|
@@ -46,9 +46,6 @@
|
|
|
#include <asm/nmi.h>
|
|
|
#include <asm/vgtod.h>
|
|
|
|
|
|
-DEFINE_SPINLOCK(rtc_lock);
|
|
|
-EXPORT_SYMBOL(rtc_lock);
|
|
|
-
|
|
|
volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
|
|
|
|
|
|
unsigned long profile_pc(struct pt_regs *regs)
|
|
@@ -69,103 +66,6 @@ unsigned long profile_pc(struct pt_regs *regs)
|
|
|
}
|
|
|
EXPORT_SYMBOL(profile_pc);
|
|
|
|
|
|
-/* Routines for accessing the CMOS RAM/RTC. */
|
|
|
-unsigned char rtc_cmos_read(unsigned char addr)
|
|
|
-{
|
|
|
- unsigned char val;
|
|
|
- lock_cmos_prefix(addr);
|
|
|
- outb_p(addr, RTC_PORT(0));
|
|
|
- val = inb_p(RTC_PORT(1));
|
|
|
- lock_cmos_suffix(addr);
|
|
|
- return val;
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(rtc_cmos_read);
|
|
|
-
|
|
|
-void rtc_cmos_write(unsigned char val, unsigned char addr)
|
|
|
-{
|
|
|
- lock_cmos_prefix(addr);
|
|
|
- outb_p(addr, RTC_PORT(0));
|
|
|
- outb_p(val, RTC_PORT(1));
|
|
|
- lock_cmos_suffix(addr);
|
|
|
-}
|
|
|
-EXPORT_SYMBOL(rtc_cmos_write);
|
|
|
-
|
|
|
-/*
|
|
|
- * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
|
|
|
- * ms after the second nowtime has started, because when nowtime is written
|
|
|
- * into the registers of the CMOS clock, it will jump to the next second
|
|
|
- * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
|
|
|
- * sheet for details.
|
|
|
- */
|
|
|
-
|
|
|
-static int set_rtc_mmss(unsigned long nowtime)
|
|
|
-{
|
|
|
- int retval = 0;
|
|
|
- int real_seconds, real_minutes, cmos_minutes;
|
|
|
- unsigned char control, freq_select;
|
|
|
- unsigned long flags;
|
|
|
-
|
|
|
-/*
|
|
|
- * set_rtc_mmss is called when irqs are enabled, so disable irqs here
|
|
|
- */
|
|
|
- spin_lock_irqsave(&rtc_lock, flags);
|
|
|
-/*
|
|
|
- * Tell the clock it's being set and stop it.
|
|
|
- */
|
|
|
- control = CMOS_READ(RTC_CONTROL);
|
|
|
- CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
|
|
|
-
|
|
|
- freq_select = CMOS_READ(RTC_FREQ_SELECT);
|
|
|
- CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
|
|
|
-
|
|
|
- cmos_minutes = CMOS_READ(RTC_MINUTES);
|
|
|
- BCD_TO_BIN(cmos_minutes);
|
|
|
-
|
|
|
-/*
|
|
|
- * since we're only adjusting minutes and seconds, don't interfere with hour
|
|
|
- * overflow. This avoids messing with unknown time zones but requires your RTC
|
|
|
- * not to be off by more than 15 minutes. Since we're calling it only when
|
|
|
- * our clock is externally synchronized using NTP, this shouldn't be a problem.
|
|
|
- */
|
|
|
-
|
|
|
- real_seconds = nowtime % 60;
|
|
|
- real_minutes = nowtime / 60;
|
|
|
- if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
|
|
|
- real_minutes += 30; /* correct for half hour time zone */
|
|
|
- real_minutes %= 60;
|
|
|
-
|
|
|
- if (abs(real_minutes - cmos_minutes) >= 30) {
|
|
|
- printk(KERN_WARNING "time.c: can't update CMOS clock "
|
|
|
- "from %d to %d\n", cmos_minutes, real_minutes);
|
|
|
- retval = -1;
|
|
|
- } else {
|
|
|
- BIN_TO_BCD(real_seconds);
|
|
|
- BIN_TO_BCD(real_minutes);
|
|
|
- CMOS_WRITE(real_seconds, RTC_SECONDS);
|
|
|
- CMOS_WRITE(real_minutes, RTC_MINUTES);
|
|
|
- }
|
|
|
-
|
|
|
-/*
|
|
|
- * The following flags have to be released exactly in this order, otherwise the
|
|
|
- * DS12887 (popular MC146818A clone with integrated battery and quartz) will
|
|
|
- * not reset the oscillator and will not update precisely 500 ms later. You
|
|
|
- * won't find this mentioned in the Dallas Semiconductor data sheets, but who
|
|
|
- * believes data sheets anyway ... -- Markus Kuhn
|
|
|
- */
|
|
|
-
|
|
|
- CMOS_WRITE(control, RTC_CONTROL);
|
|
|
- CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
|
|
|
-
|
|
|
- spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
-
|
|
|
- return retval;
|
|
|
-}
|
|
|
-
|
|
|
-int update_persistent_clock(struct timespec now)
|
|
|
-{
|
|
|
- return set_rtc_mmss(now.tv_sec);
|
|
|
-}
|
|
|
-
|
|
|
static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
|
|
{
|
|
|
add_pda(irq0_irqs, 1);
|
|
@@ -175,63 +75,6 @@ static irqreturn_t timer_event_interrupt(int irq, void *dev_id)
|
|
|
return IRQ_HANDLED;
|
|
|
}
|
|
|
|
|
|
-unsigned long read_persistent_clock(void)
|
|
|
-{
|
|
|
- unsigned int year, mon, day, hour, min, sec;
|
|
|
- unsigned long flags;
|
|
|
- unsigned century = 0;
|
|
|
-
|
|
|
- spin_lock_irqsave(&rtc_lock, flags);
|
|
|
- /*
|
|
|
- * if UIP is clear, then we have >= 244 microseconds before RTC
|
|
|
- * registers will be updated. Spec sheet says that this is the
|
|
|
- * reliable way to read RTC - registers invalid (off bus) during update
|
|
|
- */
|
|
|
- while ((CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
|
|
|
- cpu_relax();
|
|
|
-
|
|
|
-
|
|
|
- /* now read all RTC registers while stable with interrupts disabled */
|
|
|
- sec = CMOS_READ(RTC_SECONDS);
|
|
|
- min = CMOS_READ(RTC_MINUTES);
|
|
|
- hour = CMOS_READ(RTC_HOURS);
|
|
|
- day = CMOS_READ(RTC_DAY_OF_MONTH);
|
|
|
- mon = CMOS_READ(RTC_MONTH);
|
|
|
- year = CMOS_READ(RTC_YEAR);
|
|
|
-#ifdef CONFIG_ACPI
|
|
|
- if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID &&
|
|
|
- acpi_gbl_FADT.century)
|
|
|
- century = CMOS_READ(acpi_gbl_FADT.century);
|
|
|
-#endif
|
|
|
- spin_unlock_irqrestore(&rtc_lock, flags);
|
|
|
-
|
|
|
- /*
|
|
|
- * We know that x86-64 always uses BCD format, no need to check the
|
|
|
- * config register.
|
|
|
- */
|
|
|
-
|
|
|
- BCD_TO_BIN(sec);
|
|
|
- BCD_TO_BIN(min);
|
|
|
- BCD_TO_BIN(hour);
|
|
|
- BCD_TO_BIN(day);
|
|
|
- BCD_TO_BIN(mon);
|
|
|
- BCD_TO_BIN(year);
|
|
|
-
|
|
|
- if (century) {
|
|
|
- BCD_TO_BIN(century);
|
|
|
- year += century * 100;
|
|
|
- printk(KERN_INFO "Extended CMOS year: %d\n", century * 100);
|
|
|
- } else {
|
|
|
- /*
|
|
|
- * x86-64 systems only exists since 2002.
|
|
|
- * This will work up to Dec 31, 2100
|
|
|
- */
|
|
|
- year += 2000;
|
|
|
- }
|
|
|
-
|
|
|
- return mktime(year, mon, day, hour, min, sec);
|
|
|
-}
|
|
|
-
|
|
|
/* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
|
|
* processor frequency */
|
|
|
#define TICK_COUNT 100000000
|