|
@@ -11,6 +11,7 @@
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
|
* option) any later version.
|
|
|
*/
|
|
|
+#include <linux/clocksource.h>
|
|
|
#include <linux/types.h>
|
|
|
#include <linux/kernel.h>
|
|
|
#include <linux/init.h>
|
|
@@ -67,15 +68,9 @@ int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
|
|
|
int (*rtc_mips_set_mmss)(unsigned long);
|
|
|
|
|
|
|
|
|
-/* usecs per counter cycle, shifted to left by 32 bits */
|
|
|
-static unsigned int sll32_usecs_per_cycle;
|
|
|
-
|
|
|
/* how many counter cycles in a jiffy */
|
|
|
static unsigned long cycles_per_jiffy __read_mostly;
|
|
|
|
|
|
-/* Cycle counter value at the previous timer interrupt.. */
|
|
|
-static unsigned int timerhi, timerlo;
|
|
|
-
|
|
|
/* expirelo is the count value for next CPU timer interrupt */
|
|
|
static unsigned int expirelo;
|
|
|
|
|
@@ -93,7 +88,7 @@ static unsigned int null_hpt_read(void)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
-static void null_hpt_init(unsigned int count)
|
|
|
+static void __init null_hpt_init(void)
|
|
|
{
|
|
|
/* nothing */
|
|
|
}
|
|
@@ -128,186 +123,18 @@ static unsigned int c0_hpt_read(void)
|
|
|
return read_c0_count();
|
|
|
}
|
|
|
|
|
|
-/* For use solely as a high precision timer. */
|
|
|
-static void c0_hpt_init(unsigned int count)
|
|
|
-{
|
|
|
- write_c0_count(read_c0_count() - count);
|
|
|
-}
|
|
|
-
|
|
|
/* For use both as a high precision timer and an interrupt source. */
|
|
|
-static void c0_hpt_timer_init(unsigned int count)
|
|
|
+static void __init c0_hpt_timer_init(void)
|
|
|
{
|
|
|
- count = read_c0_count() - count;
|
|
|
- expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy;
|
|
|
- write_c0_count(expirelo - cycles_per_jiffy);
|
|
|
+ expirelo = read_c0_count() + cycles_per_jiffy;
|
|
|
write_c0_compare(expirelo);
|
|
|
- write_c0_count(count);
|
|
|
}
|
|
|
|
|
|
int (*mips_timer_state)(void);
|
|
|
void (*mips_timer_ack)(void);
|
|
|
unsigned int (*mips_hpt_read)(void);
|
|
|
-void (*mips_hpt_init)(unsigned int);
|
|
|
-
|
|
|
-/*
|
|
|
- * Gettimeoffset routines. These routines returns the time duration
|
|
|
- * since last timer interrupt in usecs.
|
|
|
- *
|
|
|
- * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset.
|
|
|
- * Otherwise use calibrate_gettimeoffset()
|
|
|
- *
|
|
|
- * If the CPU does not have the counter register, you can either supply
|
|
|
- * your own gettimeoffset() routine, or use null_gettimeoffset(), which
|
|
|
- * gives the same resolution as HZ.
|
|
|
- */
|
|
|
-
|
|
|
-static unsigned long null_gettimeoffset(void)
|
|
|
-{
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/* The function pointer to one of the gettimeoffset funcs. */
|
|
|
-unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset;
|
|
|
-
|
|
|
-
|
|
|
-static unsigned long fixed_rate_gettimeoffset(void)
|
|
|
-{
|
|
|
- u32 count;
|
|
|
- unsigned long res;
|
|
|
-
|
|
|
- /* Get last timer tick in absolute kernel time */
|
|
|
- count = mips_hpt_read();
|
|
|
-
|
|
|
- /* .. relative to previous jiffy (32 bits is enough) */
|
|
|
- count -= timerlo;
|
|
|
-
|
|
|
- __asm__("multu %1,%2"
|
|
|
- : "=h" (res)
|
|
|
- : "r" (count), "r" (sll32_usecs_per_cycle)
|
|
|
- : "lo", GCC_REG_ACCUM);
|
|
|
-
|
|
|
- /*
|
|
|
- * Due to possible jiffies inconsistencies, we need to check
|
|
|
- * the result so that we'll get a timer that is monotonic.
|
|
|
- */
|
|
|
- if (res >= USECS_PER_JIFFY)
|
|
|
- res = USECS_PER_JIFFY - 1;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-/*
|
|
|
- * Cached "1/(clocks per usec) * 2^32" value.
|
|
|
- * It has to be recalculated once each jiffy.
|
|
|
- */
|
|
|
-static unsigned long cached_quotient;
|
|
|
-
|
|
|
-/* Last jiffy when calibrate_divXX_gettimeoffset() was called. */
|
|
|
-static unsigned long last_jiffies;
|
|
|
-
|
|
|
-/*
|
|
|
- * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej.
|
|
|
- */
|
|
|
-static unsigned long calibrate_div32_gettimeoffset(void)
|
|
|
-{
|
|
|
- u32 count;
|
|
|
- unsigned long res, tmp;
|
|
|
- unsigned long quotient;
|
|
|
-
|
|
|
- tmp = jiffies;
|
|
|
-
|
|
|
- quotient = cached_quotient;
|
|
|
-
|
|
|
- if (last_jiffies != tmp) {
|
|
|
- last_jiffies = tmp;
|
|
|
- if (last_jiffies != 0) {
|
|
|
- unsigned long r0;
|
|
|
- do_div64_32(r0, timerhi, timerlo, tmp);
|
|
|
- do_div64_32(quotient, USECS_PER_JIFFY,
|
|
|
- USECS_PER_JIFFY_FRAC, r0);
|
|
|
- cached_quotient = quotient;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Get last timer tick in absolute kernel time */
|
|
|
- count = mips_hpt_read();
|
|
|
-
|
|
|
- /* .. relative to previous jiffy (32 bits is enough) */
|
|
|
- count -= timerlo;
|
|
|
-
|
|
|
- __asm__("multu %1,%2"
|
|
|
- : "=h" (res)
|
|
|
- : "r" (count), "r" (quotient)
|
|
|
- : "lo", GCC_REG_ACCUM);
|
|
|
-
|
|
|
- /*
|
|
|
- * Due to possible jiffies inconsistencies, we need to check
|
|
|
- * the result so that we'll get a timer that is monotonic.
|
|
|
- */
|
|
|
- if (res >= USECS_PER_JIFFY)
|
|
|
- res = USECS_PER_JIFFY - 1;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
-static unsigned long calibrate_div64_gettimeoffset(void)
|
|
|
-{
|
|
|
- u32 count;
|
|
|
- unsigned long res, tmp;
|
|
|
- unsigned long quotient;
|
|
|
-
|
|
|
- tmp = jiffies;
|
|
|
-
|
|
|
- quotient = cached_quotient;
|
|
|
-
|
|
|
- if (last_jiffies != tmp) {
|
|
|
- last_jiffies = tmp;
|
|
|
- if (last_jiffies) {
|
|
|
- unsigned long r0;
|
|
|
- __asm__(".set push\n\t"
|
|
|
- ".set mips3\n\t"
|
|
|
- "lwu %0,%3\n\t"
|
|
|
- "dsll32 %1,%2,0\n\t"
|
|
|
- "or %1,%1,%0\n\t"
|
|
|
- "ddivu $0,%1,%4\n\t"
|
|
|
- "mflo %1\n\t"
|
|
|
- "dsll32 %0,%5,0\n\t"
|
|
|
- "or %0,%0,%6\n\t"
|
|
|
- "ddivu $0,%0,%1\n\t"
|
|
|
- "mflo %0\n\t"
|
|
|
- ".set pop"
|
|
|
- : "=&r" (quotient), "=&r" (r0)
|
|
|
- : "r" (timerhi), "m" (timerlo),
|
|
|
- "r" (tmp), "r" (USECS_PER_JIFFY),
|
|
|
- "r" (USECS_PER_JIFFY_FRAC)
|
|
|
- : "hi", "lo", GCC_REG_ACCUM);
|
|
|
- cached_quotient = quotient;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- /* Get last timer tick in absolute kernel time */
|
|
|
- count = mips_hpt_read();
|
|
|
-
|
|
|
- /* .. relative to previous jiffy (32 bits is enough) */
|
|
|
- count -= timerlo;
|
|
|
-
|
|
|
- __asm__("multu %1,%2"
|
|
|
- : "=h" (res)
|
|
|
- : "r" (count), "r" (quotient)
|
|
|
- : "lo", GCC_REG_ACCUM);
|
|
|
-
|
|
|
- /*
|
|
|
- * Due to possible jiffies inconsistencies, we need to check
|
|
|
- * the result so that we'll get a timer that is monotonic.
|
|
|
- */
|
|
|
- if (res >= USECS_PER_JIFFY)
|
|
|
- res = USECS_PER_JIFFY - 1;
|
|
|
-
|
|
|
- return res;
|
|
|
-}
|
|
|
-
|
|
|
+void (*mips_hpt_init)(void) __initdata = null_hpt_init;
|
|
|
+unsigned int mips_hpt_mask = 0xffffffff;
|
|
|
|
|
|
/* last time when xtime and rtc are sync'ed up */
|
|
|
static long last_rtc_update;
|
|
@@ -334,18 +161,10 @@ void local_timer_interrupt(int irq, void *dev_id)
|
|
|
*/
|
|
|
irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
|
{
|
|
|
- unsigned long j;
|
|
|
- unsigned int count;
|
|
|
-
|
|
|
write_seqlock(&xtime_lock);
|
|
|
|
|
|
- count = mips_hpt_read();
|
|
|
mips_timer_ack();
|
|
|
|
|
|
- /* Update timerhi/timerlo for intra-jiffy calibration. */
|
|
|
- timerhi += count < timerlo; /* Wrap around */
|
|
|
- timerlo = count;
|
|
|
-
|
|
|
/*
|
|
|
* call the generic timer interrupt handling
|
|
|
*/
|
|
@@ -368,47 +187,6 @@ irqreturn_t timer_interrupt(int irq, void *dev_id)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
- /*
|
|
|
- * If jiffies has overflown in this timer_interrupt, we must
|
|
|
- * update the timer[hi]/[lo] to make fast gettimeoffset funcs
|
|
|
- * quotient calc still valid. -arca
|
|
|
- *
|
|
|
- * The first timer interrupt comes late as interrupts are
|
|
|
- * enabled long after timers are initialized. Therefore the
|
|
|
- * high precision timer is fast, leading to wrong gettimeoffset()
|
|
|
- * calculations. We deal with it by setting it based on the
|
|
|
- * number of its ticks between the second and the third interrupt.
|
|
|
- * That is still somewhat imprecise, but it's a good estimate.
|
|
|
- * --macro
|
|
|
- */
|
|
|
- j = jiffies;
|
|
|
- if (j < 4) {
|
|
|
- static unsigned int prev_count;
|
|
|
- static int hpt_initialized;
|
|
|
-
|
|
|
- switch (j) {
|
|
|
- case 0:
|
|
|
- timerhi = timerlo = 0;
|
|
|
- mips_hpt_init(count);
|
|
|
- break;
|
|
|
- case 2:
|
|
|
- prev_count = count;
|
|
|
- break;
|
|
|
- case 3:
|
|
|
- if (!hpt_initialized) {
|
|
|
- unsigned int c3 = 3 * (count - prev_count);
|
|
|
-
|
|
|
- timerhi = 0;
|
|
|
- timerlo = c3;
|
|
|
- mips_hpt_init(count - c3);
|
|
|
- hpt_initialized = 1;
|
|
|
- }
|
|
|
- break;
|
|
|
- default:
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
write_sequnlock(&xtime_lock);
|
|
|
|
|
|
/*
|
|
@@ -476,12 +254,11 @@ asmlinkage void ll_local_timer_interrupt(int irq)
|
|
|
* 1) board_time_init() -
|
|
|
* a) (optional) set up RTC routines,
|
|
|
* b) (optional) calibrate and set the mips_hpt_frequency
|
|
|
- * (only needed if you intended to use fixed_rate_gettimeoffset
|
|
|
- * or use cpu counter as timer interrupt source)
|
|
|
+ * (only needed if you intended to use cpu counter as timer interrupt
|
|
|
+ * source)
|
|
|
* 2) setup xtime based on rtc_mips_get_time().
|
|
|
- * 3) choose a appropriate gettimeoffset routine.
|
|
|
- * 4) calculate a couple of cached variables for later usage
|
|
|
- * 5) plat_timer_setup() -
|
|
|
+ * 3) calculate a couple of cached variables for later usage
|
|
|
+ * 4) plat_timer_setup() -
|
|
|
* a) (optional) over-write any choices made above by time_init().
|
|
|
* b) machine specific code should setup the timer irqaction.
|
|
|
* c) enable the timer interrupt
|
|
@@ -533,13 +310,48 @@ static unsigned int __init calibrate_hpt(void)
|
|
|
} while (--i);
|
|
|
hpt_end = mips_hpt_read();
|
|
|
|
|
|
- hpt_count = hpt_end - hpt_start;
|
|
|
+ hpt_count = (hpt_end - hpt_start) & mips_hpt_mask;
|
|
|
hz = HZ;
|
|
|
frequency = (u64)hpt_count * (u64)hz;
|
|
|
|
|
|
return frequency >> log_2_loops;
|
|
|
}
|
|
|
|
|
|
+static cycle_t read_mips_hpt(void)
|
|
|
+{
|
|
|
+ return (cycle_t)mips_hpt_read();
|
|
|
+}
|
|
|
+
|
|
|
+static struct clocksource clocksource_mips = {
|
|
|
+ .name = "MIPS",
|
|
|
+ .read = read_mips_hpt,
|
|
|
+ .is_continuous = 1,
|
|
|
+};
|
|
|
+
|
|
|
+static void __init init_mips_clocksource(void)
|
|
|
+{
|
|
|
+ u64 temp;
|
|
|
+ u32 shift;
|
|
|
+
|
|
|
+ if (!mips_hpt_frequency || mips_hpt_read == null_hpt_read)
|
|
|
+ return;
|
|
|
+
|
|
|
+ /* Calclate a somewhat reasonable rating value */
|
|
|
+ clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
|
|
|
+ /* Find a shift value */
|
|
|
+ for (shift = 32; shift > 0; shift--) {
|
|
|
+ temp = (u64) NSEC_PER_SEC << shift;
|
|
|
+ do_div(temp, mips_hpt_frequency);
|
|
|
+ if ((temp >> 32) == 0)
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ clocksource_mips.shift = shift;
|
|
|
+ clocksource_mips.mult = (u32)temp;
|
|
|
+ clocksource_mips.mask = mips_hpt_mask;
|
|
|
+
|
|
|
+ clocksource_register(&clocksource_mips);
|
|
|
+}
|
|
|
+
|
|
|
void __init time_init(void)
|
|
|
{
|
|
|
if (board_time_init)
|
|
@@ -555,41 +367,21 @@ void __init time_init(void)
|
|
|
-xtime.tv_sec, -xtime.tv_nsec);
|
|
|
|
|
|
/* Choose appropriate high precision timer routines. */
|
|
|
- if (!cpu_has_counter && !mips_hpt_read) {
|
|
|
+ if (!cpu_has_counter && !mips_hpt_read)
|
|
|
/* No high precision timer -- sorry. */
|
|
|
mips_hpt_read = null_hpt_read;
|
|
|
- mips_hpt_init = null_hpt_init;
|
|
|
- } else if (!mips_hpt_frequency && !mips_timer_state) {
|
|
|
+ else if (!mips_hpt_frequency && !mips_timer_state) {
|
|
|
/* A high precision timer of unknown frequency. */
|
|
|
- if (!mips_hpt_read) {
|
|
|
+ if (!mips_hpt_read)
|
|
|
/* No external high precision timer -- use R4k. */
|
|
|
mips_hpt_read = c0_hpt_read;
|
|
|
- mips_hpt_init = c0_hpt_init;
|
|
|
- }
|
|
|
-
|
|
|
- if (cpu_has_mips32r1 || cpu_has_mips32r2 ||
|
|
|
- (current_cpu_data.isa_level == MIPS_CPU_ISA_I) ||
|
|
|
- (current_cpu_data.isa_level == MIPS_CPU_ISA_II))
|
|
|
- /*
|
|
|
- * We need to calibrate the counter but we don't have
|
|
|
- * 64-bit division.
|
|
|
- */
|
|
|
- do_gettimeoffset = calibrate_div32_gettimeoffset;
|
|
|
- else
|
|
|
- /*
|
|
|
- * We need to calibrate the counter but we *do* have
|
|
|
- * 64-bit division.
|
|
|
- */
|
|
|
- do_gettimeoffset = calibrate_div64_gettimeoffset;
|
|
|
} else {
|
|
|
/* We know counter frequency. Or we can get it. */
|
|
|
if (!mips_hpt_read) {
|
|
|
/* No external high precision timer -- use R4k. */
|
|
|
mips_hpt_read = c0_hpt_read;
|
|
|
|
|
|
- if (mips_timer_state)
|
|
|
- mips_hpt_init = c0_hpt_init;
|
|
|
- else {
|
|
|
+ if (!mips_timer_state) {
|
|
|
/* No external timer interrupt -- use R4k. */
|
|
|
mips_hpt_init = c0_hpt_timer_init;
|
|
|
mips_timer_ack = c0_timer_ack;
|
|
@@ -598,16 +390,9 @@ void __init time_init(void)
|
|
|
if (!mips_hpt_frequency)
|
|
|
mips_hpt_frequency = calibrate_hpt();
|
|
|
|
|
|
- do_gettimeoffset = fixed_rate_gettimeoffset;
|
|
|
-
|
|
|
/* Calculate cache parameters. */
|
|
|
cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ;
|
|
|
|
|
|
- /* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq */
|
|
|
- do_div64_32(sll32_usecs_per_cycle,
|
|
|
- 1000000, mips_hpt_frequency / 2,
|
|
|
- mips_hpt_frequency);
|
|
|
-
|
|
|
/* Report the high precision timer rate for a reference. */
|
|
|
printk("Using %u.%03u MHz high precision timer.\n",
|
|
|
((mips_hpt_frequency + 500) / 1000) / 1000,
|
|
@@ -619,7 +404,7 @@ void __init time_init(void)
|
|
|
mips_timer_ack = null_timer_ack;
|
|
|
|
|
|
/* This sets up the high precision timer for the first interrupt. */
|
|
|
- mips_hpt_init(mips_hpt_read());
|
|
|
+ mips_hpt_init();
|
|
|
|
|
|
/*
|
|
|
* Call board specific timer interrupt setup.
|
|
@@ -633,6 +418,8 @@ void __init time_init(void)
|
|
|
* is not invoked accidentally.
|
|
|
*/
|
|
|
plat_timer_setup(&timer_irqaction);
|
|
|
+
|
|
|
+ init_mips_clocksource();
|
|
|
}
|
|
|
|
|
|
#define FEBRUARY 2
|