request.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. static void bch_data_insert_start(struct closure *);
  23. /* Cgroup interface */
  24. #ifdef CONFIG_CGROUP_BCACHE
  25. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  26. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  27. {
  28. struct cgroup_subsys_state *css;
  29. return cgroup &&
  30. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  31. ? container_of(css, struct bch_cgroup, css)
  32. : &bcache_default_cgroup;
  33. }
  34. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  35. {
  36. struct cgroup_subsys_state *css = bio->bi_css
  37. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  38. : task_subsys_state(current, bcache_subsys_id);
  39. return css
  40. ? container_of(css, struct bch_cgroup, css)
  41. : &bcache_default_cgroup;
  42. }
  43. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  44. struct file *file,
  45. char __user *buf, size_t nbytes, loff_t *ppos)
  46. {
  47. char tmp[1024];
  48. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  49. cgroup_to_bcache(cgrp)->cache_mode + 1);
  50. if (len < 0)
  51. return len;
  52. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  53. }
  54. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  55. const char *buf)
  56. {
  57. int v = bch_read_string_list(buf, bch_cache_modes);
  58. if (v < 0)
  59. return v;
  60. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  61. return 0;
  62. }
  63. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  64. {
  65. return cgroup_to_bcache(cgrp)->verify;
  66. }
  67. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  68. {
  69. cgroup_to_bcache(cgrp)->verify = val;
  70. return 0;
  71. }
  72. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  73. {
  74. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  75. return atomic_read(&bcachecg->stats.cache_hits);
  76. }
  77. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  78. {
  79. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  80. return atomic_read(&bcachecg->stats.cache_misses);
  81. }
  82. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  83. struct cftype *cft)
  84. {
  85. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  86. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  87. }
  88. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  89. struct cftype *cft)
  90. {
  91. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  92. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  93. }
  94. static struct cftype bch_files[] = {
  95. {
  96. .name = "cache_mode",
  97. .read = cache_mode_read,
  98. .write_string = cache_mode_write,
  99. },
  100. {
  101. .name = "verify",
  102. .read_u64 = bch_verify_read,
  103. .write_u64 = bch_verify_write,
  104. },
  105. {
  106. .name = "cache_hits",
  107. .read_u64 = bch_cache_hits_read,
  108. },
  109. {
  110. .name = "cache_misses",
  111. .read_u64 = bch_cache_misses_read,
  112. },
  113. {
  114. .name = "cache_bypass_hits",
  115. .read_u64 = bch_cache_bypass_hits_read,
  116. },
  117. {
  118. .name = "cache_bypass_misses",
  119. .read_u64 = bch_cache_bypass_misses_read,
  120. },
  121. { } /* terminate */
  122. };
  123. static void init_bch_cgroup(struct bch_cgroup *cg)
  124. {
  125. cg->cache_mode = -1;
  126. }
  127. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  128. {
  129. struct bch_cgroup *cg;
  130. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  131. if (!cg)
  132. return ERR_PTR(-ENOMEM);
  133. init_bch_cgroup(cg);
  134. return &cg->css;
  135. }
  136. static void bcachecg_destroy(struct cgroup *cgroup)
  137. {
  138. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  139. free_css_id(&bcache_subsys, &cg->css);
  140. kfree(cg);
  141. }
  142. struct cgroup_subsys bcache_subsys = {
  143. .create = bcachecg_create,
  144. .destroy = bcachecg_destroy,
  145. .subsys_id = bcache_subsys_id,
  146. .name = "bcache",
  147. .module = THIS_MODULE,
  148. };
  149. EXPORT_SYMBOL_GPL(bcache_subsys);
  150. #endif
  151. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  152. {
  153. #ifdef CONFIG_CGROUP_BCACHE
  154. int r = bch_bio_to_cgroup(bio)->cache_mode;
  155. if (r >= 0)
  156. return r;
  157. #endif
  158. return BDEV_CACHE_MODE(&dc->sb);
  159. }
  160. static bool verify(struct cached_dev *dc, struct bio *bio)
  161. {
  162. #ifdef CONFIG_CGROUP_BCACHE
  163. if (bch_bio_to_cgroup(bio)->verify)
  164. return true;
  165. #endif
  166. return dc->verify;
  167. }
  168. static void bio_csum(struct bio *bio, struct bkey *k)
  169. {
  170. struct bio_vec *bv;
  171. uint64_t csum = 0;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. void *d = kmap(bv->bv_page) + bv->bv_offset;
  175. csum = bch_crc64_update(csum, d, bv->bv_len);
  176. kunmap(bv->bv_page);
  177. }
  178. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  179. }
  180. /* Insert data into cache */
  181. static void bch_data_insert_keys(struct closure *cl)
  182. {
  183. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  184. atomic_t *journal_ref = NULL;
  185. struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
  186. int ret;
  187. /*
  188. * If we're looping, might already be waiting on
  189. * another journal write - can't wait on more than one journal write at
  190. * a time
  191. *
  192. * XXX: this looks wrong
  193. */
  194. #if 0
  195. while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  196. closure_sync(&s->cl);
  197. #endif
  198. if (!op->replace)
  199. journal_ref = bch_journal(op->c, &op->insert_keys,
  200. op->flush_journal ? cl : NULL);
  201. ret = bch_btree_insert(op->c, &op->insert_keys,
  202. journal_ref, replace_key);
  203. if (ret == -ESRCH) {
  204. op->replace_collision = true;
  205. } else if (ret) {
  206. op->error = -ENOMEM;
  207. op->insert_data_done = true;
  208. }
  209. if (journal_ref)
  210. atomic_dec_bug(journal_ref);
  211. if (!op->insert_data_done)
  212. continue_at(cl, bch_data_insert_start, bcache_wq);
  213. bch_keylist_free(&op->insert_keys);
  214. closure_return(cl);
  215. }
  216. static void bch_data_invalidate(struct closure *cl)
  217. {
  218. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  219. struct bio *bio = op->bio;
  220. pr_debug("invalidating %i sectors from %llu",
  221. bio_sectors(bio), (uint64_t) bio->bi_sector);
  222. while (bio_sectors(bio)) {
  223. unsigned len = min(bio_sectors(bio), 1U << 14);
  224. if (bch_keylist_realloc(&op->insert_keys, 0, op->c))
  225. goto out;
  226. bio->bi_sector += len;
  227. bio->bi_size -= len << 9;
  228. bch_keylist_add(&op->insert_keys,
  229. &KEY(op->inode, bio->bi_sector, len));
  230. }
  231. op->insert_data_done = true;
  232. bio_put(bio);
  233. out:
  234. continue_at(cl, bch_data_insert_keys, bcache_wq);
  235. }
  236. static void bch_data_insert_error(struct closure *cl)
  237. {
  238. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  239. /*
  240. * Our data write just errored, which means we've got a bunch of keys to
  241. * insert that point to data that wasn't succesfully written.
  242. *
  243. * We don't have to insert those keys but we still have to invalidate
  244. * that region of the cache - so, if we just strip off all the pointers
  245. * from the keys we'll accomplish just that.
  246. */
  247. struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
  248. while (src != op->insert_keys.top) {
  249. struct bkey *n = bkey_next(src);
  250. SET_KEY_PTRS(src, 0);
  251. memmove(dst, src, bkey_bytes(src));
  252. dst = bkey_next(dst);
  253. src = n;
  254. }
  255. op->insert_keys.top = dst;
  256. bch_data_insert_keys(cl);
  257. }
  258. static void bch_data_insert_endio(struct bio *bio, int error)
  259. {
  260. struct closure *cl = bio->bi_private;
  261. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  262. if (error) {
  263. /* TODO: We could try to recover from this. */
  264. if (op->writeback)
  265. op->error = error;
  266. else if (!op->replace)
  267. set_closure_fn(cl, bch_data_insert_error, bcache_wq);
  268. else
  269. set_closure_fn(cl, NULL, NULL);
  270. }
  271. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  272. }
  273. static void bch_data_insert_start(struct closure *cl)
  274. {
  275. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  276. struct bio *bio = op->bio, *n;
  277. if (op->bypass)
  278. return bch_data_invalidate(cl);
  279. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  280. set_gc_sectors(op->c);
  281. wake_up_gc(op->c);
  282. }
  283. /*
  284. * Journal writes are marked REQ_FLUSH; if the original write was a
  285. * flush, it'll wait on the journal write.
  286. */
  287. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  288. do {
  289. unsigned i;
  290. struct bkey *k;
  291. struct bio_set *split = op->c->bio_split;
  292. /* 1 for the device pointer and 1 for the chksum */
  293. if (bch_keylist_realloc(&op->insert_keys,
  294. 1 + (op->csum ? 1 : 0),
  295. op->c))
  296. continue_at(cl, bch_data_insert_keys, bcache_wq);
  297. k = op->insert_keys.top;
  298. bkey_init(k);
  299. SET_KEY_INODE(k, op->inode);
  300. SET_KEY_OFFSET(k, bio->bi_sector);
  301. if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
  302. op->write_point, op->write_prio,
  303. op->writeback))
  304. goto err;
  305. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  306. n->bi_end_io = bch_data_insert_endio;
  307. n->bi_private = cl;
  308. if (op->writeback) {
  309. SET_KEY_DIRTY(k, true);
  310. for (i = 0; i < KEY_PTRS(k); i++)
  311. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  312. GC_MARK_DIRTY);
  313. }
  314. SET_KEY_CSUM(k, op->csum);
  315. if (KEY_CSUM(k))
  316. bio_csum(n, k);
  317. trace_bcache_cache_insert(k);
  318. bch_keylist_push(&op->insert_keys);
  319. n->bi_rw |= REQ_WRITE;
  320. bch_submit_bbio(n, op->c, k, 0);
  321. } while (n != bio);
  322. op->insert_data_done = true;
  323. continue_at(cl, bch_data_insert_keys, bcache_wq);
  324. err:
  325. /* bch_alloc_sectors() blocks if s->writeback = true */
  326. BUG_ON(op->writeback);
  327. /*
  328. * But if it's not a writeback write we'd rather just bail out if
  329. * there aren't any buckets ready to write to - it might take awhile and
  330. * we might be starving btree writes for gc or something.
  331. */
  332. if (!op->replace) {
  333. /*
  334. * Writethrough write: We can't complete the write until we've
  335. * updated the index. But we don't want to delay the write while
  336. * we wait for buckets to be freed up, so just invalidate the
  337. * rest of the write.
  338. */
  339. op->bypass = true;
  340. return bch_data_invalidate(cl);
  341. } else {
  342. /*
  343. * From a cache miss, we can just insert the keys for the data
  344. * we have written or bail out if we didn't do anything.
  345. */
  346. op->insert_data_done = true;
  347. bio_put(bio);
  348. if (!bch_keylist_empty(&op->insert_keys))
  349. continue_at(cl, bch_data_insert_keys, bcache_wq);
  350. else
  351. closure_return(cl);
  352. }
  353. }
  354. /**
  355. * bch_data_insert - stick some data in the cache
  356. *
  357. * This is the starting point for any data to end up in a cache device; it could
  358. * be from a normal write, or a writeback write, or a write to a flash only
  359. * volume - it's also used by the moving garbage collector to compact data in
  360. * mostly empty buckets.
  361. *
  362. * It first writes the data to the cache, creating a list of keys to be inserted
  363. * (if the data had to be fragmented there will be multiple keys); after the
  364. * data is written it calls bch_journal, and after the keys have been added to
  365. * the next journal write they're inserted into the btree.
  366. *
  367. * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
  368. * and op->inode is used for the key inode.
  369. *
  370. * If s->bypass is true, instead of inserting the data it invalidates the
  371. * region of the cache represented by s->cache_bio and op->inode.
  372. */
  373. void bch_data_insert(struct closure *cl)
  374. {
  375. struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
  376. trace_bcache_write(op->bio, op->writeback, op->bypass);
  377. bch_keylist_init(&op->insert_keys);
  378. bio_get(op->bio);
  379. bch_data_insert_start(cl);
  380. }
  381. /* Congested? */
  382. unsigned bch_get_congested(struct cache_set *c)
  383. {
  384. int i;
  385. long rand;
  386. if (!c->congested_read_threshold_us &&
  387. !c->congested_write_threshold_us)
  388. return 0;
  389. i = (local_clock_us() - c->congested_last_us) / 1024;
  390. if (i < 0)
  391. return 0;
  392. i += atomic_read(&c->congested);
  393. if (i >= 0)
  394. return 0;
  395. i += CONGESTED_MAX;
  396. if (i > 0)
  397. i = fract_exp_two(i, 6);
  398. rand = get_random_int();
  399. i -= bitmap_weight(&rand, BITS_PER_LONG);
  400. return i > 0 ? i : 1;
  401. }
  402. static void add_sequential(struct task_struct *t)
  403. {
  404. ewma_add(t->sequential_io_avg,
  405. t->sequential_io, 8, 0);
  406. t->sequential_io = 0;
  407. }
  408. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  409. {
  410. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  411. }
  412. static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
  413. {
  414. struct cache_set *c = dc->disk.c;
  415. unsigned mode = cache_mode(dc, bio);
  416. unsigned sectors, congested = bch_get_congested(c);
  417. struct task_struct *task = current;
  418. if (atomic_read(&dc->disk.detaching) ||
  419. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  420. (bio->bi_rw & REQ_DISCARD))
  421. goto skip;
  422. if (mode == CACHE_MODE_NONE ||
  423. (mode == CACHE_MODE_WRITEAROUND &&
  424. (bio->bi_rw & REQ_WRITE)))
  425. goto skip;
  426. if (bio->bi_sector & (c->sb.block_size - 1) ||
  427. bio_sectors(bio) & (c->sb.block_size - 1)) {
  428. pr_debug("skipping unaligned io");
  429. goto skip;
  430. }
  431. if (!congested && !dc->sequential_cutoff)
  432. goto rescale;
  433. if (!congested &&
  434. mode == CACHE_MODE_WRITEBACK &&
  435. (bio->bi_rw & REQ_WRITE) &&
  436. (bio->bi_rw & REQ_SYNC))
  437. goto rescale;
  438. if (dc->sequential_merge) {
  439. struct io *i;
  440. spin_lock(&dc->io_lock);
  441. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  442. if (i->last == bio->bi_sector &&
  443. time_before(jiffies, i->jiffies))
  444. goto found;
  445. i = list_first_entry(&dc->io_lru, struct io, lru);
  446. add_sequential(task);
  447. i->sequential = 0;
  448. found:
  449. if (i->sequential + bio->bi_size > i->sequential)
  450. i->sequential += bio->bi_size;
  451. i->last = bio_end_sector(bio);
  452. i->jiffies = jiffies + msecs_to_jiffies(5000);
  453. task->sequential_io = i->sequential;
  454. hlist_del(&i->hash);
  455. hlist_add_head(&i->hash, iohash(dc, i->last));
  456. list_move_tail(&i->lru, &dc->io_lru);
  457. spin_unlock(&dc->io_lock);
  458. } else {
  459. task->sequential_io = bio->bi_size;
  460. add_sequential(task);
  461. }
  462. sectors = max(task->sequential_io,
  463. task->sequential_io_avg) >> 9;
  464. if (dc->sequential_cutoff &&
  465. sectors >= dc->sequential_cutoff >> 9) {
  466. trace_bcache_bypass_sequential(bio);
  467. goto skip;
  468. }
  469. if (congested && sectors >= congested) {
  470. trace_bcache_bypass_congested(bio);
  471. goto skip;
  472. }
  473. rescale:
  474. bch_rescale_priorities(c, bio_sectors(bio));
  475. return false;
  476. skip:
  477. bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
  478. return true;
  479. }
  480. /* Cache lookup */
  481. struct search {
  482. /* Stack frame for bio_complete */
  483. struct closure cl;
  484. struct bcache_device *d;
  485. struct bbio bio;
  486. struct bio *orig_bio;
  487. struct bio *cache_miss;
  488. unsigned insert_bio_sectors;
  489. unsigned recoverable:1;
  490. unsigned unaligned_bvec:1;
  491. unsigned write:1;
  492. unsigned long start_time;
  493. struct btree_op op;
  494. struct data_insert_op iop;
  495. };
  496. static void bch_cache_read_endio(struct bio *bio, int error)
  497. {
  498. struct bbio *b = container_of(bio, struct bbio, bio);
  499. struct closure *cl = bio->bi_private;
  500. struct search *s = container_of(cl, struct search, cl);
  501. /*
  502. * If the bucket was reused while our bio was in flight, we might have
  503. * read the wrong data. Set s->error but not error so it doesn't get
  504. * counted against the cache device, but we'll still reread the data
  505. * from the backing device.
  506. */
  507. if (error)
  508. s->iop.error = error;
  509. else if (ptr_stale(s->iop.c, &b->key, 0)) {
  510. atomic_long_inc(&s->iop.c->cache_read_races);
  511. s->iop.error = -EINTR;
  512. }
  513. bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
  514. }
  515. /*
  516. * Read from a single key, handling the initial cache miss if the key starts in
  517. * the middle of the bio
  518. */
  519. static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
  520. {
  521. struct search *s = container_of(op, struct search, op);
  522. struct bio *n, *bio = &s->bio.bio;
  523. struct bkey *bio_key;
  524. unsigned ptr;
  525. if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_sector, 0)) <= 0)
  526. return MAP_CONTINUE;
  527. if (KEY_INODE(k) != s->iop.inode ||
  528. KEY_START(k) > bio->bi_sector) {
  529. unsigned bio_sectors = bio_sectors(bio);
  530. unsigned sectors = KEY_INODE(k) == s->iop.inode
  531. ? min_t(uint64_t, INT_MAX,
  532. KEY_START(k) - bio->bi_sector)
  533. : INT_MAX;
  534. int ret = s->d->cache_miss(b, s, bio, sectors);
  535. if (ret != MAP_CONTINUE)
  536. return ret;
  537. /* if this was a complete miss we shouldn't get here */
  538. BUG_ON(bio_sectors <= sectors);
  539. }
  540. if (!KEY_SIZE(k))
  541. return MAP_CONTINUE;
  542. /* XXX: figure out best pointer - for multiple cache devices */
  543. ptr = 0;
  544. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  545. n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
  546. KEY_OFFSET(k) - bio->bi_sector),
  547. GFP_NOIO, s->d->bio_split);
  548. bio_key = &container_of(n, struct bbio, bio)->key;
  549. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  550. bch_cut_front(&KEY(s->iop.inode, n->bi_sector, 0), bio_key);
  551. bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
  552. n->bi_end_io = bch_cache_read_endio;
  553. n->bi_private = &s->cl;
  554. /*
  555. * The bucket we're reading from might be reused while our bio
  556. * is in flight, and we could then end up reading the wrong
  557. * data.
  558. *
  559. * We guard against this by checking (in cache_read_endio()) if
  560. * the pointer is stale again; if so, we treat it as an error
  561. * and reread from the backing device (but we don't pass that
  562. * error up anywhere).
  563. */
  564. __bch_submit_bbio(n, b->c);
  565. return n == bio ? MAP_DONE : MAP_CONTINUE;
  566. }
  567. static void cache_lookup(struct closure *cl)
  568. {
  569. struct search *s = container_of(cl, struct search, iop.cl);
  570. struct bio *bio = &s->bio.bio;
  571. int ret = bch_btree_map_keys(&s->op, s->iop.c,
  572. &KEY(s->iop.inode, bio->bi_sector, 0),
  573. cache_lookup_fn, MAP_END_KEY);
  574. if (ret == -EAGAIN)
  575. continue_at(cl, cache_lookup, bcache_wq);
  576. closure_return(cl);
  577. }
  578. /* Common code for the make_request functions */
  579. static void request_endio(struct bio *bio, int error)
  580. {
  581. struct closure *cl = bio->bi_private;
  582. if (error) {
  583. struct search *s = container_of(cl, struct search, cl);
  584. s->iop.error = error;
  585. /* Only cache read errors are recoverable */
  586. s->recoverable = false;
  587. }
  588. bio_put(bio);
  589. closure_put(cl);
  590. }
  591. static void bio_complete(struct search *s)
  592. {
  593. if (s->orig_bio) {
  594. int cpu, rw = bio_data_dir(s->orig_bio);
  595. unsigned long duration = jiffies - s->start_time;
  596. cpu = part_stat_lock();
  597. part_round_stats(cpu, &s->d->disk->part0);
  598. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  599. part_stat_unlock();
  600. trace_bcache_request_end(s->d, s->orig_bio);
  601. bio_endio(s->orig_bio, s->iop.error);
  602. s->orig_bio = NULL;
  603. }
  604. }
  605. static void do_bio_hook(struct search *s)
  606. {
  607. struct bio *bio = &s->bio.bio;
  608. memcpy(bio, s->orig_bio, sizeof(struct bio));
  609. bio->bi_end_io = request_endio;
  610. bio->bi_private = &s->cl;
  611. atomic_set(&bio->bi_cnt, 3);
  612. }
  613. static void search_free(struct closure *cl)
  614. {
  615. struct search *s = container_of(cl, struct search, cl);
  616. bio_complete(s);
  617. if (s->iop.bio)
  618. bio_put(s->iop.bio);
  619. if (s->unaligned_bvec)
  620. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  621. closure_debug_destroy(cl);
  622. mempool_free(s, s->d->c->search);
  623. }
  624. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  625. {
  626. struct search *s;
  627. struct bio_vec *bv;
  628. s = mempool_alloc(d->c->search, GFP_NOIO);
  629. memset(s, 0, offsetof(struct search, iop.insert_keys));
  630. __closure_init(&s->cl, NULL);
  631. s->iop.inode = d->id;
  632. s->iop.c = d->c;
  633. s->d = d;
  634. s->op.lock = -1;
  635. s->iop.write_point = hash_long((unsigned long) current, 16);
  636. s->orig_bio = bio;
  637. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  638. s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  639. s->recoverable = 1;
  640. s->start_time = jiffies;
  641. do_bio_hook(s);
  642. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  643. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  644. memcpy(bv, bio_iovec(bio),
  645. sizeof(struct bio_vec) * bio_segments(bio));
  646. s->bio.bio.bi_io_vec = bv;
  647. s->unaligned_bvec = 1;
  648. }
  649. return s;
  650. }
  651. /* Cached devices */
  652. static void cached_dev_bio_complete(struct closure *cl)
  653. {
  654. struct search *s = container_of(cl, struct search, cl);
  655. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  656. search_free(cl);
  657. cached_dev_put(dc);
  658. }
  659. /* Process reads */
  660. static void cached_dev_cache_miss_done(struct closure *cl)
  661. {
  662. struct search *s = container_of(cl, struct search, cl);
  663. if (s->iop.replace_collision)
  664. bch_mark_cache_miss_collision(s->iop.c, s->d);
  665. if (s->iop.bio) {
  666. int i;
  667. struct bio_vec *bv;
  668. bio_for_each_segment_all(bv, s->iop.bio, i)
  669. __free_page(bv->bv_page);
  670. }
  671. cached_dev_bio_complete(cl);
  672. }
  673. static void cached_dev_read_error(struct closure *cl)
  674. {
  675. struct search *s = container_of(cl, struct search, cl);
  676. struct bio *bio = &s->bio.bio;
  677. struct bio_vec *bv;
  678. int i;
  679. if (s->recoverable) {
  680. /* Retry from the backing device: */
  681. trace_bcache_read_retry(s->orig_bio);
  682. s->iop.error = 0;
  683. bv = s->bio.bio.bi_io_vec;
  684. do_bio_hook(s);
  685. s->bio.bio.bi_io_vec = bv;
  686. if (!s->unaligned_bvec)
  687. bio_for_each_segment(bv, s->orig_bio, i)
  688. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  689. else
  690. memcpy(s->bio.bio.bi_io_vec,
  691. bio_iovec(s->orig_bio),
  692. sizeof(struct bio_vec) *
  693. bio_segments(s->orig_bio));
  694. /* XXX: invalidate cache */
  695. closure_bio_submit(bio, cl, s->d);
  696. }
  697. continue_at(cl, cached_dev_cache_miss_done, NULL);
  698. }
  699. static void cached_dev_read_done(struct closure *cl)
  700. {
  701. struct search *s = container_of(cl, struct search, cl);
  702. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  703. /*
  704. * We had a cache miss; cache_bio now contains data ready to be inserted
  705. * into the cache.
  706. *
  707. * First, we copy the data we just read from cache_bio's bounce buffers
  708. * to the buffers the original bio pointed to:
  709. */
  710. if (s->iop.bio) {
  711. bio_reset(s->iop.bio);
  712. s->iop.bio->bi_sector = s->cache_miss->bi_sector;
  713. s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
  714. s->iop.bio->bi_size = s->insert_bio_sectors << 9;
  715. bch_bio_map(s->iop.bio, NULL);
  716. bio_copy_data(s->cache_miss, s->iop.bio);
  717. bio_put(s->cache_miss);
  718. s->cache_miss = NULL;
  719. }
  720. if (verify(dc, &s->bio.bio) && s->recoverable && !s->unaligned_bvec)
  721. bch_data_verify(dc, s->orig_bio);
  722. bio_complete(s);
  723. if (s->iop.bio &&
  724. !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
  725. BUG_ON(!s->iop.replace);
  726. closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
  727. }
  728. continue_at(cl, cached_dev_cache_miss_done, NULL);
  729. }
  730. static void cached_dev_read_done_bh(struct closure *cl)
  731. {
  732. struct search *s = container_of(cl, struct search, cl);
  733. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  734. bch_mark_cache_accounting(s->iop.c, s->d,
  735. !s->cache_miss, s->iop.bypass);
  736. trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
  737. if (s->iop.error)
  738. continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
  739. else if (s->iop.bio || verify(dc, &s->bio.bio))
  740. continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
  741. else
  742. continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
  743. }
  744. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  745. struct bio *bio, unsigned sectors)
  746. {
  747. int ret = MAP_CONTINUE;
  748. unsigned reada = 0;
  749. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  750. struct bio *miss, *cache_bio;
  751. if (s->cache_miss || s->iop.bypass) {
  752. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  753. ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
  754. goto out_submit;
  755. }
  756. if (!(bio->bi_rw & REQ_RAHEAD) &&
  757. !(bio->bi_rw & REQ_META) &&
  758. s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
  759. reada = min_t(sector_t, dc->readahead >> 9,
  760. bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
  761. s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
  762. s->iop.replace_key = KEY(s->iop.inode,
  763. bio->bi_sector + s->insert_bio_sectors,
  764. s->insert_bio_sectors);
  765. ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
  766. if (ret)
  767. return ret;
  768. s->iop.replace = true;
  769. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  770. /* btree_search_recurse()'s btree iterator is no good anymore */
  771. ret = miss == bio ? MAP_DONE : -EINTR;
  772. cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  773. DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
  774. dc->disk.bio_split);
  775. if (!cache_bio)
  776. goto out_submit;
  777. cache_bio->bi_sector = miss->bi_sector;
  778. cache_bio->bi_bdev = miss->bi_bdev;
  779. cache_bio->bi_size = s->insert_bio_sectors << 9;
  780. cache_bio->bi_end_io = request_endio;
  781. cache_bio->bi_private = &s->cl;
  782. bch_bio_map(cache_bio, NULL);
  783. if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
  784. goto out_put;
  785. if (reada)
  786. bch_mark_cache_readahead(s->iop.c, s->d);
  787. s->cache_miss = miss;
  788. s->iop.bio = cache_bio;
  789. bio_get(cache_bio);
  790. closure_bio_submit(cache_bio, &s->cl, s->d);
  791. return ret;
  792. out_put:
  793. bio_put(cache_bio);
  794. out_submit:
  795. miss->bi_end_io = request_endio;
  796. miss->bi_private = &s->cl;
  797. closure_bio_submit(miss, &s->cl, s->d);
  798. return ret;
  799. }
  800. static void cached_dev_read(struct cached_dev *dc, struct search *s)
  801. {
  802. struct closure *cl = &s->cl;
  803. closure_call(&s->iop.cl, cache_lookup, NULL, cl);
  804. continue_at(cl, cached_dev_read_done_bh, NULL);
  805. }
  806. /* Process writes */
  807. static void cached_dev_write_complete(struct closure *cl)
  808. {
  809. struct search *s = container_of(cl, struct search, cl);
  810. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  811. up_read_non_owner(&dc->writeback_lock);
  812. cached_dev_bio_complete(cl);
  813. }
  814. static void cached_dev_write(struct cached_dev *dc, struct search *s)
  815. {
  816. struct closure *cl = &s->cl;
  817. struct bio *bio = &s->bio.bio;
  818. struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
  819. struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  820. bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
  821. down_read_non_owner(&dc->writeback_lock);
  822. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  823. /*
  824. * We overlap with some dirty data undergoing background
  825. * writeback, force this write to writeback
  826. */
  827. s->iop.bypass = false;
  828. s->iop.writeback = true;
  829. }
  830. /*
  831. * Discards aren't _required_ to do anything, so skipping if
  832. * check_overlapping returned true is ok
  833. *
  834. * But check_overlapping drops dirty keys for which io hasn't started,
  835. * so we still want to call it.
  836. */
  837. if (bio->bi_rw & REQ_DISCARD)
  838. s->iop.bypass = true;
  839. if (should_writeback(dc, s->orig_bio,
  840. cache_mode(dc, bio),
  841. s->iop.bypass)) {
  842. s->iop.bypass = false;
  843. s->iop.writeback = true;
  844. }
  845. if (s->iop.bypass) {
  846. s->iop.bio = s->orig_bio;
  847. bio_get(s->iop.bio);
  848. if (!(bio->bi_rw & REQ_DISCARD) ||
  849. blk_queue_discard(bdev_get_queue(dc->bdev)))
  850. closure_bio_submit(bio, cl, s->d);
  851. } else if (s->iop.writeback) {
  852. bch_writeback_add(dc);
  853. s->iop.bio = bio;
  854. if (bio->bi_rw & REQ_FLUSH) {
  855. /* Also need to send a flush to the backing device */
  856. struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
  857. dc->disk.bio_split);
  858. flush->bi_rw = WRITE_FLUSH;
  859. flush->bi_bdev = bio->bi_bdev;
  860. flush->bi_end_io = request_endio;
  861. flush->bi_private = cl;
  862. closure_bio_submit(flush, cl, s->d);
  863. }
  864. } else {
  865. s->iop.bio = bio_clone_bioset(bio, GFP_NOIO,
  866. dc->disk.bio_split);
  867. closure_bio_submit(bio, cl, s->d);
  868. }
  869. closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
  870. continue_at(cl, cached_dev_write_complete, NULL);
  871. }
  872. static void cached_dev_nodata(struct closure *cl)
  873. {
  874. struct search *s = container_of(cl, struct search, cl);
  875. struct bio *bio = &s->bio.bio;
  876. if (s->iop.flush_journal)
  877. bch_journal_meta(s->iop.c, cl);
  878. /* If it's a flush, we send the flush to the backing device too */
  879. closure_bio_submit(bio, cl, s->d);
  880. continue_at(cl, cached_dev_bio_complete, NULL);
  881. }
  882. /* Cached devices - read & write stuff */
  883. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  884. {
  885. struct search *s;
  886. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  887. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  888. int cpu, rw = bio_data_dir(bio);
  889. cpu = part_stat_lock();
  890. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  891. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  892. part_stat_unlock();
  893. bio->bi_bdev = dc->bdev;
  894. bio->bi_sector += dc->sb.data_offset;
  895. if (cached_dev_get(dc)) {
  896. s = search_alloc(bio, d);
  897. trace_bcache_request_start(s->d, bio);
  898. if (!bio->bi_size) {
  899. /*
  900. * can't call bch_journal_meta from under
  901. * generic_make_request
  902. */
  903. continue_at_nobarrier(&s->cl,
  904. cached_dev_nodata,
  905. bcache_wq);
  906. } else {
  907. s->iop.bypass = check_should_bypass(dc, bio);
  908. if (rw)
  909. cached_dev_write(dc, s);
  910. else
  911. cached_dev_read(dc, s);
  912. }
  913. } else {
  914. if ((bio->bi_rw & REQ_DISCARD) &&
  915. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  916. bio_endio(bio, 0);
  917. else
  918. bch_generic_make_request(bio, &d->bio_split_hook);
  919. }
  920. }
  921. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  922. unsigned int cmd, unsigned long arg)
  923. {
  924. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  925. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  926. }
  927. static int cached_dev_congested(void *data, int bits)
  928. {
  929. struct bcache_device *d = data;
  930. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  931. struct request_queue *q = bdev_get_queue(dc->bdev);
  932. int ret = 0;
  933. if (bdi_congested(&q->backing_dev_info, bits))
  934. return 1;
  935. if (cached_dev_get(dc)) {
  936. unsigned i;
  937. struct cache *ca;
  938. for_each_cache(ca, d->c, i) {
  939. q = bdev_get_queue(ca->bdev);
  940. ret |= bdi_congested(&q->backing_dev_info, bits);
  941. }
  942. cached_dev_put(dc);
  943. }
  944. return ret;
  945. }
  946. void bch_cached_dev_request_init(struct cached_dev *dc)
  947. {
  948. struct gendisk *g = dc->disk.disk;
  949. g->queue->make_request_fn = cached_dev_make_request;
  950. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  951. dc->disk.cache_miss = cached_dev_cache_miss;
  952. dc->disk.ioctl = cached_dev_ioctl;
  953. }
  954. /* Flash backed devices */
  955. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  956. struct bio *bio, unsigned sectors)
  957. {
  958. struct bio_vec *bv;
  959. int i;
  960. /* Zero fill bio */
  961. bio_for_each_segment(bv, bio, i) {
  962. unsigned j = min(bv->bv_len >> 9, sectors);
  963. void *p = kmap(bv->bv_page);
  964. memset(p + bv->bv_offset, 0, j << 9);
  965. kunmap(bv->bv_page);
  966. sectors -= j;
  967. }
  968. bio_advance(bio, min(sectors << 9, bio->bi_size));
  969. if (!bio->bi_size)
  970. return MAP_DONE;
  971. return MAP_CONTINUE;
  972. }
  973. static void flash_dev_nodata(struct closure *cl)
  974. {
  975. struct search *s = container_of(cl, struct search, cl);
  976. if (s->iop.flush_journal)
  977. bch_journal_meta(s->iop.c, cl);
  978. continue_at(cl, search_free, NULL);
  979. }
  980. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  981. {
  982. struct search *s;
  983. struct closure *cl;
  984. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  985. int cpu, rw = bio_data_dir(bio);
  986. cpu = part_stat_lock();
  987. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  988. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  989. part_stat_unlock();
  990. s = search_alloc(bio, d);
  991. cl = &s->cl;
  992. bio = &s->bio.bio;
  993. trace_bcache_request_start(s->d, bio);
  994. if (!bio->bi_size) {
  995. /*
  996. * can't call bch_journal_meta from under
  997. * generic_make_request
  998. */
  999. continue_at_nobarrier(&s->cl,
  1000. flash_dev_nodata,
  1001. bcache_wq);
  1002. } else if (rw) {
  1003. bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
  1004. &KEY(d->id, bio->bi_sector, 0),
  1005. &KEY(d->id, bio_end_sector(bio), 0));
  1006. s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
  1007. s->iop.writeback = true;
  1008. s->iop.bio = bio;
  1009. closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
  1010. } else {
  1011. closure_call(&s->iop.cl, cache_lookup, NULL, cl);
  1012. }
  1013. continue_at(cl, search_free, NULL);
  1014. }
  1015. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1016. unsigned int cmd, unsigned long arg)
  1017. {
  1018. return -ENOTTY;
  1019. }
  1020. static int flash_dev_congested(void *data, int bits)
  1021. {
  1022. struct bcache_device *d = data;
  1023. struct request_queue *q;
  1024. struct cache *ca;
  1025. unsigned i;
  1026. int ret = 0;
  1027. for_each_cache(ca, d->c, i) {
  1028. q = bdev_get_queue(ca->bdev);
  1029. ret |= bdi_congested(&q->backing_dev_info, bits);
  1030. }
  1031. return ret;
  1032. }
  1033. void bch_flash_dev_request_init(struct bcache_device *d)
  1034. {
  1035. struct gendisk *g = d->disk;
  1036. g->queue->make_request_fn = flash_dev_make_request;
  1037. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1038. d->cache_miss = flash_dev_cache_miss;
  1039. d->ioctl = flash_dev_ioctl;
  1040. }
  1041. void bch_request_exit(void)
  1042. {
  1043. #ifdef CONFIG_CGROUP_BCACHE
  1044. cgroup_unload_subsys(&bcache_subsys);
  1045. #endif
  1046. if (bch_search_cache)
  1047. kmem_cache_destroy(bch_search_cache);
  1048. }
  1049. int __init bch_request_init(void)
  1050. {
  1051. bch_search_cache = KMEM_CACHE(search, 0);
  1052. if (!bch_search_cache)
  1053. return -ENOMEM;
  1054. #ifdef CONFIG_CGROUP_BCACHE
  1055. cgroup_load_subsys(&bcache_subsys);
  1056. init_bch_cgroup(&bcache_default_cgroup);
  1057. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1058. #endif
  1059. return 0;
  1060. }