slub_def.h 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. #include <linux/kmemleak.h>
  13. enum stat_item {
  14. ALLOC_FASTPATH, /* Allocation from cpu slab */
  15. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  16. FREE_FASTPATH, /* Free to cpu slub */
  17. FREE_SLOWPATH, /* Freeing not to cpu slab */
  18. FREE_FROZEN, /* Freeing to frozen slab */
  19. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  20. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  21. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  22. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  23. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  24. FREE_SLAB, /* Slab freed to the page allocator */
  25. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  26. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  27. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  28. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  29. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  30. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  31. ORDER_FALLBACK, /* Number of times fallback was necessary */
  32. NR_SLUB_STAT_ITEMS };
  33. struct kmem_cache_cpu {
  34. void **freelist; /* Pointer to next available object */
  35. #ifdef CONFIG_CMPXCHG_LOCAL
  36. unsigned long tid; /* Globally unique transaction id */
  37. #endif
  38. struct page *page; /* The slab from which we are allocating */
  39. int node; /* The node of the page (or -1 for debug) */
  40. #ifdef CONFIG_SLUB_STATS
  41. unsigned stat[NR_SLUB_STAT_ITEMS];
  42. #endif
  43. };
  44. struct kmem_cache_node {
  45. spinlock_t list_lock; /* Protect partial list and nr_partial */
  46. unsigned long nr_partial;
  47. struct list_head partial;
  48. #ifdef CONFIG_SLUB_DEBUG
  49. atomic_long_t nr_slabs;
  50. atomic_long_t total_objects;
  51. struct list_head full;
  52. #endif
  53. };
  54. /*
  55. * Word size structure that can be atomically updated or read and that
  56. * contains both the order and the number of objects that a slab of the
  57. * given order would contain.
  58. */
  59. struct kmem_cache_order_objects {
  60. unsigned long x;
  61. };
  62. /*
  63. * Slab cache management.
  64. */
  65. struct kmem_cache {
  66. struct kmem_cache_cpu __percpu *cpu_slab;
  67. /* Used for retriving partial slabs etc */
  68. unsigned long flags;
  69. unsigned long min_partial;
  70. int size; /* The size of an object including meta data */
  71. int objsize; /* The size of an object without meta data */
  72. int offset; /* Free pointer offset. */
  73. struct kmem_cache_order_objects oo;
  74. /* Allocation and freeing of slabs */
  75. struct kmem_cache_order_objects max;
  76. struct kmem_cache_order_objects min;
  77. gfp_t allocflags; /* gfp flags to use on each alloc */
  78. int refcount; /* Refcount for slab cache destroy */
  79. void (*ctor)(void *);
  80. int inuse; /* Offset to metadata */
  81. int align; /* Alignment */
  82. int reserved; /* Reserved bytes at the end of slabs */
  83. const char *name; /* Name (only for display!) */
  84. struct list_head list; /* List of slab caches */
  85. #ifdef CONFIG_SYSFS
  86. struct kobject kobj; /* For sysfs */
  87. #endif
  88. #ifdef CONFIG_NUMA
  89. /*
  90. * Defragmentation by allocating from a remote node.
  91. */
  92. int remote_node_defrag_ratio;
  93. #endif
  94. struct kmem_cache_node *node[MAX_NUMNODES];
  95. };
  96. /*
  97. * Kmalloc subsystem.
  98. */
  99. #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  100. #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  101. #else
  102. #define KMALLOC_MIN_SIZE 8
  103. #endif
  104. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  105. #ifdef ARCH_DMA_MINALIGN
  106. #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  107. #else
  108. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  109. #endif
  110. #ifndef ARCH_SLAB_MINALIGN
  111. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  112. #endif
  113. /*
  114. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  115. * are passed through to the page allocator. The page allocator "fastpath"
  116. * is relatively slow so we need this value sufficiently high so that
  117. * performance critical objects are allocated through the SLUB fastpath.
  118. *
  119. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  120. * "fastpath" becomes competitive with the slab allocator fastpaths.
  121. */
  122. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  123. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  124. #ifdef CONFIG_ZONE_DMA
  125. #define SLUB_DMA __GFP_DMA
  126. #else
  127. /* Disable DMA functionality */
  128. #define SLUB_DMA (__force gfp_t)0
  129. #endif
  130. /*
  131. * We keep the general caches in an array of slab caches that are used for
  132. * 2^x bytes of allocations.
  133. */
  134. extern struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  135. /*
  136. * Sorry that the following has to be that ugly but some versions of GCC
  137. * have trouble with constant propagation and loops.
  138. */
  139. static __always_inline int kmalloc_index(size_t size)
  140. {
  141. if (!size)
  142. return 0;
  143. if (size <= KMALLOC_MIN_SIZE)
  144. return KMALLOC_SHIFT_LOW;
  145. if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  146. return 1;
  147. if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  148. return 2;
  149. if (size <= 8) return 3;
  150. if (size <= 16) return 4;
  151. if (size <= 32) return 5;
  152. if (size <= 64) return 6;
  153. if (size <= 128) return 7;
  154. if (size <= 256) return 8;
  155. if (size <= 512) return 9;
  156. if (size <= 1024) return 10;
  157. if (size <= 2 * 1024) return 11;
  158. if (size <= 4 * 1024) return 12;
  159. /*
  160. * The following is only needed to support architectures with a larger page
  161. * size than 4k.
  162. */
  163. if (size <= 8 * 1024) return 13;
  164. if (size <= 16 * 1024) return 14;
  165. if (size <= 32 * 1024) return 15;
  166. if (size <= 64 * 1024) return 16;
  167. if (size <= 128 * 1024) return 17;
  168. if (size <= 256 * 1024) return 18;
  169. if (size <= 512 * 1024) return 19;
  170. if (size <= 1024 * 1024) return 20;
  171. if (size <= 2 * 1024 * 1024) return 21;
  172. return -1;
  173. /*
  174. * What we really wanted to do and cannot do because of compiler issues is:
  175. * int i;
  176. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  177. * if (size <= (1 << i))
  178. * return i;
  179. */
  180. }
  181. /*
  182. * Find the slab cache for a given combination of allocation flags and size.
  183. *
  184. * This ought to end up with a global pointer to the right cache
  185. * in kmalloc_caches.
  186. */
  187. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  188. {
  189. int index = kmalloc_index(size);
  190. if (index == 0)
  191. return NULL;
  192. return kmalloc_caches[index];
  193. }
  194. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  195. void *__kmalloc(size_t size, gfp_t flags);
  196. static __always_inline void *
  197. kmalloc_order(size_t size, gfp_t flags, unsigned int order)
  198. {
  199. void *ret = (void *) __get_free_pages(flags | __GFP_COMP, order);
  200. kmemleak_alloc(ret, size, 1, flags);
  201. return ret;
  202. }
  203. #ifdef CONFIG_TRACING
  204. extern void *
  205. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size);
  206. extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order);
  207. #else
  208. static __always_inline void *
  209. kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  210. {
  211. return kmem_cache_alloc(s, gfpflags);
  212. }
  213. static __always_inline void *
  214. kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  215. {
  216. return kmalloc_order(size, flags, order);
  217. }
  218. #endif
  219. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  220. {
  221. unsigned int order = get_order(size);
  222. return kmalloc_order_trace(size, flags, order);
  223. }
  224. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  225. {
  226. if (__builtin_constant_p(size)) {
  227. if (size > SLUB_MAX_SIZE)
  228. return kmalloc_large(size, flags);
  229. if (!(flags & SLUB_DMA)) {
  230. struct kmem_cache *s = kmalloc_slab(size);
  231. if (!s)
  232. return ZERO_SIZE_PTR;
  233. return kmem_cache_alloc_trace(s, flags, size);
  234. }
  235. }
  236. return __kmalloc(size, flags);
  237. }
  238. #ifdef CONFIG_NUMA
  239. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  240. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  241. #ifdef CONFIG_TRACING
  242. extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  243. gfp_t gfpflags,
  244. int node, size_t size);
  245. #else
  246. static __always_inline void *
  247. kmem_cache_alloc_node_trace(struct kmem_cache *s,
  248. gfp_t gfpflags,
  249. int node, size_t size)
  250. {
  251. return kmem_cache_alloc_node(s, gfpflags, node);
  252. }
  253. #endif
  254. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  255. {
  256. if (__builtin_constant_p(size) &&
  257. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  258. struct kmem_cache *s = kmalloc_slab(size);
  259. if (!s)
  260. return ZERO_SIZE_PTR;
  261. return kmem_cache_alloc_node_trace(s, flags, node, size);
  262. }
  263. return __kmalloc_node(size, flags, node);
  264. }
  265. #endif
  266. #endif /* _LINUX_SLUB_DEF_H */