|
@@ -255,186 +255,6 @@ static void bch_data_insert_keys(struct closure *cl)
|
|
|
closure_return(cl);
|
|
|
}
|
|
|
|
|
|
-struct open_bucket {
|
|
|
- struct list_head list;
|
|
|
- struct task_struct *last;
|
|
|
- unsigned sectors_free;
|
|
|
- BKEY_PADDED(key);
|
|
|
-};
|
|
|
-
|
|
|
-void bch_open_buckets_free(struct cache_set *c)
|
|
|
-{
|
|
|
- struct open_bucket *b;
|
|
|
-
|
|
|
- while (!list_empty(&c->data_buckets)) {
|
|
|
- b = list_first_entry(&c->data_buckets,
|
|
|
- struct open_bucket, list);
|
|
|
- list_del(&b->list);
|
|
|
- kfree(b);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-int bch_open_buckets_alloc(struct cache_set *c)
|
|
|
-{
|
|
|
- int i;
|
|
|
-
|
|
|
- spin_lock_init(&c->data_bucket_lock);
|
|
|
-
|
|
|
- for (i = 0; i < 6; i++) {
|
|
|
- struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
|
|
|
- if (!b)
|
|
|
- return -ENOMEM;
|
|
|
-
|
|
|
- list_add(&b->list, &c->data_buckets);
|
|
|
- }
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * We keep multiple buckets open for writes, and try to segregate different
|
|
|
- * write streams for better cache utilization: first we look for a bucket where
|
|
|
- * the last write to it was sequential with the current write, and failing that
|
|
|
- * we look for a bucket that was last used by the same task.
|
|
|
- *
|
|
|
- * The ideas is if you've got multiple tasks pulling data into the cache at the
|
|
|
- * same time, you'll get better cache utilization if you try to segregate their
|
|
|
- * data and preserve locality.
|
|
|
- *
|
|
|
- * For example, say you've starting Firefox at the same time you're copying a
|
|
|
- * bunch of files. Firefox will likely end up being fairly hot and stay in the
|
|
|
- * cache awhile, but the data you copied might not be; if you wrote all that
|
|
|
- * data to the same buckets it'd get invalidated at the same time.
|
|
|
- *
|
|
|
- * Both of those tasks will be doing fairly random IO so we can't rely on
|
|
|
- * detecting sequential IO to segregate their data, but going off of the task
|
|
|
- * should be a sane heuristic.
|
|
|
- */
|
|
|
-static struct open_bucket *pick_data_bucket(struct cache_set *c,
|
|
|
- const struct bkey *search,
|
|
|
- struct task_struct *task,
|
|
|
- struct bkey *alloc)
|
|
|
-{
|
|
|
- struct open_bucket *ret, *ret_task = NULL;
|
|
|
-
|
|
|
- list_for_each_entry_reverse(ret, &c->data_buckets, list)
|
|
|
- if (!bkey_cmp(&ret->key, search))
|
|
|
- goto found;
|
|
|
- else if (ret->last == task)
|
|
|
- ret_task = ret;
|
|
|
-
|
|
|
- ret = ret_task ?: list_first_entry(&c->data_buckets,
|
|
|
- struct open_bucket, list);
|
|
|
-found:
|
|
|
- if (!ret->sectors_free && KEY_PTRS(alloc)) {
|
|
|
- ret->sectors_free = c->sb.bucket_size;
|
|
|
- bkey_copy(&ret->key, alloc);
|
|
|
- bkey_init(alloc);
|
|
|
- }
|
|
|
-
|
|
|
- if (!ret->sectors_free)
|
|
|
- ret = NULL;
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-/*
|
|
|
- * Allocates some space in the cache to write to, and k to point to the newly
|
|
|
- * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
|
|
|
- * end of the newly allocated space).
|
|
|
- *
|
|
|
- * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
|
|
|
- * sectors were actually allocated.
|
|
|
- *
|
|
|
- * If s->writeback is true, will not fail.
|
|
|
- */
|
|
|
-static bool bch_alloc_sectors(struct data_insert_op *op,
|
|
|
- struct bkey *k, unsigned sectors)
|
|
|
-{
|
|
|
- struct cache_set *c = op->c;
|
|
|
- struct open_bucket *b;
|
|
|
- BKEY_PADDED(key) alloc;
|
|
|
- unsigned i;
|
|
|
-
|
|
|
- /*
|
|
|
- * We might have to allocate a new bucket, which we can't do with a
|
|
|
- * spinlock held. So if we have to allocate, we drop the lock, allocate
|
|
|
- * and then retry. KEY_PTRS() indicates whether alloc points to
|
|
|
- * allocated bucket(s).
|
|
|
- */
|
|
|
-
|
|
|
- bkey_init(&alloc.key);
|
|
|
- spin_lock(&c->data_bucket_lock);
|
|
|
-
|
|
|
- while (!(b = pick_data_bucket(c, k, op->task, &alloc.key))) {
|
|
|
- unsigned watermark = op->write_prio
|
|
|
- ? WATERMARK_MOVINGGC
|
|
|
- : WATERMARK_NONE;
|
|
|
-
|
|
|
- spin_unlock(&c->data_bucket_lock);
|
|
|
-
|
|
|
- if (bch_bucket_alloc_set(c, watermark, &alloc.key,
|
|
|
- 1, op->writeback))
|
|
|
- return false;
|
|
|
-
|
|
|
- spin_lock(&c->data_bucket_lock);
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- * If we had to allocate, we might race and not need to allocate the
|
|
|
- * second time we call find_data_bucket(). If we allocated a bucket but
|
|
|
- * didn't use it, drop the refcount bch_bucket_alloc_set() took:
|
|
|
- */
|
|
|
- if (KEY_PTRS(&alloc.key))
|
|
|
- __bkey_put(c, &alloc.key);
|
|
|
-
|
|
|
- for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
|
- EBUG_ON(ptr_stale(c, &b->key, i));
|
|
|
-
|
|
|
- /* Set up the pointer to the space we're allocating: */
|
|
|
-
|
|
|
- for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
|
- k->ptr[i] = b->key.ptr[i];
|
|
|
-
|
|
|
- sectors = min(sectors, b->sectors_free);
|
|
|
-
|
|
|
- SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
|
|
|
- SET_KEY_SIZE(k, sectors);
|
|
|
- SET_KEY_PTRS(k, KEY_PTRS(&b->key));
|
|
|
-
|
|
|
- /*
|
|
|
- * Move b to the end of the lru, and keep track of what this bucket was
|
|
|
- * last used for:
|
|
|
- */
|
|
|
- list_move_tail(&b->list, &c->data_buckets);
|
|
|
- bkey_copy_key(&b->key, k);
|
|
|
- b->last = op->task;
|
|
|
-
|
|
|
- b->sectors_free -= sectors;
|
|
|
-
|
|
|
- for (i = 0; i < KEY_PTRS(&b->key); i++) {
|
|
|
- SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
|
|
|
-
|
|
|
- atomic_long_add(sectors,
|
|
|
- &PTR_CACHE(c, &b->key, i)->sectors_written);
|
|
|
- }
|
|
|
-
|
|
|
- if (b->sectors_free < c->sb.block_size)
|
|
|
- b->sectors_free = 0;
|
|
|
-
|
|
|
- /*
|
|
|
- * k takes refcounts on the buckets it points to until it's inserted
|
|
|
- * into the btree, but if we're done with this bucket we just transfer
|
|
|
- * get_data_bucket()'s refcount.
|
|
|
- */
|
|
|
- if (b->sectors_free)
|
|
|
- for (i = 0; i < KEY_PTRS(&b->key); i++)
|
|
|
- atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
|
|
|
-
|
|
|
- spin_unlock(&c->data_bucket_lock);
|
|
|
- return true;
|
|
|
-}
|
|
|
-
|
|
|
static void bch_data_invalidate(struct closure *cl)
|
|
|
{
|
|
|
struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
|
|
@@ -545,7 +365,9 @@ static void bch_data_insert_start(struct closure *cl)
|
|
|
SET_KEY_INODE(k, op->inode);
|
|
|
SET_KEY_OFFSET(k, bio->bi_sector);
|
|
|
|
|
|
- if (!bch_alloc_sectors(op, k, bio_sectors(bio)))
|
|
|
+ if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
|
|
|
+ op->write_point, op->write_prio,
|
|
|
+ op->writeback))
|
|
|
goto err;
|
|
|
|
|
|
n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
|
|
@@ -968,7 +790,7 @@ static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
|
|
|
s->iop.c = d->c;
|
|
|
s->d = d;
|
|
|
s->op.lock = -1;
|
|
|
- s->iop.task = current;
|
|
|
+ s->iop.write_point = hash_long((unsigned long) current, 16);
|
|
|
s->orig_bio = bio;
|
|
|
s->write = (bio->bi_rw & REQ_WRITE) != 0;
|
|
|
s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
|