|
@@ -1,1518 +0,0 @@
|
|
-/*
|
|
|
|
- * Read-Copy Update mechanism for mutual exclusion, realtime implementation
|
|
|
|
- *
|
|
|
|
- * This program is free software; you can redistribute it and/or modify
|
|
|
|
- * it under the terms of the GNU General Public License as published by
|
|
|
|
- * the Free Software Foundation; either version 2 of the License, or
|
|
|
|
- * (at your option) any later version.
|
|
|
|
- *
|
|
|
|
- * This program is distributed in the hope that it will be useful,
|
|
|
|
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
- * GNU General Public License for more details.
|
|
|
|
- *
|
|
|
|
- * You should have received a copy of the GNU General Public License
|
|
|
|
- * along with this program; if not, write to the Free Software
|
|
|
|
- * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
- *
|
|
|
|
- * Copyright IBM Corporation, 2006
|
|
|
|
- *
|
|
|
|
- * Authors: Paul E. McKenney <paulmck@us.ibm.com>
|
|
|
|
- * With thanks to Esben Nielsen, Bill Huey, and Ingo Molnar
|
|
|
|
- * for pushing me away from locks and towards counters, and
|
|
|
|
- * to Suparna Bhattacharya for pushing me completely away
|
|
|
|
- * from atomic instructions on the read side.
|
|
|
|
- *
|
|
|
|
- * - Added handling of Dynamic Ticks
|
|
|
|
- * Copyright 2007 - Paul E. Mckenney <paulmck@us.ibm.com>
|
|
|
|
- * - Steven Rostedt <srostedt@redhat.com>
|
|
|
|
- *
|
|
|
|
- * Papers: http://www.rdrop.com/users/paulmck/RCU
|
|
|
|
- *
|
|
|
|
- * Design Document: http://lwn.net/Articles/253651/
|
|
|
|
- *
|
|
|
|
- * For detailed explanation of Read-Copy Update mechanism see -
|
|
|
|
- * Documentation/RCU/ *.txt
|
|
|
|
- *
|
|
|
|
- */
|
|
|
|
-#include <linux/types.h>
|
|
|
|
-#include <linux/kernel.h>
|
|
|
|
-#include <linux/init.h>
|
|
|
|
-#include <linux/spinlock.h>
|
|
|
|
-#include <linux/smp.h>
|
|
|
|
-#include <linux/rcupdate.h>
|
|
|
|
-#include <linux/interrupt.h>
|
|
|
|
-#include <linux/sched.h>
|
|
|
|
-#include <asm/atomic.h>
|
|
|
|
-#include <linux/bitops.h>
|
|
|
|
-#include <linux/module.h>
|
|
|
|
-#include <linux/kthread.h>
|
|
|
|
-#include <linux/completion.h>
|
|
|
|
-#include <linux/moduleparam.h>
|
|
|
|
-#include <linux/percpu.h>
|
|
|
|
-#include <linux/notifier.h>
|
|
|
|
-#include <linux/cpu.h>
|
|
|
|
-#include <linux/random.h>
|
|
|
|
-#include <linux/delay.h>
|
|
|
|
-#include <linux/cpumask.h>
|
|
|
|
-#include <linux/rcupreempt_trace.h>
|
|
|
|
-#include <asm/byteorder.h>
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * PREEMPT_RCU data structures.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * GP_STAGES specifies the number of times the state machine has
|
|
|
|
- * to go through the all the rcu_try_flip_states (see below)
|
|
|
|
- * in a single Grace Period.
|
|
|
|
- *
|
|
|
|
- * GP in GP_STAGES stands for Grace Period ;)
|
|
|
|
- */
|
|
|
|
-#define GP_STAGES 2
|
|
|
|
-struct rcu_data {
|
|
|
|
- spinlock_t lock; /* Protect rcu_data fields. */
|
|
|
|
- long completed; /* Number of last completed batch. */
|
|
|
|
- int waitlistcount;
|
|
|
|
- struct rcu_head *nextlist;
|
|
|
|
- struct rcu_head **nexttail;
|
|
|
|
- struct rcu_head *waitlist[GP_STAGES];
|
|
|
|
- struct rcu_head **waittail[GP_STAGES];
|
|
|
|
- struct rcu_head *donelist; /* from waitlist & waitschedlist */
|
|
|
|
- struct rcu_head **donetail;
|
|
|
|
- long rcu_flipctr[2];
|
|
|
|
- struct rcu_head *nextschedlist;
|
|
|
|
- struct rcu_head **nextschedtail;
|
|
|
|
- struct rcu_head *waitschedlist;
|
|
|
|
- struct rcu_head **waitschedtail;
|
|
|
|
- int rcu_sched_sleeping;
|
|
|
|
-#ifdef CONFIG_RCU_TRACE
|
|
|
|
- struct rcupreempt_trace trace;
|
|
|
|
-#endif /* #ifdef CONFIG_RCU_TRACE */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * States for rcu_try_flip() and friends.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-enum rcu_try_flip_states {
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Stay here if nothing is happening. Flip the counter if somthing
|
|
|
|
- * starts happening. Denoted by "I"
|
|
|
|
- */
|
|
|
|
- rcu_try_flip_idle_state,
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Wait here for all CPUs to notice that the counter has flipped. This
|
|
|
|
- * prevents the old set of counters from ever being incremented once
|
|
|
|
- * we leave this state, which in turn is necessary because we cannot
|
|
|
|
- * test any individual counter for zero -- we can only check the sum.
|
|
|
|
- * Denoted by "A".
|
|
|
|
- */
|
|
|
|
- rcu_try_flip_waitack_state,
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Wait here for the sum of the old per-CPU counters to reach zero.
|
|
|
|
- * Denoted by "Z".
|
|
|
|
- */
|
|
|
|
- rcu_try_flip_waitzero_state,
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Wait here for each of the other CPUs to execute a memory barrier.
|
|
|
|
- * This is necessary to ensure that these other CPUs really have
|
|
|
|
- * completed executing their RCU read-side critical sections, despite
|
|
|
|
- * their CPUs wildly reordering memory. Denoted by "M".
|
|
|
|
- */
|
|
|
|
- rcu_try_flip_waitmb_state,
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * States for rcu_ctrlblk.rcu_sched_sleep.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-enum rcu_sched_sleep_states {
|
|
|
|
- rcu_sched_not_sleeping, /* Not sleeping, callbacks need GP. */
|
|
|
|
- rcu_sched_sleep_prep, /* Thinking of sleeping, rechecking. */
|
|
|
|
- rcu_sched_sleeping, /* Sleeping, awaken if GP needed. */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-struct rcu_ctrlblk {
|
|
|
|
- spinlock_t fliplock; /* Protect state-machine transitions. */
|
|
|
|
- long completed; /* Number of last completed batch. */
|
|
|
|
- enum rcu_try_flip_states rcu_try_flip_state; /* The current state of
|
|
|
|
- the rcu state machine */
|
|
|
|
- spinlock_t schedlock; /* Protect rcu_sched sleep state. */
|
|
|
|
- enum rcu_sched_sleep_states sched_sleep; /* rcu_sched state. */
|
|
|
|
- wait_queue_head_t sched_wq; /* Place for rcu_sched to sleep. */
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-struct rcu_dyntick_sched {
|
|
|
|
- int dynticks;
|
|
|
|
- int dynticks_snap;
|
|
|
|
- int sched_qs;
|
|
|
|
- int sched_qs_snap;
|
|
|
|
- int sched_dynticks_snap;
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_dyntick_sched, rcu_dyntick_sched) = {
|
|
|
|
- .dynticks = 1,
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-static int rcu_pending(int cpu);
|
|
|
|
-
|
|
|
|
-void rcu_sched_qs(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- rdssp->sched_qs++;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef CONFIG_NO_HZ
|
|
|
|
-
|
|
|
|
-void rcu_enter_nohz(void)
|
|
|
|
-{
|
|
|
|
- static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
|
|
|
|
-
|
|
|
|
- smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
|
|
|
|
- __get_cpu_var(rcu_dyntick_sched).dynticks++;
|
|
|
|
- WARN_ON_RATELIMIT(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1, &rs);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void rcu_exit_nohz(void)
|
|
|
|
-{
|
|
|
|
- static DEFINE_RATELIMIT_STATE(rs, 10 * HZ, 1);
|
|
|
|
-
|
|
|
|
- __get_cpu_var(rcu_dyntick_sched).dynticks++;
|
|
|
|
- smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
|
|
|
|
- WARN_ON_RATELIMIT(!(__get_cpu_var(rcu_dyntick_sched).dynticks & 0x1),
|
|
|
|
- &rs);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#endif /* CONFIG_NO_HZ */
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-static DEFINE_PER_CPU(struct rcu_data, rcu_data);
|
|
|
|
-
|
|
|
|
-static struct rcu_ctrlblk rcu_ctrlblk = {
|
|
|
|
- .fliplock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.fliplock),
|
|
|
|
- .completed = 0,
|
|
|
|
- .rcu_try_flip_state = rcu_try_flip_idle_state,
|
|
|
|
- .schedlock = __SPIN_LOCK_UNLOCKED(rcu_ctrlblk.schedlock),
|
|
|
|
- .sched_sleep = rcu_sched_not_sleeping,
|
|
|
|
- .sched_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rcu_ctrlblk.sched_wq),
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-static struct task_struct *rcu_sched_grace_period_task;
|
|
|
|
-
|
|
|
|
-#ifdef CONFIG_RCU_TRACE
|
|
|
|
-static char *rcu_try_flip_state_names[] =
|
|
|
|
- { "idle", "waitack", "waitzero", "waitmb" };
|
|
|
|
-#endif /* #ifdef CONFIG_RCU_TRACE */
|
|
|
|
-
|
|
|
|
-static DECLARE_BITMAP(rcu_cpu_online_map, NR_CPUS) __read_mostly
|
|
|
|
- = CPU_BITS_NONE;
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Enum and per-CPU flag to determine when each CPU has seen
|
|
|
|
- * the most recent counter flip.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-enum rcu_flip_flag_values {
|
|
|
|
- rcu_flip_seen, /* Steady/initial state, last flip seen. */
|
|
|
|
- /* Only GP detector can update. */
|
|
|
|
- rcu_flipped /* Flip just completed, need confirmation. */
|
|
|
|
- /* Only corresponding CPU can update. */
|
|
|
|
-};
|
|
|
|
-static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_flip_flag_values, rcu_flip_flag)
|
|
|
|
- = rcu_flip_seen;
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Enum and per-CPU flag to determine when each CPU has executed the
|
|
|
|
- * needed memory barrier to fence in memory references from its last RCU
|
|
|
|
- * read-side critical section in the just-completed grace period.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-enum rcu_mb_flag_values {
|
|
|
|
- rcu_mb_done, /* Steady/initial state, no mb()s required. */
|
|
|
|
- /* Only GP detector can update. */
|
|
|
|
- rcu_mb_needed /* Flip just completed, need an mb(). */
|
|
|
|
- /* Only corresponding CPU can update. */
|
|
|
|
-};
|
|
|
|
-static DEFINE_PER_CPU_SHARED_ALIGNED(enum rcu_mb_flag_values, rcu_mb_flag)
|
|
|
|
- = rcu_mb_done;
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * RCU_DATA_ME: find the current CPU's rcu_data structure.
|
|
|
|
- * RCU_DATA_CPU: find the specified CPU's rcu_data structure.
|
|
|
|
- */
|
|
|
|
-#define RCU_DATA_ME() (&__get_cpu_var(rcu_data))
|
|
|
|
-#define RCU_DATA_CPU(cpu) (&per_cpu(rcu_data, cpu))
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Helper macro for tracing when the appropriate rcu_data is not
|
|
|
|
- * cached in a local variable, but where the CPU number is so cached.
|
|
|
|
- */
|
|
|
|
-#define RCU_TRACE_CPU(f, cpu) RCU_TRACE(f, &(RCU_DATA_CPU(cpu)->trace));
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Helper macro for tracing when the appropriate rcu_data is not
|
|
|
|
- * cached in a local variable.
|
|
|
|
- */
|
|
|
|
-#define RCU_TRACE_ME(f) RCU_TRACE(f, &(RCU_DATA_ME()->trace));
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Helper macro for tracing when the appropriate rcu_data is pointed
|
|
|
|
- * to by a local variable.
|
|
|
|
- */
|
|
|
|
-#define RCU_TRACE_RDP(f, rdp) RCU_TRACE(f, &((rdp)->trace));
|
|
|
|
-
|
|
|
|
-#define RCU_SCHED_BATCH_TIME (HZ / 50)
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Return the number of RCU batches processed thus far. Useful
|
|
|
|
- * for debug and statistics.
|
|
|
|
- */
|
|
|
|
-long rcu_batches_completed(void)
|
|
|
|
-{
|
|
|
|
- return rcu_ctrlblk.completed;
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcu_batches_completed);
|
|
|
|
-
|
|
|
|
-void __rcu_read_lock(void)
|
|
|
|
-{
|
|
|
|
- int idx;
|
|
|
|
- struct task_struct *t = current;
|
|
|
|
- int nesting;
|
|
|
|
-
|
|
|
|
- nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
|
|
|
|
- if (nesting != 0) {
|
|
|
|
-
|
|
|
|
- /* An earlier rcu_read_lock() covers us, just count it. */
|
|
|
|
-
|
|
|
|
- t->rcu_read_lock_nesting = nesting + 1;
|
|
|
|
-
|
|
|
|
- } else {
|
|
|
|
- unsigned long flags;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * We disable interrupts for the following reasons:
|
|
|
|
- * - If we get scheduling clock interrupt here, and we
|
|
|
|
- * end up acking the counter flip, it's like a promise
|
|
|
|
- * that we will never increment the old counter again.
|
|
|
|
- * Thus we will break that promise if that
|
|
|
|
- * scheduling clock interrupt happens between the time
|
|
|
|
- * we pick the .completed field and the time that we
|
|
|
|
- * increment our counter.
|
|
|
|
- *
|
|
|
|
- * - We don't want to be preempted out here.
|
|
|
|
- *
|
|
|
|
- * NMIs can still occur, of course, and might themselves
|
|
|
|
- * contain rcu_read_lock().
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- local_irq_save(flags);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Outermost nesting of rcu_read_lock(), so increment
|
|
|
|
- * the current counter for the current CPU. Use volatile
|
|
|
|
- * casts to prevent the compiler from reordering.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
|
|
|
|
- ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])++;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Now that the per-CPU counter has been incremented, we
|
|
|
|
- * are protected from races with rcu_read_lock() invoked
|
|
|
|
- * from NMI handlers on this CPU. We can therefore safely
|
|
|
|
- * increment the nesting counter, relieving further NMIs
|
|
|
|
- * of the need to increment the per-CPU counter.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Now that we have preventing any NMIs from storing
|
|
|
|
- * to the ->rcu_flipctr_idx, we can safely use it to
|
|
|
|
- * remember which counter to decrement in the matching
|
|
|
|
- * rcu_read_unlock().
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
|
|
|
|
- local_irq_restore(flags);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(__rcu_read_lock);
|
|
|
|
-
|
|
|
|
-void __rcu_read_unlock(void)
|
|
|
|
-{
|
|
|
|
- int idx;
|
|
|
|
- struct task_struct *t = current;
|
|
|
|
- int nesting;
|
|
|
|
-
|
|
|
|
- nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
|
|
|
|
- if (nesting > 1) {
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * We are still protected by the enclosing rcu_read_lock(),
|
|
|
|
- * so simply decrement the counter.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- t->rcu_read_lock_nesting = nesting - 1;
|
|
|
|
-
|
|
|
|
- } else {
|
|
|
|
- unsigned long flags;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Disable local interrupts to prevent the grace-period
|
|
|
|
- * detection state machine from seeing us half-done.
|
|
|
|
- * NMIs can still occur, of course, and might themselves
|
|
|
|
- * contain rcu_read_lock() and rcu_read_unlock().
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- local_irq_save(flags);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Outermost nesting of rcu_read_unlock(), so we must
|
|
|
|
- * decrement the current counter for the current CPU.
|
|
|
|
- * This must be done carefully, because NMIs can
|
|
|
|
- * occur at any point in this code, and any rcu_read_lock()
|
|
|
|
- * and rcu_read_unlock() pairs in the NMI handlers
|
|
|
|
- * must interact non-destructively with this code.
|
|
|
|
- * Lots of volatile casts, and -very- careful ordering.
|
|
|
|
- *
|
|
|
|
- * Changes to this code, including this one, must be
|
|
|
|
- * inspected, validated, and tested extremely carefully!!!
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * First, pick up the index.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- idx = ACCESS_ONCE(t->rcu_flipctr_idx);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Now that we have fetched the counter index, it is
|
|
|
|
- * safe to decrement the per-task RCU nesting counter.
|
|
|
|
- * After this, any interrupts or NMIs will increment and
|
|
|
|
- * decrement the per-CPU counters.
|
|
|
|
- */
|
|
|
|
- ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * It is now safe to decrement this task's nesting count.
|
|
|
|
- * NMIs that occur after this statement will route their
|
|
|
|
- * rcu_read_lock() calls through this "else" clause, and
|
|
|
|
- * will thus start incrementing the per-CPU counter on
|
|
|
|
- * their own. They will also clobber ->rcu_flipctr_idx,
|
|
|
|
- * but that is OK, since we have already fetched it.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- ACCESS_ONCE(RCU_DATA_ME()->rcu_flipctr[idx])--;
|
|
|
|
- local_irq_restore(flags);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * If a global counter flip has occurred since the last time that we
|
|
|
|
- * advanced callbacks, advance them. Hardware interrupts must be
|
|
|
|
- * disabled when calling this function.
|
|
|
|
- */
|
|
|
|
-static void __rcu_advance_callbacks(struct rcu_data *rdp)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
- int i;
|
|
|
|
- int wlc = 0;
|
|
|
|
-
|
|
|
|
- if (rdp->completed != rcu_ctrlblk.completed) {
|
|
|
|
- if (rdp->waitlist[GP_STAGES - 1] != NULL) {
|
|
|
|
- *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
|
|
|
|
- rdp->donetail = rdp->waittail[GP_STAGES - 1];
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
|
|
|
|
- }
|
|
|
|
- for (i = GP_STAGES - 2; i >= 0; i--) {
|
|
|
|
- if (rdp->waitlist[i] != NULL) {
|
|
|
|
- rdp->waitlist[i + 1] = rdp->waitlist[i];
|
|
|
|
- rdp->waittail[i + 1] = rdp->waittail[i];
|
|
|
|
- wlc++;
|
|
|
|
- } else {
|
|
|
|
- rdp->waitlist[i + 1] = NULL;
|
|
|
|
- rdp->waittail[i + 1] =
|
|
|
|
- &rdp->waitlist[i + 1];
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- if (rdp->nextlist != NULL) {
|
|
|
|
- rdp->waitlist[0] = rdp->nextlist;
|
|
|
|
- rdp->waittail[0] = rdp->nexttail;
|
|
|
|
- wlc++;
|
|
|
|
- rdp->nextlist = NULL;
|
|
|
|
- rdp->nexttail = &rdp->nextlist;
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
|
|
|
|
- } else {
|
|
|
|
- rdp->waitlist[0] = NULL;
|
|
|
|
- rdp->waittail[0] = &rdp->waitlist[0];
|
|
|
|
- }
|
|
|
|
- rdp->waitlistcount = wlc;
|
|
|
|
- rdp->completed = rcu_ctrlblk.completed;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Check to see if this CPU needs to report that it has seen
|
|
|
|
- * the most recent counter flip, thereby declaring that all
|
|
|
|
- * subsequent rcu_read_lock() invocations will respect this flip.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- cpu = raw_smp_processor_id();
|
|
|
|
- if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
|
|
|
|
- smp_mb(); /* Subsequent counter accesses must see new value */
|
|
|
|
- per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
|
|
|
|
- smp_mb(); /* Subsequent RCU read-side critical sections */
|
|
|
|
- /* seen -after- acknowledgement. */
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef CONFIG_NO_HZ
|
|
|
|
-static DEFINE_PER_CPU(int, rcu_update_flag);
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * rcu_irq_enter - Called from Hard irq handlers and NMI/SMI.
|
|
|
|
- *
|
|
|
|
- * If the CPU was idle with dynamic ticks active, this updates the
|
|
|
|
- * rcu_dyntick_sched.dynticks to let the RCU handling know that the
|
|
|
|
- * CPU is active.
|
|
|
|
- */
|
|
|
|
-void rcu_irq_enter(void)
|
|
|
|
-{
|
|
|
|
- int cpu = smp_processor_id();
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- if (per_cpu(rcu_update_flag, cpu))
|
|
|
|
- per_cpu(rcu_update_flag, cpu)++;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Only update if we are coming from a stopped ticks mode
|
|
|
|
- * (rcu_dyntick_sched.dynticks is even).
|
|
|
|
- */
|
|
|
|
- if (!in_interrupt() &&
|
|
|
|
- (rdssp->dynticks & 0x1) == 0) {
|
|
|
|
- /*
|
|
|
|
- * The following might seem like we could have a race
|
|
|
|
- * with NMI/SMIs. But this really isn't a problem.
|
|
|
|
- * Here we do a read/modify/write, and the race happens
|
|
|
|
- * when an NMI/SMI comes in after the read and before
|
|
|
|
- * the write. But NMI/SMIs will increment this counter
|
|
|
|
- * twice before returning, so the zero bit will not
|
|
|
|
- * be corrupted by the NMI/SMI which is the most important
|
|
|
|
- * part.
|
|
|
|
- *
|
|
|
|
- * The only thing is that we would bring back the counter
|
|
|
|
- * to a postion that it was in during the NMI/SMI.
|
|
|
|
- * But the zero bit would be set, so the rest of the
|
|
|
|
- * counter would again be ignored.
|
|
|
|
- *
|
|
|
|
- * On return from the IRQ, the counter may have the zero
|
|
|
|
- * bit be 0 and the counter the same as the return from
|
|
|
|
- * the NMI/SMI. If the state machine was so unlucky to
|
|
|
|
- * see that, it still doesn't matter, since all
|
|
|
|
- * RCU read-side critical sections on this CPU would
|
|
|
|
- * have already completed.
|
|
|
|
- */
|
|
|
|
- rdssp->dynticks++;
|
|
|
|
- /*
|
|
|
|
- * The following memory barrier ensures that any
|
|
|
|
- * rcu_read_lock() primitives in the irq handler
|
|
|
|
- * are seen by other CPUs to follow the above
|
|
|
|
- * increment to rcu_dyntick_sched.dynticks. This is
|
|
|
|
- * required in order for other CPUs to correctly
|
|
|
|
- * determine when it is safe to advance the RCU
|
|
|
|
- * grace-period state machine.
|
|
|
|
- */
|
|
|
|
- smp_mb(); /* see above block comment. */
|
|
|
|
- /*
|
|
|
|
- * Since we can't determine the dynamic tick mode from
|
|
|
|
- * the rcu_dyntick_sched.dynticks after this routine,
|
|
|
|
- * we use a second flag to acknowledge that we came
|
|
|
|
- * from an idle state with ticks stopped.
|
|
|
|
- */
|
|
|
|
- per_cpu(rcu_update_flag, cpu)++;
|
|
|
|
- /*
|
|
|
|
- * If we take an NMI/SMI now, they will also increment
|
|
|
|
- * the rcu_update_flag, and will not update the
|
|
|
|
- * rcu_dyntick_sched.dynticks on exit. That is for
|
|
|
|
- * this IRQ to do.
|
|
|
|
- */
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/**
|
|
|
|
- * rcu_irq_exit - Called from exiting Hard irq context.
|
|
|
|
- *
|
|
|
|
- * If the CPU was idle with dynamic ticks active, update the
|
|
|
|
- * rcu_dyntick_sched.dynticks to let the RCU handling be
|
|
|
|
- * aware that the CPU is going back to idle with no ticks.
|
|
|
|
- */
|
|
|
|
-void rcu_irq_exit(void)
|
|
|
|
-{
|
|
|
|
- int cpu = smp_processor_id();
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * rcu_update_flag is set if we interrupted the CPU
|
|
|
|
- * when it was idle with ticks stopped.
|
|
|
|
- * Once this occurs, we keep track of interrupt nesting
|
|
|
|
- * because a NMI/SMI could also come in, and we still
|
|
|
|
- * only want the IRQ that started the increment of the
|
|
|
|
- * rcu_dyntick_sched.dynticks to be the one that modifies
|
|
|
|
- * it on exit.
|
|
|
|
- */
|
|
|
|
- if (per_cpu(rcu_update_flag, cpu)) {
|
|
|
|
- if (--per_cpu(rcu_update_flag, cpu))
|
|
|
|
- return;
|
|
|
|
-
|
|
|
|
- /* This must match the interrupt nesting */
|
|
|
|
- WARN_ON(in_interrupt());
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If an NMI/SMI happens now we are still
|
|
|
|
- * protected by the rcu_dyntick_sched.dynticks being odd.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * The following memory barrier ensures that any
|
|
|
|
- * rcu_read_unlock() primitives in the irq handler
|
|
|
|
- * are seen by other CPUs to preceed the following
|
|
|
|
- * increment to rcu_dyntick_sched.dynticks. This
|
|
|
|
- * is required in order for other CPUs to determine
|
|
|
|
- * when it is safe to advance the RCU grace-period
|
|
|
|
- * state machine.
|
|
|
|
- */
|
|
|
|
- smp_mb(); /* see above block comment. */
|
|
|
|
- rdssp->dynticks++;
|
|
|
|
- WARN_ON(rdssp->dynticks & 0x1);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void rcu_nmi_enter(void)
|
|
|
|
-{
|
|
|
|
- rcu_irq_enter();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void rcu_nmi_exit(void)
|
|
|
|
-{
|
|
|
|
- rcu_irq_exit();
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void dyntick_save_progress_counter(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- rdssp->dynticks_snap = rdssp->dynticks;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static inline int
|
|
|
|
-rcu_try_flip_waitack_needed(int cpu)
|
|
|
|
-{
|
|
|
|
- long curr;
|
|
|
|
- long snap;
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- curr = rdssp->dynticks;
|
|
|
|
- snap = rdssp->dynticks_snap;
|
|
|
|
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU remained in dynticks mode for the entire time
|
|
|
|
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
|
|
|
|
- * then it cannot be in the middle of an rcu_read_lock(), so
|
|
|
|
- * the next rcu_read_lock() it executes must use the new value
|
|
|
|
- * of the counter. So we can safely pretend that this CPU
|
|
|
|
- * already acknowledged the counter.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if ((curr == snap) && ((curr & 0x1) == 0))
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU passed through or entered a dynticks idle phase with
|
|
|
|
- * no active irq handlers, then, as above, we can safely pretend
|
|
|
|
- * that this CPU already acknowledged the counter.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if ((curr - snap) > 2 || (curr & 0x1) == 0)
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /* We need this CPU to explicitly acknowledge the counter flip. */
|
|
|
|
-
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static inline int
|
|
|
|
-rcu_try_flip_waitmb_needed(int cpu)
|
|
|
|
-{
|
|
|
|
- long curr;
|
|
|
|
- long snap;
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- curr = rdssp->dynticks;
|
|
|
|
- snap = rdssp->dynticks_snap;
|
|
|
|
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU remained in dynticks mode for the entire time
|
|
|
|
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
|
|
|
|
- * then it cannot have executed an RCU read-side critical section
|
|
|
|
- * during that time, so there is no need for it to execute a
|
|
|
|
- * memory barrier.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if ((curr == snap) && ((curr & 0x1) == 0))
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU either entered or exited an outermost interrupt,
|
|
|
|
- * SMI, NMI, or whatever handler, then we know that it executed
|
|
|
|
- * a memory barrier when doing so. So we don't need another one.
|
|
|
|
- */
|
|
|
|
- if (curr != snap)
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /* We need the CPU to execute a memory barrier. */
|
|
|
|
-
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void dyntick_save_progress_counter_sched(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- rdssp->sched_dynticks_snap = rdssp->dynticks;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static int rcu_qsctr_inc_needed_dyntick(int cpu)
|
|
|
|
-{
|
|
|
|
- long curr;
|
|
|
|
- long snap;
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- curr = rdssp->dynticks;
|
|
|
|
- snap = rdssp->sched_dynticks_snap;
|
|
|
|
- smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU remained in dynticks mode for the entire time
|
|
|
|
- * and didn't take any interrupts, NMIs, SMIs, or whatever,
|
|
|
|
- * then it cannot be in the middle of an rcu_read_lock(), so
|
|
|
|
- * the next rcu_read_lock() it executes must use the new value
|
|
|
|
- * of the counter. Therefore, this CPU has been in a quiescent
|
|
|
|
- * state the entire time, and we don't need to wait for it.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if ((curr == snap) && ((curr & 0x1) == 0))
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If the CPU passed through or entered a dynticks idle phase with
|
|
|
|
- * no active irq handlers, then, as above, this CPU has already
|
|
|
|
- * passed through a quiescent state.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if ((curr - snap) > 2 || (snap & 0x1) == 0)
|
|
|
|
- return 0;
|
|
|
|
-
|
|
|
|
- /* We need this CPU to go through a quiescent state. */
|
|
|
|
-
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#else /* !CONFIG_NO_HZ */
|
|
|
|
-
|
|
|
|
-# define dyntick_save_progress_counter(cpu) do { } while (0)
|
|
|
|
-# define rcu_try_flip_waitack_needed(cpu) (1)
|
|
|
|
-# define rcu_try_flip_waitmb_needed(cpu) (1)
|
|
|
|
-
|
|
|
|
-# define dyntick_save_progress_counter_sched(cpu) do { } while (0)
|
|
|
|
-# define rcu_qsctr_inc_needed_dyntick(cpu) (1)
|
|
|
|
-
|
|
|
|
-#endif /* CONFIG_NO_HZ */
|
|
|
|
-
|
|
|
|
-static void save_qsctr_sched(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- rdssp->sched_qs_snap = rdssp->sched_qs;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static inline int rcu_qsctr_inc_needed(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_dyntick_sched *rdssp = &per_cpu(rcu_dyntick_sched, cpu);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If there has been a quiescent state, no more need to wait
|
|
|
|
- * on this CPU.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- if (rdssp->sched_qs != rdssp->sched_qs_snap) {
|
|
|
|
- smp_mb(); /* force ordering with cpu entering schedule(). */
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* We need this CPU to go through a quiescent state. */
|
|
|
|
-
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Get here when RCU is idle. Decide whether we need to
|
|
|
|
- * move out of idle state, and return non-zero if so.
|
|
|
|
- * "Straightforward" approach for the moment, might later
|
|
|
|
- * use callback-list lengths, grace-period duration, or
|
|
|
|
- * some such to determine when to exit idle state.
|
|
|
|
- * Might also need a pre-idle test that does not acquire
|
|
|
|
- * the lock, but let's get the simple case working first...
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static int
|
|
|
|
-rcu_try_flip_idle(void)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
|
|
|
|
- if (!rcu_pending(smp_processor_id())) {
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Do the flip.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
|
|
|
|
- rcu_ctrlblk.completed++; /* stands in for rcu_try_flip_g2 */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Need a memory barrier so that other CPUs see the new
|
|
|
|
- * counter value before they see the subsequent change of all
|
|
|
|
- * the rcu_flip_flag instances to rcu_flipped.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- smp_mb(); /* see above block comment. */
|
|
|
|
-
|
|
|
|
- /* Now ask each CPU for acknowledgement of the flip. */
|
|
|
|
-
|
|
|
|
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
|
|
|
|
- per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
|
|
|
|
- dyntick_save_progress_counter(cpu);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Wait for CPUs to acknowledge the flip.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static int
|
|
|
|
-rcu_try_flip_waitack(void)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
|
|
|
|
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
|
|
|
|
- if (rcu_try_flip_waitack_needed(cpu) &&
|
|
|
|
- per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Make sure our checks above don't bleed into subsequent
|
|
|
|
- * waiting for the sum of the counters to reach zero.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- smp_mb(); /* see above block comment. */
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Wait for collective ``last'' counter to reach zero,
|
|
|
|
- * then tell all CPUs to do an end-of-grace-period memory barrier.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static int
|
|
|
|
-rcu_try_flip_waitzero(void)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
- int lastidx = !(rcu_ctrlblk.completed & 0x1);
|
|
|
|
- int sum = 0;
|
|
|
|
-
|
|
|
|
- /* Check to see if the sum of the "last" counters is zero. */
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
|
|
|
|
- for_each_possible_cpu(cpu)
|
|
|
|
- sum += RCU_DATA_CPU(cpu)->rcu_flipctr[lastidx];
|
|
|
|
- if (sum != 0) {
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * This ensures that the other CPUs see the call for
|
|
|
|
- * memory barriers -after- the sum to zero has been
|
|
|
|
- * detected here
|
|
|
|
- */
|
|
|
|
- smp_mb(); /* ^^^^^^^^^^^^ */
|
|
|
|
-
|
|
|
|
- /* Call for a memory barrier from each CPU. */
|
|
|
|
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map)) {
|
|
|
|
- per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
|
|
|
|
- dyntick_save_progress_counter(cpu);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Wait for all CPUs to do their end-of-grace-period memory barrier.
|
|
|
|
- * Return 0 once all CPUs have done so.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static int
|
|
|
|
-rcu_try_flip_waitmb(void)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
|
|
|
|
- for_each_cpu(cpu, to_cpumask(rcu_cpu_online_map))
|
|
|
|
- if (rcu_try_flip_waitmb_needed(cpu) &&
|
|
|
|
- per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
|
|
|
|
- return 0;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- smp_mb(); /* Ensure that the above checks precede any following flip. */
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
|
|
|
|
- return 1;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Attempt a single flip of the counters. Remember, a single flip does
|
|
|
|
- * -not- constitute a grace period. Instead, the interval between
|
|
|
|
- * at least GP_STAGES consecutive flips is a grace period.
|
|
|
|
- *
|
|
|
|
- * If anyone is nuts enough to run this CONFIG_PREEMPT_RCU implementation
|
|
|
|
- * on a large SMP, they might want to use a hierarchical organization of
|
|
|
|
- * the per-CPU-counter pairs.
|
|
|
|
- */
|
|
|
|
-static void rcu_try_flip(void)
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
-
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
|
|
|
|
- if (unlikely(!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags))) {
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Take the next transition(s) through the RCU grace-period
|
|
|
|
- * flip-counter state machine.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- switch (rcu_ctrlblk.rcu_try_flip_state) {
|
|
|
|
- case rcu_try_flip_idle_state:
|
|
|
|
- if (rcu_try_flip_idle())
|
|
|
|
- rcu_ctrlblk.rcu_try_flip_state =
|
|
|
|
- rcu_try_flip_waitack_state;
|
|
|
|
- break;
|
|
|
|
- case rcu_try_flip_waitack_state:
|
|
|
|
- if (rcu_try_flip_waitack())
|
|
|
|
- rcu_ctrlblk.rcu_try_flip_state =
|
|
|
|
- rcu_try_flip_waitzero_state;
|
|
|
|
- break;
|
|
|
|
- case rcu_try_flip_waitzero_state:
|
|
|
|
- if (rcu_try_flip_waitzero())
|
|
|
|
- rcu_ctrlblk.rcu_try_flip_state =
|
|
|
|
- rcu_try_flip_waitmb_state;
|
|
|
|
- break;
|
|
|
|
- case rcu_try_flip_waitmb_state:
|
|
|
|
- if (rcu_try_flip_waitmb())
|
|
|
|
- rcu_ctrlblk.rcu_try_flip_state =
|
|
|
|
- rcu_try_flip_idle_state;
|
|
|
|
- }
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Check to see if this CPU needs to do a memory barrier in order to
|
|
|
|
- * ensure that any prior RCU read-side critical sections have committed
|
|
|
|
- * their counter manipulations and critical-section memory references
|
|
|
|
- * before declaring the grace period to be completed.
|
|
|
|
- */
|
|
|
|
-static void rcu_check_mb(int cpu)
|
|
|
|
-{
|
|
|
|
- if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
|
|
|
|
- smp_mb(); /* Ensure RCU read-side accesses are visible. */
|
|
|
|
- per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void rcu_check_callbacks(int cpu, int user)
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
-
|
|
|
|
- if (!rcu_pending(cpu))
|
|
|
|
- return; /* if nothing for RCU to do. */
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If this CPU took its interrupt from user mode or from the
|
|
|
|
- * idle loop, and this is not a nested interrupt, then
|
|
|
|
- * this CPU has to have exited all prior preept-disable
|
|
|
|
- * sections of code. So invoke rcu_sched_qs() to note this.
|
|
|
|
- *
|
|
|
|
- * The memory barrier is needed to handle the case where
|
|
|
|
- * writes from a preempt-disable section of code get reordered
|
|
|
|
- * into schedule() by this CPU's write buffer. So the memory
|
|
|
|
- * barrier makes sure that the rcu_sched_qs() is seen by other
|
|
|
|
- * CPUs to happen after any such write.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- rdp = RCU_DATA_CPU(cpu);
|
|
|
|
- if (user ||
|
|
|
|
- (idle_cpu(cpu) && !in_softirq() &&
|
|
|
|
- hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
|
|
|
|
- smp_mb(); /* Guard against aggressive schedule(). */
|
|
|
|
- rcu_sched_qs(cpu);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- rcu_check_mb(cpu);
|
|
|
|
- if (rcu_ctrlblk.completed == rdp->completed)
|
|
|
|
- rcu_try_flip();
|
|
|
|
- spin_lock_irqsave(&rdp->lock, flags);
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
|
|
|
|
- __rcu_advance_callbacks(rdp);
|
|
|
|
- if (rdp->donelist == NULL) {
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- } else {
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- raise_softirq(RCU_SOFTIRQ);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Needed by dynticks, to make sure all RCU processing has finished
|
|
|
|
- * when we go idle:
|
|
|
|
- */
|
|
|
|
-void rcu_advance_callbacks(int cpu, int user)
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
-
|
|
|
|
- if (rcu_ctrlblk.completed == rdp->completed) {
|
|
|
|
- rcu_try_flip();
|
|
|
|
- if (rcu_ctrlblk.completed == rdp->completed)
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- spin_lock_irqsave(&rdp->lock, flags);
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
|
|
|
|
- __rcu_advance_callbacks(rdp);
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef CONFIG_HOTPLUG_CPU
|
|
|
|
-#define rcu_offline_cpu_enqueue(srclist, srctail, dstlist, dsttail) do { \
|
|
|
|
- *dsttail = srclist; \
|
|
|
|
- if (srclist != NULL) { \
|
|
|
|
- dsttail = srctail; \
|
|
|
|
- srclist = NULL; \
|
|
|
|
- srctail = &srclist;\
|
|
|
|
- } \
|
|
|
|
- } while (0)
|
|
|
|
-
|
|
|
|
-void rcu_offline_cpu(int cpu)
|
|
|
|
-{
|
|
|
|
- int i;
|
|
|
|
- struct rcu_head *list = NULL;
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
- struct rcu_head *schedlist = NULL;
|
|
|
|
- struct rcu_head **schedtail = &schedlist;
|
|
|
|
- struct rcu_head **tail = &list;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Remove all callbacks from the newly dead CPU, retaining order.
|
|
|
|
- * Otherwise rcu_barrier() will fail
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- spin_lock_irqsave(&rdp->lock, flags);
|
|
|
|
- rcu_offline_cpu_enqueue(rdp->donelist, rdp->donetail, list, tail);
|
|
|
|
- for (i = GP_STAGES - 1; i >= 0; i--)
|
|
|
|
- rcu_offline_cpu_enqueue(rdp->waitlist[i], rdp->waittail[i],
|
|
|
|
- list, tail);
|
|
|
|
- rcu_offline_cpu_enqueue(rdp->nextlist, rdp->nexttail, list, tail);
|
|
|
|
- rcu_offline_cpu_enqueue(rdp->waitschedlist, rdp->waitschedtail,
|
|
|
|
- schedlist, schedtail);
|
|
|
|
- rcu_offline_cpu_enqueue(rdp->nextschedlist, rdp->nextschedtail,
|
|
|
|
- schedlist, schedtail);
|
|
|
|
- rdp->rcu_sched_sleeping = 0;
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- rdp->waitlistcount = 0;
|
|
|
|
-
|
|
|
|
- /* Disengage the newly dead CPU from the grace-period computation. */
|
|
|
|
-
|
|
|
|
- spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
- rcu_check_mb(cpu);
|
|
|
|
- if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
|
|
|
|
- smp_mb(); /* Subsequent counter accesses must see new value */
|
|
|
|
- per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
|
|
|
|
- smp_mb(); /* Subsequent RCU read-side critical sections */
|
|
|
|
- /* seen -after- acknowledgement. */
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- cpumask_clear_cpu(cpu, to_cpumask(rcu_cpu_online_map));
|
|
|
|
-
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Place the removed callbacks on the current CPU's queue.
|
|
|
|
- * Make them all start a new grace period: simple approach,
|
|
|
|
- * in theory could starve a given set of callbacks, but
|
|
|
|
- * you would need to be doing some serious CPU hotplugging
|
|
|
|
- * to make this happen. If this becomes a problem, adding
|
|
|
|
- * a synchronize_rcu() to the hotplug path would be a simple
|
|
|
|
- * fix.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- local_irq_save(flags); /* disable preempt till we know what lock. */
|
|
|
|
- rdp = RCU_DATA_ME();
|
|
|
|
- spin_lock(&rdp->lock);
|
|
|
|
- *rdp->nexttail = list;
|
|
|
|
- if (list)
|
|
|
|
- rdp->nexttail = tail;
|
|
|
|
- *rdp->nextschedtail = schedlist;
|
|
|
|
- if (schedlist)
|
|
|
|
- rdp->nextschedtail = schedtail;
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#else /* #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
-
|
|
|
|
-void rcu_offline_cpu(int cpu)
|
|
|
|
-{
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
|
|
|
|
-
|
|
|
|
-void __cpuinit rcu_online_cpu(int cpu)
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
-
|
|
|
|
- spin_lock_irqsave(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
- cpumask_set_cpu(cpu, to_cpumask(rcu_cpu_online_map));
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * The rcu_sched grace-period processing might have bypassed
|
|
|
|
- * this CPU, given that it was not in the rcu_cpu_online_map
|
|
|
|
- * when the grace-period scan started. This means that the
|
|
|
|
- * grace-period task might sleep. So make sure that if this
|
|
|
|
- * should happen, the first callback posted to this CPU will
|
|
|
|
- * wake up the grace-period task if need be.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- rdp = RCU_DATA_CPU(cpu);
|
|
|
|
- spin_lock_irqsave(&rdp->lock, flags);
|
|
|
|
- rdp->rcu_sched_sleeping = 1;
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static void rcu_process_callbacks(struct softirq_action *unused)
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_head *next, *list;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
-
|
|
|
|
- local_irq_save(flags);
|
|
|
|
- rdp = RCU_DATA_ME();
|
|
|
|
- spin_lock(&rdp->lock);
|
|
|
|
- list = rdp->donelist;
|
|
|
|
- if (list == NULL) {
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- return;
|
|
|
|
- }
|
|
|
|
- rdp->donelist = NULL;
|
|
|
|
- rdp->donetail = &rdp->donelist;
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_done_remove, rdp);
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- while (list) {
|
|
|
|
- next = list->next;
|
|
|
|
- list->func(list);
|
|
|
|
- list = next;
|
|
|
|
- RCU_TRACE_ME(rcupreempt_trace_invoke);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
-
|
|
|
|
- head->func = func;
|
|
|
|
- head->next = NULL;
|
|
|
|
- local_irq_save(flags);
|
|
|
|
- rdp = RCU_DATA_ME();
|
|
|
|
- spin_lock(&rdp->lock);
|
|
|
|
- __rcu_advance_callbacks(rdp);
|
|
|
|
- *rdp->nexttail = head;
|
|
|
|
- rdp->nexttail = &head->next;
|
|
|
|
- RCU_TRACE_RDP(rcupreempt_trace_next_add, rdp);
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(call_rcu);
|
|
|
|
-
|
|
|
|
-void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
|
|
-{
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
- int wake_gp = 0;
|
|
|
|
-
|
|
|
|
- head->func = func;
|
|
|
|
- head->next = NULL;
|
|
|
|
- local_irq_save(flags);
|
|
|
|
- rdp = RCU_DATA_ME();
|
|
|
|
- spin_lock(&rdp->lock);
|
|
|
|
- *rdp->nextschedtail = head;
|
|
|
|
- rdp->nextschedtail = &head->next;
|
|
|
|
- if (rdp->rcu_sched_sleeping) {
|
|
|
|
-
|
|
|
|
- /* Grace-period processing might be sleeping... */
|
|
|
|
-
|
|
|
|
- rdp->rcu_sched_sleeping = 0;
|
|
|
|
- wake_gp = 1;
|
|
|
|
- }
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- if (wake_gp) {
|
|
|
|
-
|
|
|
|
- /* Wake up grace-period processing, unless someone beat us. */
|
|
|
|
-
|
|
|
|
- spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- if (rcu_ctrlblk.sched_sleep != rcu_sched_sleeping)
|
|
|
|
- wake_gp = 0;
|
|
|
|
- rcu_ctrlblk.sched_sleep = rcu_sched_not_sleeping;
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- if (wake_gp)
|
|
|
|
- wake_up_interruptible(&rcu_ctrlblk.sched_wq);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(call_rcu_sched);
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Wait until all currently running preempt_disable() code segments
|
|
|
|
- * (including hardware-irq-disable segments) complete. Note that
|
|
|
|
- * in -rt this does -not- necessarily result in all currently executing
|
|
|
|
- * interrupt -handlers- having completed.
|
|
|
|
- */
|
|
|
|
-void __synchronize_sched(void)
|
|
|
|
-{
|
|
|
|
- struct rcu_synchronize rcu;
|
|
|
|
-
|
|
|
|
- if (num_online_cpus() == 1)
|
|
|
|
- return; /* blocking is gp if only one CPU! */
|
|
|
|
-
|
|
|
|
- init_completion(&rcu.completion);
|
|
|
|
- /* Will wake me after RCU finished. */
|
|
|
|
- call_rcu_sched(&rcu.head, wakeme_after_rcu);
|
|
|
|
- /* Wait for it. */
|
|
|
|
- wait_for_completion(&rcu.completion);
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(__synchronize_sched);
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * kthread function that manages call_rcu_sched grace periods.
|
|
|
|
- */
|
|
|
|
-static int rcu_sched_grace_period(void *arg)
|
|
|
|
-{
|
|
|
|
- int couldsleep; /* might sleep after current pass. */
|
|
|
|
- int couldsleepnext = 0; /* might sleep after next pass. */
|
|
|
|
- int cpu;
|
|
|
|
- unsigned long flags;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
- int ret;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Each pass through the following loop handles one
|
|
|
|
- * rcu_sched grace period cycle.
|
|
|
|
- */
|
|
|
|
- do {
|
|
|
|
- /* Save each CPU's current state. */
|
|
|
|
-
|
|
|
|
- for_each_online_cpu(cpu) {
|
|
|
|
- dyntick_save_progress_counter_sched(cpu);
|
|
|
|
- save_qsctr_sched(cpu);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Sleep for about an RCU grace-period's worth to
|
|
|
|
- * allow better batching and to consume less CPU.
|
|
|
|
- */
|
|
|
|
- schedule_timeout_interruptible(RCU_SCHED_BATCH_TIME);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * If there was nothing to do last time, prepare to
|
|
|
|
- * sleep at the end of the current grace period cycle.
|
|
|
|
- */
|
|
|
|
- couldsleep = couldsleepnext;
|
|
|
|
- couldsleepnext = 1;
|
|
|
|
- if (couldsleep) {
|
|
|
|
- spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- rcu_ctrlblk.sched_sleep = rcu_sched_sleep_prep;
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Wait on each CPU in turn to have either visited
|
|
|
|
- * a quiescent state or been in dynticks-idle mode.
|
|
|
|
- */
|
|
|
|
- for_each_online_cpu(cpu) {
|
|
|
|
- while (rcu_qsctr_inc_needed(cpu) &&
|
|
|
|
- rcu_qsctr_inc_needed_dyntick(cpu)) {
|
|
|
|
- /* resched_cpu(cpu); @@@ */
|
|
|
|
- schedule_timeout_interruptible(1);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Advance callbacks for each CPU. */
|
|
|
|
-
|
|
|
|
- for_each_online_cpu(cpu) {
|
|
|
|
-
|
|
|
|
- rdp = RCU_DATA_CPU(cpu);
|
|
|
|
- spin_lock_irqsave(&rdp->lock, flags);
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * We are running on this CPU irq-disabled, so no
|
|
|
|
- * CPU can go offline until we re-enable irqs.
|
|
|
|
- * The current CPU might have already gone
|
|
|
|
- * offline (between the for_each_offline_cpu and
|
|
|
|
- * the spin_lock_irqsave), but in that case all its
|
|
|
|
- * callback lists will be empty, so no harm done.
|
|
|
|
- *
|
|
|
|
- * Advance the callbacks! We share normal RCU's
|
|
|
|
- * donelist, since callbacks are invoked the
|
|
|
|
- * same way in either case.
|
|
|
|
- */
|
|
|
|
- if (rdp->waitschedlist != NULL) {
|
|
|
|
- *rdp->donetail = rdp->waitschedlist;
|
|
|
|
- rdp->donetail = rdp->waitschedtail;
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Next rcu_check_callbacks() will
|
|
|
|
- * do the required raise_softirq().
|
|
|
|
- */
|
|
|
|
- }
|
|
|
|
- if (rdp->nextschedlist != NULL) {
|
|
|
|
- rdp->waitschedlist = rdp->nextschedlist;
|
|
|
|
- rdp->waitschedtail = rdp->nextschedtail;
|
|
|
|
- couldsleep = 0;
|
|
|
|
- couldsleepnext = 0;
|
|
|
|
- } else {
|
|
|
|
- rdp->waitschedlist = NULL;
|
|
|
|
- rdp->waitschedtail = &rdp->waitschedlist;
|
|
|
|
- }
|
|
|
|
- rdp->nextschedlist = NULL;
|
|
|
|
- rdp->nextschedtail = &rdp->nextschedlist;
|
|
|
|
-
|
|
|
|
- /* Mark sleep intention. */
|
|
|
|
-
|
|
|
|
- rdp->rcu_sched_sleeping = couldsleep;
|
|
|
|
-
|
|
|
|
- spin_unlock_irqrestore(&rdp->lock, flags);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* If we saw callbacks on the last scan, go deal with them. */
|
|
|
|
-
|
|
|
|
- if (!couldsleep)
|
|
|
|
- continue;
|
|
|
|
-
|
|
|
|
- /* Attempt to block... */
|
|
|
|
-
|
|
|
|
- spin_lock_irqsave(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- if (rcu_ctrlblk.sched_sleep != rcu_sched_sleep_prep) {
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- * Someone posted a callback after we scanned.
|
|
|
|
- * Go take care of it.
|
|
|
|
- */
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- couldsleepnext = 0;
|
|
|
|
- continue;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /* Block until the next person posts a callback. */
|
|
|
|
-
|
|
|
|
- rcu_ctrlblk.sched_sleep = rcu_sched_sleeping;
|
|
|
|
- spin_unlock_irqrestore(&rcu_ctrlblk.schedlock, flags);
|
|
|
|
- ret = 0; /* unused */
|
|
|
|
- __wait_event_interruptible(rcu_ctrlblk.sched_wq,
|
|
|
|
- rcu_ctrlblk.sched_sleep != rcu_sched_sleeping,
|
|
|
|
- ret);
|
|
|
|
-
|
|
|
|
- couldsleepnext = 0;
|
|
|
|
-
|
|
|
|
- } while (!kthread_should_stop());
|
|
|
|
-
|
|
|
|
- return (0);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Check to see if any future RCU-related work will need to be done
|
|
|
|
- * by the current CPU, even if none need be done immediately, returning
|
|
|
|
- * 1 if so. Assumes that notifiers would take care of handling any
|
|
|
|
- * outstanding requests from the RCU core.
|
|
|
|
- *
|
|
|
|
- * This function is part of the RCU implementation; it is -not-
|
|
|
|
- * an exported member of the RCU API.
|
|
|
|
- */
|
|
|
|
-int rcu_needs_cpu(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
-
|
|
|
|
- return (rdp->donelist != NULL ||
|
|
|
|
- !!rdp->waitlistcount ||
|
|
|
|
- rdp->nextlist != NULL ||
|
|
|
|
- rdp->nextschedlist != NULL ||
|
|
|
|
- rdp->waitschedlist != NULL);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-static int rcu_pending(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
-
|
|
|
|
- /* The CPU has at least one callback queued somewhere. */
|
|
|
|
-
|
|
|
|
- if (rdp->donelist != NULL ||
|
|
|
|
- !!rdp->waitlistcount ||
|
|
|
|
- rdp->nextlist != NULL ||
|
|
|
|
- rdp->nextschedlist != NULL ||
|
|
|
|
- rdp->waitschedlist != NULL)
|
|
|
|
- return 1;
|
|
|
|
-
|
|
|
|
- /* The RCU core needs an acknowledgement from this CPU. */
|
|
|
|
-
|
|
|
|
- if ((per_cpu(rcu_flip_flag, cpu) == rcu_flipped) ||
|
|
|
|
- (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed))
|
|
|
|
- return 1;
|
|
|
|
-
|
|
|
|
- /* This CPU has fallen behind the global grace-period number. */
|
|
|
|
-
|
|
|
|
- if (rdp->completed != rcu_ctrlblk.completed)
|
|
|
|
- return 1;
|
|
|
|
-
|
|
|
|
- /* Nothing needed from this CPU. */
|
|
|
|
-
|
|
|
|
- return 0;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-int __cpuinit rcu_cpu_notify(struct notifier_block *self,
|
|
|
|
- unsigned long action, void *hcpu)
|
|
|
|
-{
|
|
|
|
- long cpu = (long)hcpu;
|
|
|
|
-
|
|
|
|
- switch (action) {
|
|
|
|
- case CPU_UP_PREPARE:
|
|
|
|
- case CPU_UP_PREPARE_FROZEN:
|
|
|
|
- rcu_online_cpu(cpu);
|
|
|
|
- break;
|
|
|
|
- case CPU_UP_CANCELED:
|
|
|
|
- case CPU_UP_CANCELED_FROZEN:
|
|
|
|
- case CPU_DEAD:
|
|
|
|
- case CPU_DEAD_FROZEN:
|
|
|
|
- rcu_offline_cpu(cpu);
|
|
|
|
- break;
|
|
|
|
- default:
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- return NOTIFY_OK;
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void __init __rcu_init(void)
|
|
|
|
-{
|
|
|
|
- int cpu;
|
|
|
|
- int i;
|
|
|
|
- struct rcu_data *rdp;
|
|
|
|
-
|
|
|
|
- printk(KERN_NOTICE "Preemptible RCU implementation.\n");
|
|
|
|
- for_each_possible_cpu(cpu) {
|
|
|
|
- rdp = RCU_DATA_CPU(cpu);
|
|
|
|
- spin_lock_init(&rdp->lock);
|
|
|
|
- rdp->completed = 0;
|
|
|
|
- rdp->waitlistcount = 0;
|
|
|
|
- rdp->nextlist = NULL;
|
|
|
|
- rdp->nexttail = &rdp->nextlist;
|
|
|
|
- for (i = 0; i < GP_STAGES; i++) {
|
|
|
|
- rdp->waitlist[i] = NULL;
|
|
|
|
- rdp->waittail[i] = &rdp->waitlist[i];
|
|
|
|
- }
|
|
|
|
- rdp->donelist = NULL;
|
|
|
|
- rdp->donetail = &rdp->donelist;
|
|
|
|
- rdp->rcu_flipctr[0] = 0;
|
|
|
|
- rdp->rcu_flipctr[1] = 0;
|
|
|
|
- rdp->nextschedlist = NULL;
|
|
|
|
- rdp->nextschedtail = &rdp->nextschedlist;
|
|
|
|
- rdp->waitschedlist = NULL;
|
|
|
|
- rdp->waitschedtail = &rdp->waitschedlist;
|
|
|
|
- rdp->rcu_sched_sleeping = 0;
|
|
|
|
- }
|
|
|
|
- open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
- * Late-boot-time RCU initialization that must wait until after scheduler
|
|
|
|
- * has been initialized.
|
|
|
|
- */
|
|
|
|
-void __init rcu_init_sched(void)
|
|
|
|
-{
|
|
|
|
- rcu_sched_grace_period_task = kthread_run(rcu_sched_grace_period,
|
|
|
|
- NULL,
|
|
|
|
- "rcu_sched_grace_period");
|
|
|
|
- WARN_ON(IS_ERR(rcu_sched_grace_period_task));
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#ifdef CONFIG_RCU_TRACE
|
|
|
|
-long *rcupreempt_flipctr(int cpu)
|
|
|
|
-{
|
|
|
|
- return &RCU_DATA_CPU(cpu)->rcu_flipctr[0];
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcupreempt_flipctr);
|
|
|
|
-
|
|
|
|
-int rcupreempt_flip_flag(int cpu)
|
|
|
|
-{
|
|
|
|
- return per_cpu(rcu_flip_flag, cpu);
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcupreempt_flip_flag);
|
|
|
|
-
|
|
|
|
-int rcupreempt_mb_flag(int cpu)
|
|
|
|
-{
|
|
|
|
- return per_cpu(rcu_mb_flag, cpu);
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcupreempt_mb_flag);
|
|
|
|
-
|
|
|
|
-char *rcupreempt_try_flip_state_name(void)
|
|
|
|
-{
|
|
|
|
- return rcu_try_flip_state_names[rcu_ctrlblk.rcu_try_flip_state];
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcupreempt_try_flip_state_name);
|
|
|
|
-
|
|
|
|
-struct rcupreempt_trace *rcupreempt_trace_cpu(int cpu)
|
|
|
|
-{
|
|
|
|
- struct rcu_data *rdp = RCU_DATA_CPU(cpu);
|
|
|
|
-
|
|
|
|
- return &rdp->trace;
|
|
|
|
-}
|
|
|
|
-EXPORT_SYMBOL_GPL(rcupreempt_trace_cpu);
|
|
|
|
-
|
|
|
|
-#endif /* #ifdef RCU_TRACE */
|
|
|