|
@@ -0,0 +1,447 @@
|
|
|
+/*
|
|
|
+ * Read-Copy Update mechanism for mutual exclusion (tree-based version)
|
|
|
+ * Internal non-public definitions that provide either classic
|
|
|
+ * or preemptable semantics.
|
|
|
+ *
|
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
|
+ * (at your option) any later version.
|
|
|
+ *
|
|
|
+ * This program is distributed in the hope that it will be useful,
|
|
|
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
+ * GNU General Public License for more details.
|
|
|
+ *
|
|
|
+ * You should have received a copy of the GNU General Public License
|
|
|
+ * along with this program; if not, write to the Free Software
|
|
|
+ * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
+ *
|
|
|
+ * Copyright Red Hat, 2009
|
|
|
+ * Copyright IBM Corporation, 2009
|
|
|
+ *
|
|
|
+ * Author: Ingo Molnar <mingo@elte.hu>
|
|
|
+ * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
|
+ */
|
|
|
+
|
|
|
+
|
|
|
+#ifdef CONFIG_TREE_PREEMPT_RCU
|
|
|
+
|
|
|
+struct rcu_state rcu_preempt_state = RCU_STATE_INITIALIZER(rcu_preempt_state);
|
|
|
+DEFINE_PER_CPU(struct rcu_data, rcu_preempt_data);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Tell them what RCU they are running.
|
|
|
+ */
|
|
|
+static inline void rcu_bootup_announce(void)
|
|
|
+{
|
|
|
+ printk(KERN_INFO
|
|
|
+ "Experimental preemptable hierarchical RCU implementation.\n");
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the number of RCU-preempt batches processed thus far
|
|
|
+ * for debug and statistics.
|
|
|
+ */
|
|
|
+long rcu_batches_completed_preempt(void)
|
|
|
+{
|
|
|
+ return rcu_preempt_state.completed;
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the number of RCU batches processed thus far for debug & stats.
|
|
|
+ */
|
|
|
+long rcu_batches_completed(void)
|
|
|
+{
|
|
|
+ return rcu_batches_completed_preempt();
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(rcu_batches_completed);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Record a preemptable-RCU quiescent state for the specified CPU. Note
|
|
|
+ * that this just means that the task currently running on the CPU is
|
|
|
+ * not in a quiescent state. There might be any number of tasks blocked
|
|
|
+ * while in an RCU read-side critical section.
|
|
|
+ */
|
|
|
+static void rcu_preempt_qs_record(int cpu)
|
|
|
+{
|
|
|
+ struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
|
|
|
+ rdp->passed_quiesc = 1;
|
|
|
+ rdp->passed_quiesc_completed = rdp->completed;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * We have entered the scheduler or are between softirqs in ksoftirqd.
|
|
|
+ * If we are in an RCU read-side critical section, we need to reflect
|
|
|
+ * that in the state of the rcu_node structure corresponding to this CPU.
|
|
|
+ * Caller must disable hardirqs.
|
|
|
+ */
|
|
|
+static void rcu_preempt_qs(int cpu)
|
|
|
+{
|
|
|
+ struct task_struct *t = current;
|
|
|
+ int phase;
|
|
|
+ struct rcu_data *rdp;
|
|
|
+ struct rcu_node *rnp;
|
|
|
+
|
|
|
+ if (t->rcu_read_lock_nesting &&
|
|
|
+ (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
|
|
|
+
|
|
|
+ /* Possibly blocking in an RCU read-side critical section. */
|
|
|
+ rdp = rcu_preempt_state.rda[cpu];
|
|
|
+ rnp = rdp->mynode;
|
|
|
+ spin_lock(&rnp->lock);
|
|
|
+ t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
|
|
|
+ t->rcu_blocked_cpu = cpu;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If this CPU has already checked in, then this task
|
|
|
+ * will hold up the next grace period rather than the
|
|
|
+ * current grace period. Queue the task accordingly.
|
|
|
+ * If the task is queued for the current grace period
|
|
|
+ * (i.e., this CPU has not yet passed through a quiescent
|
|
|
+ * state for the current grace period), then as long
|
|
|
+ * as that task remains queued, the current grace period
|
|
|
+ * cannot end.
|
|
|
+ */
|
|
|
+ phase = !(rnp->qsmask & rdp->grpmask) ^ (rnp->gpnum & 0x1);
|
|
|
+ list_add(&t->rcu_node_entry, &rnp->blocked_tasks[phase]);
|
|
|
+ smp_mb(); /* Ensure later ctxt swtch seen after above. */
|
|
|
+ spin_unlock(&rnp->lock);
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Either we were not in an RCU read-side critical section to
|
|
|
+ * begin with, or we have now recorded that critical section
|
|
|
+ * globally. Either way, we can now note a quiescent state
|
|
|
+ * for this CPU. Again, if we were in an RCU read-side critical
|
|
|
+ * section, and if that critical section was blocking the current
|
|
|
+ * grace period, then the fact that the task has been enqueued
|
|
|
+ * means that we continue to block the current grace period.
|
|
|
+ */
|
|
|
+ rcu_preempt_qs_record(cpu);
|
|
|
+ t->rcu_read_unlock_special &= ~(RCU_READ_UNLOCK_NEED_QS |
|
|
|
+ RCU_READ_UNLOCK_GOT_QS);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Tree-preemptable RCU implementation for rcu_read_lock().
|
|
|
+ * Just increment ->rcu_read_lock_nesting, shared state will be updated
|
|
|
+ * if we block.
|
|
|
+ */
|
|
|
+void __rcu_read_lock(void)
|
|
|
+{
|
|
|
+ ACCESS_ONCE(current->rcu_read_lock_nesting)++;
|
|
|
+ barrier(); /* needed if we ever invoke rcu_read_lock in rcutree.c */
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(__rcu_read_lock);
|
|
|
+
|
|
|
+static void rcu_read_unlock_special(struct task_struct *t)
|
|
|
+{
|
|
|
+ int empty;
|
|
|
+ unsigned long flags;
|
|
|
+ unsigned long mask;
|
|
|
+ struct rcu_node *rnp;
|
|
|
+ int special;
|
|
|
+
|
|
|
+ /* NMI handlers cannot block and cannot safely manipulate state. */
|
|
|
+ if (in_nmi())
|
|
|
+ return;
|
|
|
+
|
|
|
+ local_irq_save(flags);
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If RCU core is waiting for this CPU to exit critical section,
|
|
|
+ * let it know that we have done so.
|
|
|
+ */
|
|
|
+ special = t->rcu_read_unlock_special;
|
|
|
+ if (special & RCU_READ_UNLOCK_NEED_QS) {
|
|
|
+ t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
|
|
|
+ t->rcu_read_unlock_special |= RCU_READ_UNLOCK_GOT_QS;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Hardware IRQ handlers cannot block. */
|
|
|
+ if (in_irq()) {
|
|
|
+ local_irq_restore(flags);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ /* Clean up if blocked during RCU read-side critical section. */
|
|
|
+ if (special & RCU_READ_UNLOCK_BLOCKED) {
|
|
|
+ t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
|
|
|
+
|
|
|
+ /* Remove this task from the list it blocked on. */
|
|
|
+ rnp = rcu_preempt_state.rda[t->rcu_blocked_cpu]->mynode;
|
|
|
+ spin_lock(&rnp->lock);
|
|
|
+ empty = list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
|
|
|
+ list_del_init(&t->rcu_node_entry);
|
|
|
+ t->rcu_blocked_cpu = -1;
|
|
|
+
|
|
|
+ /*
|
|
|
+ * If this was the last task on the current list, and if
|
|
|
+ * we aren't waiting on any CPUs, report the quiescent state.
|
|
|
+ * Note that both cpu_quiet_msk_finish() and cpu_quiet_msk()
|
|
|
+ * drop rnp->lock and restore irq.
|
|
|
+ */
|
|
|
+ if (!empty && rnp->qsmask == 0 &&
|
|
|
+ list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1])) {
|
|
|
+ t->rcu_read_unlock_special &=
|
|
|
+ ~(RCU_READ_UNLOCK_NEED_QS |
|
|
|
+ RCU_READ_UNLOCK_GOT_QS);
|
|
|
+ if (rnp->parent == NULL) {
|
|
|
+ /* Only one rcu_node in the tree. */
|
|
|
+ cpu_quiet_msk_finish(&rcu_preempt_state, flags);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ /* Report up the rest of the hierarchy. */
|
|
|
+ mask = rnp->grpmask;
|
|
|
+ spin_unlock_irqrestore(&rnp->lock, flags);
|
|
|
+ rnp = rnp->parent;
|
|
|
+ spin_lock_irqsave(&rnp->lock, flags);
|
|
|
+ cpu_quiet_msk(mask, &rcu_preempt_state, rnp, flags);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ spin_unlock(&rnp->lock);
|
|
|
+ }
|
|
|
+ local_irq_restore(flags);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Tree-preemptable RCU implementation for rcu_read_unlock().
|
|
|
+ * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
|
|
|
+ * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
|
|
|
+ * invoke rcu_read_unlock_special() to clean up after a context switch
|
|
|
+ * in an RCU read-side critical section and other special cases.
|
|
|
+ */
|
|
|
+void __rcu_read_unlock(void)
|
|
|
+{
|
|
|
+ struct task_struct *t = current;
|
|
|
+
|
|
|
+ barrier(); /* needed if we ever invoke rcu_read_unlock in rcutree.c */
|
|
|
+ if (--ACCESS_ONCE(t->rcu_read_lock_nesting) == 0 &&
|
|
|
+ unlikely(ACCESS_ONCE(t->rcu_read_unlock_special)))
|
|
|
+ rcu_read_unlock_special(t);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(__rcu_read_unlock);
|
|
|
+
|
|
|
+#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
|
|
|
+
|
|
|
+/*
|
|
|
+ * Scan the current list of tasks blocked within RCU read-side critical
|
|
|
+ * sections, printing out the tid of each.
|
|
|
+ */
|
|
|
+static void rcu_print_task_stall(struct rcu_node *rnp)
|
|
|
+{
|
|
|
+ unsigned long flags;
|
|
|
+ struct list_head *lp;
|
|
|
+ int phase = rnp->gpnum & 0x1;
|
|
|
+ struct task_struct *t;
|
|
|
+
|
|
|
+ if (!list_empty(&rnp->blocked_tasks[phase])) {
|
|
|
+ spin_lock_irqsave(&rnp->lock, flags);
|
|
|
+ phase = rnp->gpnum & 0x1; /* re-read under lock. */
|
|
|
+ lp = &rnp->blocked_tasks[phase];
|
|
|
+ list_for_each_entry(t, lp, rcu_node_entry)
|
|
|
+ printk(" P%d", t->pid);
|
|
|
+ spin_unlock_irqrestore(&rnp->lock, flags);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Check for preempted RCU readers for the specified rcu_node structure.
|
|
|
+ * If the caller needs a reliable answer, it must hold the rcu_node's
|
|
|
+ * >lock.
|
|
|
+ */
|
|
|
+static int rcu_preempted_readers(struct rcu_node *rnp)
|
|
|
+{
|
|
|
+ return !list_empty(&rnp->blocked_tasks[rnp->gpnum & 0x1]);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Check for a quiescent state from the current CPU. When a task blocks,
|
|
|
+ * the task is recorded in the corresponding CPU's rcu_node structure,
|
|
|
+ * which is checked elsewhere.
|
|
|
+ *
|
|
|
+ * Caller must disable hard irqs.
|
|
|
+ */
|
|
|
+static void rcu_preempt_check_callbacks(int cpu)
|
|
|
+{
|
|
|
+ struct task_struct *t = current;
|
|
|
+
|
|
|
+ if (t->rcu_read_lock_nesting == 0) {
|
|
|
+ t->rcu_read_unlock_special &=
|
|
|
+ ~(RCU_READ_UNLOCK_NEED_QS | RCU_READ_UNLOCK_GOT_QS);
|
|
|
+ rcu_preempt_qs_record(cpu);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (per_cpu(rcu_preempt_data, cpu).qs_pending) {
|
|
|
+ if (t->rcu_read_unlock_special & RCU_READ_UNLOCK_GOT_QS) {
|
|
|
+ rcu_preempt_qs_record(cpu);
|
|
|
+ t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_GOT_QS;
|
|
|
+ } else if (!(t->rcu_read_unlock_special &
|
|
|
+ RCU_READ_UNLOCK_NEED_QS)) {
|
|
|
+ t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Process callbacks for preemptable RCU.
|
|
|
+ */
|
|
|
+static void rcu_preempt_process_callbacks(void)
|
|
|
+{
|
|
|
+ __rcu_process_callbacks(&rcu_preempt_state,
|
|
|
+ &__get_cpu_var(rcu_preempt_data));
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Queue a preemptable-RCU callback for invocation after a grace period.
|
|
|
+ */
|
|
|
+void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
|
+{
|
|
|
+ __call_rcu(head, func, &rcu_preempt_state);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(call_rcu);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Check to see if there is any immediate preemptable-RCU-related work
|
|
|
+ * to be done.
|
|
|
+ */
|
|
|
+static int rcu_preempt_pending(int cpu)
|
|
|
+{
|
|
|
+ return __rcu_pending(&rcu_preempt_state,
|
|
|
+ &per_cpu(rcu_preempt_data, cpu));
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Does preemptable RCU need the CPU to stay out of dynticks mode?
|
|
|
+ */
|
|
|
+static int rcu_preempt_needs_cpu(int cpu)
|
|
|
+{
|
|
|
+ return !!per_cpu(rcu_preempt_data, cpu).nxtlist;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Initialize preemptable RCU's per-CPU data.
|
|
|
+ */
|
|
|
+static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
|
|
|
+{
|
|
|
+ rcu_init_percpu_data(cpu, &rcu_preempt_state, 1);
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Check for a task exiting while in a preemptable-RCU read-side
|
|
|
+ * critical section, clean up if so. No need to issue warnings,
|
|
|
+ * as debug_check_no_locks_held() already does this if lockdep
|
|
|
+ * is enabled.
|
|
|
+ */
|
|
|
+void exit_rcu(void)
|
|
|
+{
|
|
|
+ struct task_struct *t = current;
|
|
|
+
|
|
|
+ if (t->rcu_read_lock_nesting == 0)
|
|
|
+ return;
|
|
|
+ t->rcu_read_lock_nesting = 1;
|
|
|
+ rcu_read_unlock();
|
|
|
+}
|
|
|
+
|
|
|
+#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Tell them what RCU they are running.
|
|
|
+ */
|
|
|
+static inline void rcu_bootup_announce(void)
|
|
|
+{
|
|
|
+ printk(KERN_INFO "Hierarchical RCU implementation.\n");
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Return the number of RCU batches processed thus far for debug & stats.
|
|
|
+ */
|
|
|
+long rcu_batches_completed(void)
|
|
|
+{
|
|
|
+ return rcu_batches_completed_sched();
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(rcu_batches_completed);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, we never have to check for
|
|
|
+ * CPUs being in quiescent states.
|
|
|
+ */
|
|
|
+static void rcu_preempt_qs(int cpu)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+#ifdef CONFIG_RCU_CPU_STALL_DETECTOR
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, we never have to check for
|
|
|
+ * tasks blocked within RCU read-side critical sections.
|
|
|
+ */
|
|
|
+static void rcu_print_task_stall(struct rcu_node *rnp)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, there are never any preempted
|
|
|
+ * RCU readers.
|
|
|
+ */
|
|
|
+static int rcu_preempted_readers(struct rcu_node *rnp)
|
|
|
+{
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, it never has any callbacks
|
|
|
+ * to check.
|
|
|
+ */
|
|
|
+void rcu_preempt_check_callbacks(int cpu)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, it never has any callbacks
|
|
|
+ * to process.
|
|
|
+ */
|
|
|
+void rcu_preempt_process_callbacks(void)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * In classic RCU, call_rcu() is just call_rcu_sched().
|
|
|
+ */
|
|
|
+void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
|
|
+{
|
|
|
+ call_rcu_sched(head, func);
|
|
|
+}
|
|
|
+EXPORT_SYMBOL_GPL(call_rcu);
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, it never has any work to do.
|
|
|
+ */
|
|
|
+static int rcu_preempt_pending(int cpu)
|
|
|
+{
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, it never needs any CPU.
|
|
|
+ */
|
|
|
+static int rcu_preempt_needs_cpu(int cpu)
|
|
|
+{
|
|
|
+ return 0;
|
|
|
+}
|
|
|
+
|
|
|
+/*
|
|
|
+ * Because preemptable RCU does not exist, there is no per-CPU
|
|
|
+ * data to initialize.
|
|
|
+ */
|
|
|
+static void __cpuinit rcu_preempt_init_percpu_data(int cpu)
|
|
|
+{
|
|
|
+}
|
|
|
+
|
|
|
+#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
|