|
@@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
|
|
|
return (p - addr) / s->size;
|
|
|
}
|
|
|
|
|
|
+static inline size_t slab_ksize(const struct kmem_cache *s)
|
|
|
+{
|
|
|
+#ifdef CONFIG_SLUB_DEBUG
|
|
|
+ /*
|
|
|
+ * Debugging requires use of the padding between object
|
|
|
+ * and whatever may come after it.
|
|
|
+ */
|
|
|
+ if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
|
|
+ return s->objsize;
|
|
|
+
|
|
|
+#endif
|
|
|
+ /*
|
|
|
+ * If we have the need to store the freelist pointer
|
|
|
+ * back there or track user information then we can
|
|
|
+ * only use the space before that information.
|
|
|
+ */
|
|
|
+ if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
|
|
+ return s->inuse;
|
|
|
+ /*
|
|
|
+ * Else we can use all the padding etc for the allocation
|
|
|
+ */
|
|
|
+ return s->size;
|
|
|
+}
|
|
|
+
|
|
|
+static inline int order_objects(int order, unsigned long size, int reserved)
|
|
|
+{
|
|
|
+ return ((PAGE_SIZE << order) - reserved) / size;
|
|
|
+}
|
|
|
+
|
|
|
static inline struct kmem_cache_order_objects oo_make(int order,
|
|
|
- unsigned long size)
|
|
|
+ unsigned long size, int reserved)
|
|
|
{
|
|
|
struct kmem_cache_order_objects x = {
|
|
|
- (order << OO_SHIFT) + (PAGE_SIZE << order) / size
|
|
|
+ (order << OO_SHIFT) + order_objects(order, size, reserved)
|
|
|
};
|
|
|
|
|
|
return x;
|
|
@@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
|
|
|
return 1;
|
|
|
|
|
|
start = page_address(page);
|
|
|
- length = (PAGE_SIZE << compound_order(page));
|
|
|
+ length = (PAGE_SIZE << compound_order(page)) - s->reserved;
|
|
|
end = start + length;
|
|
|
remainder = length % s->size;
|
|
|
if (!remainder)
|
|
@@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page)
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
- maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
|
|
|
+ maxobj = order_objects(compound_order(page), s->size, s->reserved);
|
|
|
if (page->objects > maxobj) {
|
|
|
slab_err(s, page, "objects %u > max %u",
|
|
|
s->name, page->objects, maxobj);
|
|
@@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
|
|
|
nr++;
|
|
|
}
|
|
|
|
|
|
- max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
|
|
|
+ max_objects = order_objects(compound_order(page), s->size, s->reserved);
|
|
|
if (max_objects > MAX_OBJS_PER_PAGE)
|
|
|
max_objects = MAX_OBJS_PER_PAGE;
|
|
|
|
|
@@ -800,21 +829,31 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
|
|
|
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
|
|
|
{
|
|
|
flags &= gfp_allowed_mask;
|
|
|
- kmemcheck_slab_alloc(s, flags, object, s->objsize);
|
|
|
+ kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
|
|
|
kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
|
|
|
}
|
|
|
|
|
|
static inline void slab_free_hook(struct kmem_cache *s, void *x)
|
|
|
{
|
|
|
kmemleak_free_recursive(x, s->flags);
|
|
|
-}
|
|
|
|
|
|
-static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
|
|
|
-{
|
|
|
- kmemcheck_slab_free(s, object, s->objsize);
|
|
|
- debug_check_no_locks_freed(object, s->objsize);
|
|
|
- if (!(s->flags & SLAB_DEBUG_OBJECTS))
|
|
|
- debug_check_no_obj_freed(object, s->objsize);
|
|
|
+ /*
|
|
|
+ * Trouble is that we may no longer disable interupts in the fast path
|
|
|
+ * So in order to make the debug calls that expect irqs to be
|
|
|
+ * disabled we need to disable interrupts temporarily.
|
|
|
+ */
|
|
|
+#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
|
|
|
+ {
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ local_irq_save(flags);
|
|
|
+ kmemcheck_slab_free(s, x, s->objsize);
|
|
|
+ debug_check_no_locks_freed(x, s->objsize);
|
|
|
+ if (!(s->flags & SLAB_DEBUG_OBJECTS))
|
|
|
+ debug_check_no_obj_freed(x, s->objsize);
|
|
|
+ local_irq_restore(flags);
|
|
|
+ }
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
/*
|
|
@@ -1101,9 +1140,6 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
|
|
|
|
|
|
static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
|
|
|
|
|
|
-static inline void slab_free_hook_irq(struct kmem_cache *s,
|
|
|
- void *object) {}
|
|
|
-
|
|
|
#endif /* CONFIG_SLUB_DEBUG */
|
|
|
|
|
|
/*
|
|
@@ -1249,21 +1285,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
|
|
|
__free_pages(page, order);
|
|
|
}
|
|
|
|
|
|
+#define need_reserve_slab_rcu \
|
|
|
+ (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
|
|
|
+
|
|
|
static void rcu_free_slab(struct rcu_head *h)
|
|
|
{
|
|
|
struct page *page;
|
|
|
|
|
|
- page = container_of((struct list_head *)h, struct page, lru);
|
|
|
+ if (need_reserve_slab_rcu)
|
|
|
+ page = virt_to_head_page(h);
|
|
|
+ else
|
|
|
+ page = container_of((struct list_head *)h, struct page, lru);
|
|
|
+
|
|
|
__free_slab(page->slab, page);
|
|
|
}
|
|
|
|
|
|
static void free_slab(struct kmem_cache *s, struct page *page)
|
|
|
{
|
|
|
if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
|
|
|
- /*
|
|
|
- * RCU free overloads the RCU head over the LRU
|
|
|
- */
|
|
|
- struct rcu_head *head = (void *)&page->lru;
|
|
|
+ struct rcu_head *head;
|
|
|
+
|
|
|
+ if (need_reserve_slab_rcu) {
|
|
|
+ int order = compound_order(page);
|
|
|
+ int offset = (PAGE_SIZE << order) - s->reserved;
|
|
|
+
|
|
|
+ VM_BUG_ON(s->reserved != sizeof(*head));
|
|
|
+ head = page_address(page) + offset;
|
|
|
+ } else {
|
|
|
+ /*
|
|
|
+ * RCU free overloads the RCU head over the LRU
|
|
|
+ */
|
|
|
+ head = (void *)&page->lru;
|
|
|
+ }
|
|
|
|
|
|
call_rcu(head, rcu_free_slab);
|
|
|
} else
|
|
@@ -1487,6 +1540,77 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+#ifdef CONFIG_PREEMPT
|
|
|
+/*
|
|
|
+ * Calculate the next globally unique transaction for disambiguiation
|
|
|
+ * during cmpxchg. The transactions start with the cpu number and are then
|
|
|
+ * incremented by CONFIG_NR_CPUS.
|
|
|
+ */
|
|
|
+#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
|
|
|
+#else
|
|
|
+/*
|
|
|
+ * No preemption supported therefore also no need to check for
|
|
|
+ * different cpus.
|
|
|
+ */
|
|
|
+#define TID_STEP 1
|
|
|
+#endif
|
|
|
+
|
|
|
+static inline unsigned long next_tid(unsigned long tid)
|
|
|
+{
|
|
|
+ return tid + TID_STEP;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int tid_to_cpu(unsigned long tid)
|
|
|
+{
|
|
|
+ return tid % TID_STEP;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned long tid_to_event(unsigned long tid)
|
|
|
+{
|
|
|
+ return tid / TID_STEP;
|
|
|
+}
|
|
|
+
|
|
|
+static inline unsigned int init_tid(int cpu)
|
|
|
+{
|
|
|
+ return cpu;
|
|
|
+}
|
|
|
+
|
|
|
+static inline void note_cmpxchg_failure(const char *n,
|
|
|
+ const struct kmem_cache *s, unsigned long tid)
|
|
|
+{
|
|
|
+#ifdef SLUB_DEBUG_CMPXCHG
|
|
|
+ unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
|
|
|
+
|
|
|
+ printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
|
|
|
+
|
|
|
+#ifdef CONFIG_PREEMPT
|
|
|
+ if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
|
|
|
+ printk("due to cpu change %d -> %d\n",
|
|
|
+ tid_to_cpu(tid), tid_to_cpu(actual_tid));
|
|
|
+ else
|
|
|
+#endif
|
|
|
+ if (tid_to_event(tid) != tid_to_event(actual_tid))
|
|
|
+ printk("due to cpu running other code. Event %ld->%ld\n",
|
|
|
+ tid_to_event(tid), tid_to_event(actual_tid));
|
|
|
+ else
|
|
|
+ printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
|
|
|
+ actual_tid, tid, next_tid(tid));
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+void init_kmem_cache_cpus(struct kmem_cache *s)
|
|
|
+{
|
|
|
+#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
|
|
|
+ int cpu;
|
|
|
+
|
|
|
+ for_each_possible_cpu(cpu)
|
|
|
+ per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
|
|
|
+#endif
|
|
|
+
|
|
|
+}
|
|
|
/*
|
|
|
* Remove the cpu slab
|
|
|
*/
|
|
@@ -1518,6 +1642,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
|
|
page->inuse--;
|
|
|
}
|
|
|
c->page = NULL;
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ c->tid = next_tid(c->tid);
|
|
|
+#endif
|
|
|
unfreeze_slab(s, page, tail);
|
|
|
}
|
|
|
|
|
@@ -1652,6 +1779,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
|
|
|
{
|
|
|
void **object;
|
|
|
struct page *new;
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ unsigned long flags;
|
|
|
+
|
|
|
+ local_irq_save(flags);
|
|
|
+#ifdef CONFIG_PREEMPT
|
|
|
+ /*
|
|
|
+ * We may have been preempted and rescheduled on a different
|
|
|
+ * cpu before disabling interrupts. Need to reload cpu area
|
|
|
+ * pointer.
|
|
|
+ */
|
|
|
+ c = this_cpu_ptr(s->cpu_slab);
|
|
|
+#endif
|
|
|
+#endif
|
|
|
|
|
|
/* We handle __GFP_ZERO in the caller */
|
|
|
gfpflags &= ~__GFP_ZERO;
|
|
@@ -1678,6 +1818,10 @@ load_freelist:
|
|
|
c->node = page_to_nid(c->page);
|
|
|
unlock_out:
|
|
|
slab_unlock(c->page);
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ c->tid = next_tid(c->tid);
|
|
|
+ local_irq_restore(flags);
|
|
|
+#endif
|
|
|
stat(s, ALLOC_SLOWPATH);
|
|
|
return object;
|
|
|
|
|
@@ -1739,23 +1883,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
|
|
|
{
|
|
|
void **object;
|
|
|
struct kmem_cache_cpu *c;
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ unsigned long tid;
|
|
|
+#else
|
|
|
unsigned long flags;
|
|
|
+#endif
|
|
|
|
|
|
if (slab_pre_alloc_hook(s, gfpflags))
|
|
|
return NULL;
|
|
|
|
|
|
+#ifndef CONFIG_CMPXCHG_LOCAL
|
|
|
local_irq_save(flags);
|
|
|
+#else
|
|
|
+redo:
|
|
|
+#endif
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Must read kmem_cache cpu data via this cpu ptr. Preemption is
|
|
|
+ * enabled. We may switch back and forth between cpus while
|
|
|
+ * reading from one cpu area. That does not matter as long
|
|
|
+ * as we end up on the original cpu again when doing the cmpxchg.
|
|
|
+ */
|
|
|
c = __this_cpu_ptr(s->cpu_slab);
|
|
|
+
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ /*
|
|
|
+ * The transaction ids are globally unique per cpu and per operation on
|
|
|
+ * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
|
|
|
+ * occurs on the right processor and that there was no operation on the
|
|
|
+ * linked list in between.
|
|
|
+ */
|
|
|
+ tid = c->tid;
|
|
|
+ barrier();
|
|
|
+#endif
|
|
|
+
|
|
|
object = c->freelist;
|
|
|
if (unlikely(!object || !node_match(c, node)))
|
|
|
|
|
|
object = __slab_alloc(s, gfpflags, node, addr, c);
|
|
|
|
|
|
else {
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ /*
|
|
|
+ * The cmpxchg will only match if there was no additonal
|
|
|
+ * operation and if we are on the right processor.
|
|
|
+ *
|
|
|
+ * The cmpxchg does the following atomically (without lock semantics!)
|
|
|
+ * 1. Relocate first pointer to the current per cpu area.
|
|
|
+ * 2. Verify that tid and freelist have not been changed
|
|
|
+ * 3. If they were not changed replace tid and freelist
|
|
|
+ *
|
|
|
+ * Since this is without lock semantics the protection is only against
|
|
|
+ * code executing on this cpu *not* from access by other cpus.
|
|
|
+ */
|
|
|
+ if (unlikely(!this_cpu_cmpxchg_double(
|
|
|
+ s->cpu_slab->freelist, s->cpu_slab->tid,
|
|
|
+ object, tid,
|
|
|
+ get_freepointer(s, object), next_tid(tid)))) {
|
|
|
+
|
|
|
+ note_cmpxchg_failure("slab_alloc", s, tid);
|
|
|
+ goto redo;
|
|
|
+ }
|
|
|
+#else
|
|
|
c->freelist = get_freepointer(s, object);
|
|
|
+#endif
|
|
|
stat(s, ALLOC_FASTPATH);
|
|
|
}
|
|
|
+
|
|
|
+#ifndef CONFIG_CMPXCHG_LOCAL
|
|
|
local_irq_restore(flags);
|
|
|
+#endif
|
|
|
|
|
|
if (unlikely(gfpflags & __GFP_ZERO) && object)
|
|
|
memset(object, 0, s->objsize);
|
|
@@ -1833,9 +2030,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
|
|
|
{
|
|
|
void *prior;
|
|
|
void **object = (void *)x;
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ unsigned long flags;
|
|
|
|
|
|
- stat(s, FREE_SLOWPATH);
|
|
|
+ local_irq_save(flags);
|
|
|
+#endif
|
|
|
slab_lock(page);
|
|
|
+ stat(s, FREE_SLOWPATH);
|
|
|
|
|
|
if (kmem_cache_debug(s))
|
|
|
goto debug;
|
|
@@ -1865,6 +2066,9 @@ checks_ok:
|
|
|
|
|
|
out_unlock:
|
|
|
slab_unlock(page);
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ local_irq_restore(flags);
|
|
|
+#endif
|
|
|
return;
|
|
|
|
|
|
slab_empty:
|
|
@@ -1876,6 +2080,9 @@ slab_empty:
|
|
|
stat(s, FREE_REMOVE_PARTIAL);
|
|
|
}
|
|
|
slab_unlock(page);
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ local_irq_restore(flags);
|
|
|
+#endif
|
|
|
stat(s, FREE_SLAB);
|
|
|
discard_slab(s, page);
|
|
|
return;
|
|
@@ -1902,23 +2109,56 @@ static __always_inline void slab_free(struct kmem_cache *s,
|
|
|
{
|
|
|
void **object = (void *)x;
|
|
|
struct kmem_cache_cpu *c;
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ unsigned long tid;
|
|
|
+#else
|
|
|
unsigned long flags;
|
|
|
+#endif
|
|
|
|
|
|
slab_free_hook(s, x);
|
|
|
|
|
|
+#ifndef CONFIG_CMPXCHG_LOCAL
|
|
|
local_irq_save(flags);
|
|
|
+
|
|
|
+#else
|
|
|
+redo:
|
|
|
+#endif
|
|
|
+
|
|
|
+ /*
|
|
|
+ * Determine the currently cpus per cpu slab.
|
|
|
+ * The cpu may change afterward. However that does not matter since
|
|
|
+ * data is retrieved via this pointer. If we are on the same cpu
|
|
|
+ * during the cmpxchg then the free will succedd.
|
|
|
+ */
|
|
|
c = __this_cpu_ptr(s->cpu_slab);
|
|
|
|
|
|
- slab_free_hook_irq(s, x);
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ tid = c->tid;
|
|
|
+ barrier();
|
|
|
+#endif
|
|
|
|
|
|
if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
|
|
|
set_freepointer(s, object, c->freelist);
|
|
|
+
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ if (unlikely(!this_cpu_cmpxchg_double(
|
|
|
+ s->cpu_slab->freelist, s->cpu_slab->tid,
|
|
|
+ c->freelist, tid,
|
|
|
+ object, next_tid(tid)))) {
|
|
|
+
|
|
|
+ note_cmpxchg_failure("slab_free", s, tid);
|
|
|
+ goto redo;
|
|
|
+ }
|
|
|
+#else
|
|
|
c->freelist = object;
|
|
|
+#endif
|
|
|
stat(s, FREE_FASTPATH);
|
|
|
} else
|
|
|
__slab_free(s, page, x, addr);
|
|
|
|
|
|
+#ifndef CONFIG_CMPXCHG_LOCAL
|
|
|
local_irq_restore(flags);
|
|
|
+#endif
|
|
|
}
|
|
|
|
|
|
void kmem_cache_free(struct kmem_cache *s, void *x)
|
|
@@ -1988,13 +2228,13 @@ static int slub_nomerge;
|
|
|
* the smallest order which will fit the object.
|
|
|
*/
|
|
|
static inline int slab_order(int size, int min_objects,
|
|
|
- int max_order, int fract_leftover)
|
|
|
+ int max_order, int fract_leftover, int reserved)
|
|
|
{
|
|
|
int order;
|
|
|
int rem;
|
|
|
int min_order = slub_min_order;
|
|
|
|
|
|
- if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
|
|
|
+ if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
|
|
|
return get_order(size * MAX_OBJS_PER_PAGE) - 1;
|
|
|
|
|
|
for (order = max(min_order,
|
|
@@ -2003,10 +2243,10 @@ static inline int slab_order(int size, int min_objects,
|
|
|
|
|
|
unsigned long slab_size = PAGE_SIZE << order;
|
|
|
|
|
|
- if (slab_size < min_objects * size)
|
|
|
+ if (slab_size < min_objects * size + reserved)
|
|
|
continue;
|
|
|
|
|
|
- rem = slab_size % size;
|
|
|
+ rem = (slab_size - reserved) % size;
|
|
|
|
|
|
if (rem <= slab_size / fract_leftover)
|
|
|
break;
|
|
@@ -2016,7 +2256,7 @@ static inline int slab_order(int size, int min_objects,
|
|
|
return order;
|
|
|
}
|
|
|
|
|
|
-static inline int calculate_order(int size)
|
|
|
+static inline int calculate_order(int size, int reserved)
|
|
|
{
|
|
|
int order;
|
|
|
int min_objects;
|
|
@@ -2034,14 +2274,14 @@ static inline int calculate_order(int size)
|
|
|
min_objects = slub_min_objects;
|
|
|
if (!min_objects)
|
|
|
min_objects = 4 * (fls(nr_cpu_ids) + 1);
|
|
|
- max_objects = (PAGE_SIZE << slub_max_order)/size;
|
|
|
+ max_objects = order_objects(slub_max_order, size, reserved);
|
|
|
min_objects = min(min_objects, max_objects);
|
|
|
|
|
|
while (min_objects > 1) {
|
|
|
fraction = 16;
|
|
|
while (fraction >= 4) {
|
|
|
order = slab_order(size, min_objects,
|
|
|
- slub_max_order, fraction);
|
|
|
+ slub_max_order, fraction, reserved);
|
|
|
if (order <= slub_max_order)
|
|
|
return order;
|
|
|
fraction /= 2;
|
|
@@ -2053,14 +2293,14 @@ static inline int calculate_order(int size)
|
|
|
* We were unable to place multiple objects in a slab. Now
|
|
|
* lets see if we can place a single object there.
|
|
|
*/
|
|
|
- order = slab_order(size, 1, slub_max_order, 1);
|
|
|
+ order = slab_order(size, 1, slub_max_order, 1, reserved);
|
|
|
if (order <= slub_max_order)
|
|
|
return order;
|
|
|
|
|
|
/*
|
|
|
* Doh this slab cannot be placed using slub_max_order.
|
|
|
*/
|
|
|
- order = slab_order(size, 1, MAX_ORDER, 1);
|
|
|
+ order = slab_order(size, 1, MAX_ORDER, 1, reserved);
|
|
|
if (order < MAX_ORDER)
|
|
|
return order;
|
|
|
return -ENOSYS;
|
|
@@ -2110,9 +2350,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
|
|
|
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
|
|
|
SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
|
|
|
|
|
|
+#ifdef CONFIG_CMPXCHG_LOCAL
|
|
|
+ /*
|
|
|
+ * Must align to double word boundary for the double cmpxchg instructions
|
|
|
+ * to work.
|
|
|
+ */
|
|
|
+ s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
|
|
|
+#else
|
|
|
+ /* Regular alignment is sufficient */
|
|
|
s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
|
|
|
+#endif
|
|
|
|
|
|
- return s->cpu_slab != NULL;
|
|
|
+ if (!s->cpu_slab)
|
|
|
+ return 0;
|
|
|
+
|
|
|
+ init_kmem_cache_cpus(s);
|
|
|
+
|
|
|
+ return 1;
|
|
|
}
|
|
|
|
|
|
static struct kmem_cache *kmem_cache_node;
|
|
@@ -2311,7 +2565,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
|
|
if (forced_order >= 0)
|
|
|
order = forced_order;
|
|
|
else
|
|
|
- order = calculate_order(size);
|
|
|
+ order = calculate_order(size, s->reserved);
|
|
|
|
|
|
if (order < 0)
|
|
|
return 0;
|
|
@@ -2329,8 +2583,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
|
|
/*
|
|
|
* Determine the number of objects per slab
|
|
|
*/
|
|
|
- s->oo = oo_make(order, size);
|
|
|
- s->min = oo_make(get_order(size), size);
|
|
|
+ s->oo = oo_make(order, size, s->reserved);
|
|
|
+ s->min = oo_make(get_order(size), size, s->reserved);
|
|
|
if (oo_objects(s->oo) > oo_objects(s->max))
|
|
|
s->max = s->oo;
|
|
|
|
|
@@ -2349,6 +2603,10 @@ static int kmem_cache_open(struct kmem_cache *s,
|
|
|
s->objsize = size;
|
|
|
s->align = align;
|
|
|
s->flags = kmem_cache_flags(size, flags, name, ctor);
|
|
|
+ s->reserved = 0;
|
|
|
+
|
|
|
+ if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
|
|
|
+ s->reserved = sizeof(struct rcu_head);
|
|
|
|
|
|
if (!calculate_sizes(s, -1))
|
|
|
goto error;
|
|
@@ -2399,12 +2657,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s)
|
|
|
}
|
|
|
EXPORT_SYMBOL(kmem_cache_size);
|
|
|
|
|
|
-const char *kmem_cache_name(struct kmem_cache *s)
|
|
|
-{
|
|
|
- return s->name;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(kmem_cache_name);
|
|
|
-
|
|
|
static void list_slab_objects(struct kmem_cache *s, struct page *page,
|
|
|
const char *text)
|
|
|
{
|
|
@@ -2696,7 +2948,6 @@ EXPORT_SYMBOL(__kmalloc_node);
|
|
|
size_t ksize(const void *object)
|
|
|
{
|
|
|
struct page *page;
|
|
|
- struct kmem_cache *s;
|
|
|
|
|
|
if (unlikely(object == ZERO_SIZE_PTR))
|
|
|
return 0;
|
|
@@ -2707,28 +2958,8 @@ size_t ksize(const void *object)
|
|
|
WARN_ON(!PageCompound(page));
|
|
|
return PAGE_SIZE << compound_order(page);
|
|
|
}
|
|
|
- s = page->slab;
|
|
|
|
|
|
-#ifdef CONFIG_SLUB_DEBUG
|
|
|
- /*
|
|
|
- * Debugging requires use of the padding between object
|
|
|
- * and whatever may come after it.
|
|
|
- */
|
|
|
- if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
|
|
|
- return s->objsize;
|
|
|
-
|
|
|
-#endif
|
|
|
- /*
|
|
|
- * If we have the need to store the freelist pointer
|
|
|
- * back there or track user information then we can
|
|
|
- * only use the space before that information.
|
|
|
- */
|
|
|
- if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
|
|
|
- return s->inuse;
|
|
|
- /*
|
|
|
- * Else we can use all the padding etc for the allocation
|
|
|
- */
|
|
|
- return s->size;
|
|
|
+ return slab_ksize(page->slab);
|
|
|
}
|
|
|
EXPORT_SYMBOL(ksize);
|
|
|
|
|
@@ -4017,6 +4248,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
|
|
|
}
|
|
|
SLAB_ATTR_RO(destroy_by_rcu);
|
|
|
|
|
|
+static ssize_t reserved_show(struct kmem_cache *s, char *buf)
|
|
|
+{
|
|
|
+ return sprintf(buf, "%d\n", s->reserved);
|
|
|
+}
|
|
|
+SLAB_ATTR_RO(reserved);
|
|
|
+
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
|
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
|
|
|
{
|
|
@@ -4303,6 +4540,7 @@ static struct attribute *slab_attrs[] = {
|
|
|
&reclaim_account_attr.attr,
|
|
|
&destroy_by_rcu_attr.attr,
|
|
|
&shrink_attr.attr,
|
|
|
+ &reserved_attr.attr,
|
|
|
#ifdef CONFIG_SLUB_DEBUG
|
|
|
&total_objects_attr.attr,
|
|
|
&slabs_attr.attr,
|