(struct ring_buffer_event *event)
  75. {
  76. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  77. /* If length is in len field, then array[0] has the data */
  78. if (event->len)
  79. return (void *)&event->array[0];
  80. /* Otherwise length is in array[0] and array[1] has the data */
  81. return (void *)&event->array[1];
  82. }
  83. /**
  84. * ring_buffer_event_data - return the data of the event
  85. * @event: the event to get the data from
  86. */
  87. void *ring_buffer_event_data(struct ring_buffer_event *event)
  88. {
  89. return rb_event_data(event);
  90. }
  91. #define for_each_buffer_cpu(buffer, cpu) \
  92. for_each_cpu_mask(cpu, buffer->cpumask)
  93. #define TS_SHIFT 27
  94. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  95. #define TS_DELTA_TEST (~TS_MASK)
  96. /*
  97. * This hack stolen from mm/slob.c.
  98. * We can store per page timing information in the page frame of the page.
  99. * Thanks to Peter Zijlstra for suggesting this idea.
  100. */
  101. struct buffer_page {
  102. union {
  103. struct {
  104. unsigned long flags; /* mandatory */
  105. atomic_t _count; /* mandatory */
  106. u64 time_stamp; /* page time stamp */
  107. unsigned size; /* size of page data */
  108. struct list_head list; /* list of free pages */
  109. };
  110. struct page page;
  111. };
  112. };
  113. /*
  114. * We need to fit the time_stamp delta into 27 bits.
  115. */
  116. static inline int test_time_stamp(u64 delta)
  117. {
  118. if (delta & TS_DELTA_TEST)
  119. return 1;
  120. return 0;
  121. }
  122. #define BUF_PAGE_SIZE PAGE_SIZE
  123. /*
  124. * head_page == tail_page && head == tail then buffer is empty.
  125. */
  126. struct ring_buffer_per_cpu {
  127. int cpu;
  128. struct ring_buffer *buffer;
  129. spinlock_t lock;
  130. struct lock_class_key lock_key;
  131. struct list_head pages;
  132. unsigned long head; /* read from head */
  133. unsigned long tail; /* write to tail */
  134. struct buffer_page *head_page;
  135. struct buffer_page *tail_page;
  136. unsigned long overrun;
  137. unsigned long entries;
  138. u64 write_stamp;
  139. u64 read_stamp;
  140. atomic_t record_disabled;
  141. };
  142. struct ring_buffer {
  143. unsigned long size;
  144. unsigned pages;
  145. unsigned flags;
  146. int cpus;
  147. cpumask_t cpumask;
  148. atomic_t record_disabled;
  149. struct mutex mutex;
  150. struct ring_buffer_per_cpu **buffers;
  151. };
  152. struct ring_buffer_iter {
  153. struct ring_buffer_per_cpu *cpu_buffer;
  154. unsigned long head;
  155. struct buffer_page *head_page;
  156. u64 read_stamp;
  157. };
  158. #define RB_WARN_ON(buffer, cond) \
  159. if (unlikely(cond)) { \
  160. atomic_inc(&buffer->record_disabled); \
  161. WARN_ON(1); \
  162. return -1; \
  163. }
  164. /**
  165. * check_pages - integrity check of buffer pages
  166. * @cpu_buffer: CPU buffer with pages to test
  167. *
  168. * As a safty measure we check to make sure the data pages have not
  169. * been corrupted.
  170. */
  171. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  172. {
  173. struct list_head *head = &cpu_buffer->pages;
  174. struct buffer_page *page, *tmp;
  175. RB_WARN_ON(cpu_buffer, head->next->prev != head);
  176. RB_WARN_ON(cpu_buffer, head->prev->next != head);
  177. list_for_each_entry_safe(page, tmp, head, list) {
  178. RB_WARN_ON(cpu_buffer, page->list.next->prev != &page->list);
  179. RB_WARN_ON(cpu_buffer, page->list.prev->next != &page->list);
  180. }
  181. return 0;
  182. }
  183. static unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  184. {
  185. return cpu_buffer->head_page->size;
  186. }
  187. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  188. unsigned nr_pages)
  189. {
  190. struct list_head *head = &cpu_buffer->pages;
  191. struct buffer_page *page, *tmp;
  192. unsigned long addr;
  193. LIST_HEAD(pages);
  194. unsigned i;
  195. for (i = 0; i < nr_pages; i++) {
  196. addr = __get_free_page(GFP_KERNEL);
  197. if (!addr)
  198. goto free_pages;
  199. page = (struct buffer_page *)virt_to_page(addr);
  200. list_add(&page->list, &pages);
  201. }
  202. list_splice(&pages, head);
  203. rb_check_pages(cpu_buffer);
  204. return 0;
  205. free_pages:
  206. list_for_each_entry_safe(page, tmp, &pages, list) {
  207. list_del_init(&page->list);
  208. __free_page(&page->page);
  209. }
  210. return -ENOMEM;
  211. }
  212. static struct ring_buffer_per_cpu *
  213. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  214. {
  215. struct ring_buffer_per_cpu *cpu_buffer;
  216. int ret;
  217. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  218. GFP_KERNEL, cpu_to_node(cpu));
  219. if (!cpu_buffer)
  220. return NULL;
  221. cpu_buffer->cpu = cpu;
  222. cpu_buffer->buffer = buffer;
  223. spin_lock_init(&cpu_buffer->lock);
  224. INIT_LIST_HEAD(&cpu_buffer->pages);
  225. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  226. if (ret < 0)
  227. goto fail_free_buffer;
  228. cpu_buffer->head_page
  229. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  230. cpu_buffer->tail_page
  231. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  232. return cpu_buffer;
  233. fail_free_buffer:
  234. kfree(cpu_buffer);
  235. return NULL;
  236. }
  237. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  238. {
  239. struct list_head *head = &cpu_buffer->pages;
  240. struct buffer_page *page, *tmp;
  241. list_for_each_entry_safe(page, tmp, head, list) {
  242. list_del_init(&page->list);
  243. __free_page(&page->page);
  244. }
  245. kfree(cpu_buffer);
  246. }
  247. /**
  248. * ring_buffer_alloc - allocate a new ring_buffer
  249. * @size: the size in bytes that is needed.
  250. * @flags: attributes to set for the ring buffer.
  251. *
  252. * Currently the only flag that is available is the RB_FL_OVERWRITE
  253. * flag. This flag means that the buffer will overwrite old data
  254. * when the buffer wraps. If this flag is not set, the buffer will
  255. * drop data when the tail hits the head.
  256. */
  257. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  258. {
  259. struct ring_buffer *buffer;
  260. int bsize;
  261. int cpu;
  262. /* keep it in its own cache line */
  263. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  264. GFP_KERNEL);
  265. if (!buffer)
  266. return NULL;
  267. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  268. buffer->flags = flags;
  269. /* need at least two pages */
  270. if (buffer->pages == 1)
  271. buffer->pages++;
  272. buffer->cpumask = cpu_possible_map;
  273. buffer->cpus = nr_cpu_ids;
  274. bsize = sizeof(void *) * nr_cpu_ids;
  275. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  276. GFP_KERNEL);
  277. if (!buffer->buffers)
  278. goto fail_free_buffer;
  279. for_each_buffer_cpu(buffer, cpu) {
  280. buffer->buffers[cpu] =
  281. rb_allocate_cpu_buffer(buffer, cpu);
  282. if (!buffer->buffers[cpu])
  283. goto fail_free_buffers;
  284. }
  285. mutex_init(&buffer->mutex);
  286. return buffer;
  287. fail_free_buffers:
  288. for_each_buffer_cpu(buffer, cpu) {
  289. if (buffer->buffers[cpu])
  290. rb_free_cpu_buffer(buffer->buffers[cpu]);
  291. }
  292. kfree(buffer->buffers);
  293. fail_free_buffer:
  294. kfree(buffer);
  295. return NULL;
  296. }
  297. /**
  298. * ring_buffer_free - free a ring buffer.
  299. * @buffer: the buffer to free.
  300. */
  301. void
  302. ring_buffer_free(struct ring_buffer *buffer)
  303. {
  304. int cpu;
  305. for_each_buffer_cpu(buffer, cpu)
  306. rb_free_cpu_buffer(buffer->buffers[cpu]);
  307. kfree(buffer);
  308. }
  309. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  310. static void
  311. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  312. {
  313. struct buffer_page *page;
  314. struct list_head *p;
  315. unsigned i;
  316. atomic_inc(&cpu_buffer->record_disabled);
  317. synchronize_sched();
  318. for (i = 0; i < nr_pages; i++) {
  319. BUG_ON(list_empty(&cpu_buffer->pages));
  320. p = cpu_buffer->pages.next;
  321. page = list_entry(p, struct buffer_page, list);
  322. list_del_init(&page->list);
  323. __free_page(&page->page);
  324. }
  325. BUG_ON(list_empty(&cpu_buffer->pages));
  326. rb_reset_cpu(cpu_buffer);
  327. rb_check_pages(cpu_buffer);
  328. atomic_dec(&cpu_buffer->record_disabled);
  329. }
  330. static void
  331. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  332. struct list_head *pages, unsigned nr_pages)
  333. {
  334. struct buffer_page *page;
  335. struct list_head *p;
  336. unsigned i;
  337. atomic_inc(&cpu_buffer->record_disabled);
  338. synchronize_sched();
  339. for (i = 0; i < nr_pages; i++) {
  340. BUG_ON(list_empty(pages));
  341. p = pages->next;
  342. page = list_entry(p, struct buffer_page, list);
  343. list_del_init(&page->list);
  344. list_add_tail(&page->list, &cpu_buffer->pages);
  345. }
  346. rb_reset_cpu(cpu_buffer);
  347. rb_check_pages(cpu_buffer);
  348. atomic_dec(&cpu_buffer->record_disabled);
  349. }
  350. /**
  351. * ring_buffer_resize - resize the ring buffer
  352. * @buffer: the buffer to resize.
  353. * @size: the new size.
  354. *
  355. * The tracer is responsible for making sure that the buffer is
  356. * not being used while changing the size.
  357. * Note: We may be able to change the above requirement by using
  358. * RCU synchronizations.
  359. *
  360. * Minimum size is 2 * BUF_PAGE_SIZE.
  361. *
  362. * Returns -1 on failure.
  363. */
  364. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  365. {
  366. struct ring_buffer_per_cpu *cpu_buffer;
  367. unsigned nr_pages, rm_pages, new_pages;
  368. struct buffer_page *page, *tmp;
  369. unsigned long buffer_size;
  370. unsigned long addr;
  371. LIST_HEAD(pages);
  372. int i, cpu;
  373. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  374. size *= BUF_PAGE_SIZE;
  375. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  376. /* we need a minimum of two pages */
  377. if (size < BUF_PAGE_SIZE * 2)
  378. size = BUF_PAGE_SIZE * 2;
  379. if (size == buffer_size)
  380. return size;
  381. mutex_lock(&buffer->mutex);
  382. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  383. if (size < buffer_size) {
  384. /* easy case, just free pages */
  385. BUG_ON(nr_pages >= buffer->pages);
  386. rm_pages = buffer->pages - nr_pages;
  387. for_each_buffer_cpu(buffer, cpu) {
  388. cpu_buffer = buffer->buffers[cpu];
  389. rb_remove_pages(cpu_buffer, rm_pages);
  390. }
  391. goto out;
  392. }
  393. /*
  394. * This is a bit more difficult. We only want to add pages
  395. * when we can allocate enough for all CPUs. We do this
  396. * by allocating all the pages and storing them on a local
  397. * link list. If we succeed in our allocation, then we
  398. * add these pages to the cpu_buffers. Otherwise we just free
  399. * them all and return -ENOMEM;
  400. */
  401. BUG_ON(nr_pages <= buffer->pages);
  402. new_pages = nr_pages - buffer->pages;
  403. for_each_buffer_cpu(buffer, cpu) {
  404. for (i = 0; i < new_pages; i++) {
  405. addr = __get_free_page(GFP_KERNEL);
  406. if (!addr)
  407. goto free_pages;
  408. page = (struct buffer_page *)virt_to_page(addr);
  409. list_add(&page->list, &pages);
  410. }
  411. }
  412. for_each_buffer_cpu(buffer, cpu) {
  413. cpu_buffer = buffer->buffers[cpu];
  414. rb_insert_pages(cpu_buffer, &pages, new_pages);
  415. }
  416. BUG_ON(!list_empty(&pages));
  417. out:
  418. buffer->pages = nr_pages;
  419. mutex_unlock(&buffer->mutex);
  420. return size;
  421. free_pages:
  422. list_for_each_entry_safe(page, tmp, &pages, list) {
  423. list_del_init(&page->list);
  424. __free_page(&page->page);
  425. }
  426. return -ENOMEM;
  427. }
  428. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  429. {
  430. return cpu_buffer->head_page == cpu_buffer->tail_page &&
  431. cpu_buffer->head == cpu_buffer->tail;
  432. }
  433. static inline int rb_null_event(struct ring_buffer_event *event)
  434. {
  435. return event->type == RINGBUF_TYPE_PADDING;
  436. }
  437. static inline void *rb_page_index(struct buffer_page *page, unsigned index)
  438. {
  439. void *addr = page_address(&page->page);
  440. return addr + index;
  441. }
  442. static inline struct ring_buffer_event *
  443. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  444. {
  445. return rb_page_index(cpu_buffer->head_page,
  446. cpu_buffer->head);
  447. }
  448. static inline struct ring_buffer_event *
  449. rb_iter_head_event(struct ring_buffer_iter *iter)
  450. {
  451. return rb_page_index(iter->head_page,
  452. iter->head);
  453. }
  454. /*
  455. * When the tail hits the head and the buffer is in overwrite mode,
  456. * the head jumps to the next page and all content on the previous
  457. * page is discarded. But before doing so, we update the overrun
  458. * variable of the buffer.
  459. */
  460. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  461. {
  462. struct ring_buffer_event *event;
  463. unsigned long head;
  464. for (head = 0; head < rb_head_size(cpu_buffer);
  465. head += rb_event_length(event)) {
  466. event = rb_page_index(cpu_buffer->head_page, head);
  467. BUG_ON(rb_null_event(event));
  468. /* Only count data entries */
  469. if (event->type != RINGBUF_TYPE_DATA)
  470. continue;
  471. cpu_buffer->overrun++;
  472. cpu_buffer->entries--;
  473. }
  474. }
  475. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  476. struct buffer_page **page)
  477. {
  478. struct list_head *p = (*page)->list.next;
  479. if (p == &cpu_buffer->pages)
  480. p = p->next;
  481. *page = list_entry(p, struct buffer_page, list);
  482. }
  483. static inline void
  484. rb_add_stamp(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
  485. {
  486. cpu_buffer->tail_page->time_stamp = *ts;
  487. cpu_buffer->write_stamp = *ts;
  488. }
  489. static void rb_reset_read_page(struct ring_buffer_per_cpu *cpu_buffer)
  490. {
  491. cpu_buffer->read_stamp = cpu_buffer->head_page->time_stamp;
  492. cpu_buffer->head = 0;
  493. }
  494. static void
  495. rb_reset_iter_read_page(struct ring_buffer_iter *iter)
  496. {
  497. iter->read_stamp = iter->head_page->time_stamp;
  498. iter->head = 0;
  499. }
  500. /**
  501. * ring_buffer_update_event - update event type and data
  502. * @event: the even to update
  503. * @type: the type of event
  504. * @length: the size of the event field in the ring buffer
  505. *
  506. * Update the type and data fields of the event. The length
  507. * is the actual size that is written to the ring buffer,
  508. * and with this, we can determine what to place into the
  509. * data field.
  510. */
  511. static inline void
  512. rb_update_event(struct ring_buffer_event *event,
  513. unsigned type, unsigned length)
  514. {
  515. event->type = type;
  516. switch (type) {
  517. case RINGBUF_TYPE_PADDING:
  518. break;
  519. case RINGBUF_TYPE_TIME_EXTEND:
  520. event->len =
  521. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  522. >> RB_ALIGNMENT_SHIFT;
  523. break;
  524. case RINGBUF_TYPE_TIME_STAMP:
  525. event->len =
  526. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  527. >> RB_ALIGNMENT_SHIFT;
  528. break;
  529. case RINGBUF_TYPE_DATA:
  530. length -= RB_EVNT_HDR_SIZE;
  531. if (length > RB_MAX_SMALL_DATA) {
  532. event->len = 0;
  533. event->array[0] = length;
  534. } else
  535. event->len =
  536. (length + (RB_ALIGNMENT-1))
  537. >> RB_ALIGNMENT_SHIFT;
  538. break;
  539. default:
  540. BUG();
  541. }
  542. }
  543. static inline unsigned rb_calculate_event_length(unsigned length)
  544. {
  545. struct ring_buffer_event event; /* Used only for sizeof array */
  546. /* zero length can cause confusions */
  547. if (!length)
  548. length = 1;
  549. if (length > RB_MAX_SMALL_DATA)
  550. length += sizeof(event.array[0]);
  551. length += RB_EVNT_HDR_SIZE;
  552. length = ALIGN(length, RB_ALIGNMENT);
  553. return length;
  554. }
  555. static struct ring_buffer_event *
  556. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  557. unsigned type, unsigned long length, u64 *ts)
  558. {
  559. struct buffer_page *head_page, *tail_page;
  560. unsigned long tail;
  561. struct ring_buffer *buffer = cpu_buffer->buffer;
  562. struct ring_buffer_event *event;
  563. tail_page = cpu_buffer->tail_page;
  564. head_page = cpu_buffer->head_page;
  565. tail = cpu_buffer->tail;
  566. if (tail + length > BUF_PAGE_SIZE) {
  567. struct buffer_page *next_page = tail_page;
  568. rb_inc_page(cpu_buffer, &next_page);
  569. if (next_page == head_page) {
  570. if (!(buffer->flags & RB_FL_OVERWRITE))
  571. return NULL;
  572. /* count overflows */
  573. rb_update_overflow(cpu_buffer);
  574. rb_inc_page(cpu_buffer, &head_page);
  575. cpu_buffer->head_page = head_page;
  576. rb_reset_read_page(cpu_buffer);
  577. }
  578. if (tail != BUF_PAGE_SIZE) {
  579. event = rb_page_index(tail_page, tail);
  580. /* page padding */
  581. event->type = RINGBUF_TYPE_PADDING;
  582. }
  583. tail_page->size = tail;
  584. tail_page = next_page;
  585. tail_page->size = 0;
  586. tail = 0;
  587. cpu_buffer->tail_page = tail_page;
  588. cpu_buffer->tail = tail;
  589. rb_add_stamp(cpu_buffer, ts);
  590. }
  591. BUG_ON(tail + length > BUF_PAGE_SIZE);
  592. event = rb_page_index(tail_page, tail);
  593. rb_update_event(event, type, length);
  594. return event;
  595. }
  596. static int
  597. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  598. u64 *ts, u64 *delta)
  599. {
  600. struct ring_buffer_event *event;
  601. static int once;
  602. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  603. printk(KERN_WARNING "Delta way too big! %llu"
  604. " ts=%llu write stamp = %llu\n",
  605. *delta, *ts, cpu_buffer->write_stamp);
  606. WARN_ON(1);
  607. }
  608. /*
  609. * The delta is too big, we to add a
  610. * new timestamp.
  611. */
  612. event = __rb_reserve_next(cpu_buffer,
  613. RINGBUF_TYPE_TIME_EXTEND,
  614. RB_LEN_TIME_EXTEND,
  615. ts);
  616. if (!event)
  617. return -1;
  618. /* check to see if we went to the next page */
  619. if (cpu_buffer->tail) {
  620. /* Still on same page, update timestamp */
  621. event->time_delta = *delta & TS_MASK;
  622. event->array[0] = *delta >> TS_SHIFT;
  623. /* commit the time event */
  624. cpu_buffer->tail +=
  625. rb_event_length(event);
  626. cpu_buffer->write_stamp = *ts;
  627. *delta = 0;
  628. }
  629. return 0;
  630. }
  631. static struct ring_buffer_event *
  632. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  633. unsigned type, unsigned long length)
  634. {
  635. struct ring_buffer_event *event;
  636. u64 ts, delta;
  637. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  638. if (cpu_buffer->tail) {
  639. delta = ts - cpu_buffer->write_stamp;
  640. if (test_time_stamp(delta)) {
  641. int ret;
  642. ret = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  643. if (ret < 0)
  644. return NULL;
  645. }
  646. } else {
  647. rb_add_stamp(cpu_buffer, &ts);
  648. delta = 0;
  649. }
  650. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  651. if (!event)
  652. return NULL;
  653. /* If the reserve went to the next page, our delta is zero */
  654. if (!cpu_buffer->tail)
  655. delta = 0;
  656. event->time_delta = delta;
  657. return event;
  658. }
  659. /**
  660. * ring_buffer_lock_reserve - reserve a part of the buffer
  661. * @buffer: the ring buffer to reserve from
  662. * @length: the length of the data to reserve (excluding event header)
  663. * @flags: a pointer to save the interrupt flags
  664. *
  665. * Returns a reseverd event on the ring buffer to copy directly to.
  666. * The user of this interface will need to get the body to write into
  667. * and can use the ring_buffer_event_data() interface.
  668. *
  669. * The length is the length of the data needed, not the event length
  670. * which also includes the event header.
  671. *
  672. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  673. * If NULL is returned, then nothing has been allocated or locked.
  674. */
  675. struct ring_buffer_event *
  676. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  677. unsigned long length,
  678. unsigned long *flags)
  679. {
  680. struct ring_buffer_per_cpu *cpu_buffer;
  681. struct ring_buffer_event *event;
  682. int cpu;
  683. if (atomic_read(&buffer->record_disabled))
  684. return NULL;
  685. raw_local_irq_save(*flags);
  686. cpu = raw_smp_processor_id();
  687. if (!cpu_isset(cpu, buffer->cpumask))
  688. goto out_irq;
  689. cpu_buffer = buffer->buffers[cpu];
  690. spin_lock(&cpu_buffer->lock);
  691. if (atomic_read(&cpu_buffer->record_disabled))
  692. goto no_record;
  693. length = rb_calculate_event_length(length);
  694. if (length > BUF_PAGE_SIZE)
  695. return NULL;
  696. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  697. if (!event)
  698. goto no_record;
  699. return event;
  700. no_record:
  701. spin_unlock(&cpu_buffer->lock);
  702. out_irq:
  703. local_irq_restore(*flags);
  704. return NULL;
  705. }
  706. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  707. struct ring_buffer_event *event)
  708. {
  709. cpu_buffer->tail += rb_event_length(event);
  710. cpu_buffer->tail_page->size = cpu_buffer->tail;
  711. cpu_buffer->write_stamp += event->time_delta;
  712. cpu_buffer->entries++;
  713. }
  714. /**
  715. * ring_buffer_unlock_commit - commit a reserved
  716. * @buffer: The buffer to commit to
  717. * @event: The event pointer to commit.
  718. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  719. *
  720. * This commits the data to the ring buffer, and releases any locks held.
  721. *
  722. * Must be paired with ring_buffer_lock_reserve.
  723. */
  724. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  725. struct ring_buffer_event *event,
  726. unsigned long flags)
  727. {
  728. struct ring_buffer_per_cpu *cpu_buffer;
  729. int cpu = raw_smp_processor_id();
  730. cpu_buffer = buffer->buffers[cpu];
  731. assert_spin_locked(&cpu_buffer->lock);
  732. rb_commit(cpu_buffer, event);
  733. spin_unlock(&cpu_buffer->lock);
  734. raw_local_irq_restore(flags);
  735. return 0;
  736. }
  737. /**
  738. * ring_buffer_write - write data to the buffer without reserving
  739. * @buffer: The ring buffer to write to.
  740. * @length: The length of the data being written (excluding the event header)
  741. * @data: The data to write to the buffer.
  742. *
  743. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  744. * one function. If you already have the data to write to the buffer, it
  745. * may be easier to simply call this function.
  746. *
  747. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  748. * and not the length of the event which would hold the header.
  749. */
  750. int ring_buffer_write(struct ring_buffer *buffer,
  751. unsigned long length,
  752. void *data)
  753. {
  754. struct ring_buffer_per_cpu *cpu_buffer;
  755. struct ring_buffer_event *event;
  756. unsigned long event_length, flags;
  757. void *body;
  758. int ret = -EBUSY;
  759. int cpu;
  760. if (atomic_read(&buffer->record_disabled))
  761. return -EBUSY;
  762. local_irq_save(flags);
  763. cpu = raw_smp_processor_id();
  764. if (!cpu_isset(cpu, buffer->cpumask))
  765. goto out_irq;
  766. cpu_buffer = buffer->buffers[cpu];
  767. spin_lock(&cpu_buffer->lock);
  768. if (atomic_read(&cpu_buffer->record_disabled))
  769. goto out;
  770. event_length = rb_calculate_event_length(length);
  771. event = rb_reserve_next_event(cpu_buffer,
  772. RINGBUF_TYPE_DATA, event_length);
  773. if (!event)
  774. goto out;
  775. body = rb_event_data(event);
  776. memcpy(body, data, length);
  777. rb_commit(cpu_buffer, event);
  778. ret = 0;
  779. out:
  780. spin_unlock(&cpu_buffer->lock);
  781. out_irq:
  782. local_irq_restore(flags);
  783. return ret;
  784. }
  785. /**
  786. * ring_buffer_lock - lock the ring buffer
  787. * @buffer: The ring buffer to lock
  788. * @flags: The place to store the interrupt flags
  789. *
  790. * This locks all the per CPU buffers.
  791. *
  792. * Must be unlocked by ring_buffer_unlock.
  793. */
  794. void ring_buffer_lock(struct ring_buffer *buffer, unsigned long *flags)
  795. {
  796. struct ring_buffer_per_cpu *cpu_buffer;
  797. int cpu;
  798. local_irq_save(*flags);
  799. for_each_buffer_cpu(buffer, cpu) {
  800. cpu_buffer = buffer->buffers[cpu];
  801. spin_lock(&cpu_buffer->lock);
  802. }
  803. }
  804. /**
  805. * ring_buffer_unlock - unlock a locked buffer
  806. * @buffer: The locked buffer to unlock
  807. * @flags: The interrupt flags received by ring_buffer_lock
  808. */
  809. void ring_buffer_unlock(struct ring_buffer *buffer, unsigned long flags)
  810. {
  811. struct ring_buffer_per_cpu *cpu_buffer;
  812. int cpu;
  813. for (cpu = buffer->cpus - 1; cpu >= 0; cpu--) {
  814. if (!cpu_isset(cpu, buffer->cpumask))
  815. continue;
  816. cpu_buffer = buffer->buffers[cpu];
  817. spin_unlock(&cpu_buffer->lock);
  818. }
  819. local_irq_restore(flags);
  820. }
  821. /**
  822. * ring_buffer_record_disable - stop all writes into the buffer
  823. * @buffer: The ring buffer to stop writes to.
  824. *
  825. * This prevents all writes to the buffer. Any attempt to write
  826. * to the buffer after this will fail and return NULL.
  827. *
  828. * The caller should call synchronize_sched() after this.
  829. */
  830. void ring_buffer_record_disable(struct ring_buffer *buffer)
  831. {
  832. atomic_inc(&buffer->record_disabled);
  833. }
  834. /**
  835. * ring_buffer_record_enable - enable writes to the buffer
  836. * @buffer: The ring buffer to enable writes
  837. *
  838. * Note, multiple disables will need the same number of enables
  839. * to truely enable the writing (much like preempt_disable).
  840. */
  841. void ring_buffer_record_enable(struct ring_buffer *buffer)
  842. {
  843. atomic_dec(&buffer->record_disabled);
  844. }
  845. /**
  846. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  847. * @buffer: The ring buffer to stop writes to.
  848. * @cpu: The CPU buffer to stop
  849. *
  850. * This prevents all writes to the buffer. Any attempt to write
  851. * to the buffer after this will fail and return NULL.
  852. *
  853. * The caller should call synchronize_sched() after this.
  854. */
  855. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  856. {
  857. struct ring_buffer_per_cpu *cpu_buffer;
  858. if (!cpu_isset(cpu, buffer->cpumask))
  859. return;
  860. cpu_buffer = buffer->buffers[cpu];
  861. atomic_inc(&cpu_buffer->record_disabled);
  862. }
  863. /**
  864. * ring_buffer_record_enable_cpu - enable writes to the buffer
  865. * @buffer: The ring buffer to enable writes
  866. * @cpu: The CPU to enable.
  867. *
  868. * Note, multiple disables will need the same number of enables
  869. * to truely enable the writing (much like preempt_disable).
  870. */
  871. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  872. {
  873. struct ring_buffer_per_cpu *cpu_buffer;
  874. if (!cpu_isset(cpu, buffer->cpumask))
  875. return;
  876. cpu_buffer = buffer->buffers[cpu];
  877. atomic_dec(&cpu_buffer->record_disabled);
  878. }
  879. /**
  880. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  881. * @buffer: The ring buffer
  882. * @cpu: The per CPU buffer to get the entries from.
  883. */
  884. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  885. {
  886. struct ring_buffer_per_cpu *cpu_buffer;
  887. if (!cpu_isset(cpu, buffer->cpumask))
  888. return 0;
  889. cpu_buffer = buffer->buffers[cpu];
  890. return cpu_buffer->entries;
  891. }
  892. /**
  893. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  894. * @buffer: The ring buffer
  895. * @cpu: The per CPU buffer to get the number of overruns from
  896. */
  897. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  898. {
  899. struct ring_buffer_per_cpu *cpu_buffer;
  900. if (!cpu_isset(cpu, buffer->cpumask))
  901. return 0;
  902. cpu_buffer = buffer->buffers[cpu];
  903. return cpu_buffer->overrun;
  904. }
  905. /**
  906. * ring_buffer_entries - get the number of entries in a buffer
  907. * @buffer: The ring buffer
  908. *
  909. * Returns the total number of entries in the ring buffer
  910. * (all CPU entries)
  911. */
  912. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  913. {
  914. struct ring_buffer_per_cpu *cpu_buffer;
  915. unsigned long entries = 0;
  916. int cpu;
  917. /* if you care about this being correct, lock the buffer */
  918. for_each_buffer_cpu(buffer, cpu) {
  919. cpu_buffer = buffer->buffers[cpu];
  920. entries += cpu_buffer->entries;
  921. }
  922. return entries;
  923. }
  924. /**
  925. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  926. * @buffer: The ring buffer
  927. *
  928. * Returns the total number of overruns in the ring buffer
  929. * (all CPU entries)
  930. */
  931. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  932. {
  933. struct ring_buffer_per_cpu *cpu_buffer;
  934. unsigned long overruns = 0;
  935. int cpu;
  936. /* if you care about this being correct, lock the buffer */
  937. for_each_buffer_cpu(buffer, cpu) {
  938. cpu_buffer = buffer->buffers[cpu];
  939. overruns += cpu_buffer->overrun;
  940. }
  941. return overruns;
  942. }
  943. /**
  944. * ring_buffer_iter_reset - reset an iterator
  945. * @iter: The iterator to reset
  946. *
  947. * Resets the iterator, so that it will start from the beginning
  948. * again.
  949. */
  950. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  951. {
  952. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  953. iter->head_page = cpu_buffer->head_page;
  954. iter->head = cpu_buffer->head;
  955. rb_reset_iter_read_page(iter);
  956. }
  957. /**
  958. * ring_buffer_iter_empty - check if an iterator has no more to read
  959. * @iter: The iterator to check
  960. */
  961. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  962. {
  963. struct ring_buffer_per_cpu *cpu_buffer;
  964. cpu_buffer = iter->cpu_buffer;
  965. return iter->head_page == cpu_buffer->tail_page &&
  966. iter->head == cpu_buffer->tail;
  967. }
  968. static void
  969. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  970. struct ring_buffer_event *event)
  971. {
  972. u64 delta;
  973. switch (event->type) {
  974. case RINGBUF_TYPE_PADDING:
  975. return;
  976. case RINGBUF_TYPE_TIME_EXTEND:
  977. delta = event->array[0];
  978. delta <<= TS_SHIFT;
  979. delta += event->time_delta;
  980. cpu_buffer->read_stamp += delta;
  981. return;
  982. case RINGBUF_TYPE_TIME_STAMP:
  983. /* FIXME: not implemented */
  984. return;
  985. case RINGBUF_TYPE_DATA:
  986. cpu_buffer->read_stamp += event->time_delta;
  987. return;
  988. default:
  989. BUG();
  990. }
  991. return;
  992. }
  993. static void
  994. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  995. struct ring_buffer_event *event)
  996. {
  997. u64 delta;
  998. switch (event->type) {
  999. case RINGBUF_TYPE_PADDING:
  1000. return;
  1001. case RINGBUF_TYPE_TIME_EXTEND:
  1002. delta = event->array[0];
  1003. delta <<= TS_SHIFT;
  1004. delta += event->time_delta;
  1005. iter->read_stamp += delta;
  1006. return;
  1007. case RINGBUF_TYPE_TIME_STAMP:
  1008. /* FIXME: not implemented */
  1009. return;
  1010. case RINGBUF_TYPE_DATA:
  1011. iter->read_stamp += event->time_delta;
  1012. return;
  1013. default:
  1014. BUG();
  1015. }
  1016. return;
  1017. }
  1018. static void rb_advance_head(struct ring_buffer_per_cpu *cpu_buffer)
  1019. {
  1020. struct ring_buffer_event *event;
  1021. unsigned length;
  1022. /*
  1023. * Check if we are at the end of the buffer.
  1024. */
  1025. if (cpu_buffer->head >= cpu_buffer->head_page->size) {
  1026. BUG_ON(cpu_buffer->head_page == cpu_buffer->tail_page);
  1027. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1028. rb_reset_read_page(cpu_buffer);
  1029. return;
  1030. }
  1031. event = rb_head_event(cpu_buffer);
  1032. if (event->type == RINGBUF_TYPE_DATA)
  1033. cpu_buffer->entries--;
  1034. length = rb_event_length(event);
  1035. /*
  1036. * This should not be called to advance the header if we are
  1037. * at the tail of the buffer.
  1038. */
  1039. BUG_ON((cpu_buffer->head_page == cpu_buffer->tail_page) &&
  1040. (cpu_buffer->head + length > cpu_buffer->tail));
  1041. rb_update_read_stamp(cpu_buffer, event);
  1042. cpu_buffer->head += length;
  1043. /* check for end of page */
  1044. if ((cpu_buffer->head >= cpu_buffer->head_page->size) &&
  1045. (cpu_buffer->head_page != cpu_buffer->tail_page))
  1046. rb_advance_head(cpu_buffer);
  1047. }
  1048. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1049. {
  1050. struct ring_buffer *buffer;
  1051. struct ring_buffer_per_cpu *cpu_buffer;
  1052. struct ring_buffer_event *event;
  1053. unsigned length;
  1054. cpu_buffer = iter->cpu_buffer;
  1055. buffer = cpu_buffer->buffer;
  1056. /*
  1057. * Check if we are at the end of the buffer.
  1058. */
  1059. if (iter->head >= iter->head_page->size) {
  1060. BUG_ON(iter->head_page == cpu_buffer->tail_page);
  1061. rb_inc_page(cpu_buffer, &iter->head_page);
  1062. rb_reset_iter_read_page(iter);
  1063. return;
  1064. }
  1065. event = rb_iter_head_event(iter);
  1066. length = rb_event_length(event);
  1067. /*
  1068. * This should not be called to advance the header if we are
  1069. * at the tail of the buffer.
  1070. */
  1071. BUG_ON((iter->head_page == cpu_buffer->tail_page) &&
  1072. (iter->head + length > cpu_buffer->tail));
  1073. rb_update_iter_read_stamp(iter, event);
  1074. iter->head += length;
  1075. /* check for end of page padding */
  1076. if ((iter->head >= iter->head_page->size) &&
  1077. (iter->head_page != cpu_buffer->tail_page))
  1078. rb_advance_iter(iter);
  1079. }
  1080. /**
  1081. * ring_buffer_peek - peek at the next event to be read
  1082. * @buffer: The ring buffer to read
  1083. * @cpu: The cpu to peak at
  1084. * @ts: The timestamp counter of this event.
  1085. *
  1086. * This will return the event that will be read next, but does
  1087. * not consume the data.
  1088. */
  1089. struct ring_buffer_event *
  1090. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1091. {
  1092. struct ring_buffer_per_cpu *cpu_buffer;
  1093. struct ring_buffer_event *event;
  1094. if (!cpu_isset(cpu, buffer->cpumask))
  1095. return NULL;
  1096. cpu_buffer = buffer->buffers[cpu];
  1097. again:
  1098. if (rb_per_cpu_empty(cpu_buffer))
  1099. return NULL;
  1100. event = rb_head_event(cpu_buffer);
  1101. switch (event->type) {
  1102. case RINGBUF_TYPE_PADDING:
  1103. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1104. rb_reset_read_page(cpu_buffer);
  1105. goto again;
  1106. case RINGBUF_TYPE_TIME_EXTEND:
  1107. /* Internal data, OK to advance */
  1108. rb_advance_head(cpu_buffer);
  1109. goto again;
  1110. case RINGBUF_TYPE_TIME_STAMP:
  1111. /* FIXME: not implemented */
  1112. rb_advance_head(cpu_buffer);
  1113. goto again;
  1114. case RINGBUF_TYPE_DATA:
  1115. if (ts) {
  1116. *ts = cpu_buffer->read_stamp + event->time_delta;
  1117. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1118. }
  1119. return event;
  1120. default:
  1121. BUG();
  1122. }
  1123. return NULL;
  1124. }
  1125. /**
  1126. * ring_buffer_iter_peek - peek at the next event to be read
  1127. * @iter: The ring buffer iterator
  1128. * @ts: The timestamp counter of this event.
  1129. *
  1130. * This will return the event that will be read next, but does
  1131. * not increment the iterator.
  1132. */
  1133. struct ring_buffer_event *
  1134. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1135. {
  1136. struct ring_buffer *buffer;
  1137. struct ring_buffer_per_cpu *cpu_buffer;
  1138. struct ring_buffer_event *event;
  1139. if (ring_buffer_iter_empty(iter))
  1140. return NULL;
  1141. cpu_buffer = iter->cpu_buffer;
  1142. buffer = cpu_buffer->buffer;
  1143. again:
  1144. if (rb_per_cpu_empty(cpu_buffer))
  1145. return NULL;
  1146. event = rb_iter_head_event(iter);
  1147. switch (event->type) {
  1148. case RINGBUF_TYPE_PADDING:
  1149. rb_inc_page(cpu_buffer, &iter->head_page);
  1150. rb_reset_iter_read_page(iter);
  1151. goto again;
  1152. case RINGBUF_TYPE_TIME_EXTEND:
  1153. /* Internal data, OK to advance */
  1154. rb_advance_iter(iter);
  1155. goto again;
  1156. case RINGBUF_TYPE_TIME_STAMP:
  1157. /* FIXME: not implemented */
  1158. rb_advance_iter(iter);
  1159. goto again;
  1160. case RINGBUF_TYPE_DATA:
  1161. if (ts) {
  1162. *ts = iter->read_stamp + event->time_delta;
  1163. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1164. }
  1165. return event;
  1166. default:
  1167. BUG();
  1168. }
  1169. return NULL;
  1170. }
  1171. /**
  1172. * ring_buffer_consume - return an event and consume it
  1173. * @buffer: The ring buffer to get the next event from
  1174. *
  1175. * Returns the next event in the ring buffer, and that event is consumed.
  1176. * Meaning, that sequential reads will keep returning a different event,
  1177. * and eventually empty the ring buffer if the producer is slower.
  1178. */
  1179. struct ring_buffer_event *
  1180. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1181. {
  1182. struct ring_buffer_per_cpu *cpu_buffer;
  1183. struct ring_buffer_event *event;
  1184. if (!cpu_isset(cpu, buffer->cpumask))
  1185. return NULL;
  1186. event = ring_buffer_peek(buffer, cpu, ts);
  1187. if (!event)
  1188. return NULL;
  1189. cpu_buffer = buffer->buffers[cpu];
  1190. rb_advance_head(cpu_buffer);
  1191. return event;
  1192. }
  1193. /**
  1194. * ring_buffer_read_start - start a non consuming read of the buffer
  1195. * @buffer: The ring buffer to read from
  1196. * @cpu: The cpu buffer to iterate over
  1197. *
  1198. * This starts up an iteration through the buffer. It also disables
  1199. * the recording to the buffer until the reading is finished.
  1200. * This prevents the reading from being corrupted. This is not
  1201. * a consuming read, so a producer is not expected.
  1202. *
  1203. * Must be paired with ring_buffer_finish.
  1204. */
  1205. struct ring_buffer_iter *
  1206. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1207. {
  1208. struct ring_buffer_per_cpu *cpu_buffer;
  1209. struct ring_buffer_iter *iter;
  1210. if (!cpu_isset(cpu, buffer->cpumask))
  1211. return NULL;
  1212. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1213. if (!iter)
  1214. return NULL;
  1215. cpu_buffer = buffer->buffers[cpu];
  1216. iter->cpu_buffer = cpu_buffer;
  1217. atomic_inc(&cpu_buffer->record_disabled);
  1218. synchronize_sched();
  1219. spin_lock(&cpu_buffer->lock);
  1220. iter->head = cpu_buffer->head;
  1221. iter->head_page = cpu_buffer->head_page;
  1222. rb_reset_iter_read_page(iter);
  1223. spin_unlock(&cpu_buffer->lock);
  1224. return iter;
  1225. }
  1226. /**
  1227. * ring_buffer_finish - finish reading the iterator of the buffer
  1228. * @iter: The iterator retrieved by ring_buffer_start
  1229. *
  1230. * This re-enables the recording to the buffer, and frees the
  1231. * iterator.
  1232. */
  1233. void
  1234. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1235. {
  1236. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1237. atomic_dec(&cpu_buffer->record_disabled);
  1238. kfree(iter);
  1239. }
  1240. /**
  1241. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1242. * @iter: The ring buffer iterator
  1243. * @ts: The time stamp of the event read.
  1244. *
  1245. * This reads the next event in the ring buffer and increments the iterator.
  1246. */
  1247. struct ring_buffer_event *
  1248. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1249. {
  1250. struct ring_buffer_event *event;
  1251. event = ring_buffer_iter_peek(iter, ts);
  1252. if (!event)
  1253. return NULL;
  1254. rb_advance_iter(iter);
  1255. return event;
  1256. }
  1257. /**
  1258. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1259. * @buffer: The ring buffer.
  1260. */
  1261. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1262. {
  1263. return BUF_PAGE_SIZE * buffer->pages;
  1264. }
  1265. static void
  1266. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1267. {
  1268. cpu_buffer->head_page
  1269. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1270. cpu_buffer->tail_page
  1271. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1272. cpu_buffer->head = cpu_buffer->tail = 0;
  1273. cpu_buffer->overrun = 0;
  1274. cpu_buffer->entries = 0;
  1275. }
  1276. /**
  1277. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1278. * @buffer: The ring buffer to reset a per cpu buffer of
  1279. * @cpu: The CPU buffer to be reset
  1280. */
  1281. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1282. {
  1283. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1284. unsigned long flags;
  1285. if (!cpu_isset(cpu, buffer->cpumask))
  1286. return;
  1287. raw_local_irq_save(flags);
  1288. spin_lock(&cpu_buffer->lock);
  1289. rb_reset_cpu(cpu_buffer);
  1290. spin_unlock(&cpu_buffer->lock);
  1291. raw_local_irq_restore(flags);
  1292. }
  1293. /**
  1294. * ring_buffer_reset - reset a ring buffer
  1295. * @buffer: The ring buffer to reset all cpu buffers
  1296. */
  1297. void ring_buffer_reset(struct ring_buffer *buffer)
  1298. {
  1299. unsigned long flags;
  1300. int cpu;
  1301. ring_buffer_lock(buffer, &flags);
  1302. for_each_buffer_cpu(buffer, cpu)
  1303. rb_reset_cpu(buffer->buffers[cpu]);
  1304. ring_buffer_unlock(buffer, flags);
  1305. }
  1306. /**
  1307. * rind_buffer_empty - is the ring buffer empty?
  1308. * @buffer: The ring buffer to test
  1309. */
  1310. int ring_buffer_empty(struct ring_buffer *buffer)
  1311. {
  1312. struct ring_buffer_per_cpu *cpu_buffer;
  1313. int cpu;
  1314. /* yes this is racy, but if you don't like the race, lock the buffer */
  1315. for_each_buffer_cpu(buffer, cpu) {
  1316. cpu_buffer = buffer->buffers[cpu];
  1317. if (!rb_per_cpu_empty(cpu_buffer))
  1318. return 0;
  1319. }
  1320. return 1;
  1321. }
  1322. /**
  1323. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1324. * @buffer: The ring buffer
  1325. * @cpu: The CPU buffer to test
  1326. */
  1327. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1328. {
  1329. struct ring_buffer_per_cpu *cpu_buffer;
  1330. if (!cpu_isset(cpu, buffer->cpumask))
  1331. return 1;
  1332. cpu_buffer = buffer->buffers[cpu];
  1333. return rb_per_cpu_empty(cpu_buffer);
  1334. }
  1335. /**
  1336. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1337. * @buffer_a: One buffer to swap with
  1338. * @buffer_b: The other buffer to swap with
  1339. *
  1340. * This function is useful for tracers that want to take a "snapshot"
  1341. * of a CPU buffer and has another back up buffer lying around.
  1342. * it is expected that the tracer handles the cpu buffer not being
  1343. * used at the moment.
  1344. */
  1345. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1346. struct ring_buffer *buffer_b, int cpu)
  1347. {
  1348. struct ring_buffer_per_cpu *cpu_buffer_a;
  1349. struct ring_buffer_per_cpu *cpu_buffer_b;
  1350. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1351. !cpu_isset(cpu, buffer_b->cpumask))
  1352. return -EINVAL;
  1353. /* At least make sure the two buffers are somewhat the same */
  1354. if (buffer_a->size != buffer_b->size ||
  1355. buffer_a->pages != buffer_b->pages)
  1356. return -EINVAL;
  1357. cpu_buffer_a = buffer_a->buffers[cpu];
  1358. cpu_buffer_b = buffer_b->buffers[cpu];
  1359. /*
  1360. * We can't do a synchronize_sched here because this
  1361. * function can be called in atomic context.
  1362. * Normally this will be called from the same CPU as cpu.
  1363. * If not it's up to the caller to protect this.
  1364. */
  1365. atomic_inc(&cpu_buffer_a->record_disabled);
  1366. atomic_inc(&cpu_buffer_b->record_disabled);
  1367. buffer_a->buffers[cpu] = cpu_buffer_b;
  1368. buffer_b->buffers[cpu] = cpu_buffer_a;
  1369. cpu_buffer_b->buffer = buffer_a;
  1370. cpu_buffer_a->buffer = buffer_b;
  1371. atomic_dec(&cpu_buffer_a->record_disabled);
  1372. atomic_dec(&cpu_buffer_b->record_disabled);
  1373. return 0;
  1374. }