clock.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. #define PLL_DIV_1024 1024
  29. #define PLL_DIV_65535 65535
  30. #define PLL_DIV_65536 65536
  31. /* *
  32. * This structure is to store the src bit, div bit and prediv bit
  33. * positions of the peripheral clocks of the src and div registers
  34. */
  35. struct clk_bit_info {
  36. int8_t src_bit;
  37. int8_t div_bit;
  38. int8_t prediv_bit;
  39. };
  40. /* src_bit div_bit prediv_bit */
  41. static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
  42. {0, 0, -1},
  43. {4, 4, -1},
  44. {8, 8, -1},
  45. {12, 12, -1},
  46. {0, 0, 8},
  47. {4, 16, 24},
  48. {8, 0, 8},
  49. {12, 16, 24},
  50. {-1, -1, -1},
  51. {16, 0, 8},
  52. {20, 16, 24},
  53. {24, 0, 8},
  54. {0, 0, 4},
  55. {4, 12, 16},
  56. {-1, -1, -1},
  57. {-1, -1, -1},
  58. {-1, 24, 0},
  59. {-1, 24, 0},
  60. {-1, 24, 0},
  61. {-1, 24, 0},
  62. {-1, 24, 0},
  63. {-1, 24, 0},
  64. {-1, 24, 0},
  65. {-1, 24, 0},
  66. {24, 0, -1},
  67. {24, 0, -1},
  68. {24, 0, -1},
  69. {24, 0, -1},
  70. {24, 0, -1},
  71. };
  72. /* Epll Clock division values to achive different frequency output */
  73. static struct set_epll_con_val exynos5_epll_div[] = {
  74. { 192000000, 0, 48, 3, 1, 0 },
  75. { 180000000, 0, 45, 3, 1, 0 },
  76. { 73728000, 1, 73, 3, 3, 47710 },
  77. { 67737600, 1, 90, 4, 3, 20762 },
  78. { 49152000, 0, 49, 3, 3, 9961 },
  79. { 45158400, 0, 45, 3, 3, 10381 },
  80. { 180633600, 0, 45, 3, 1, 10381 }
  81. };
  82. /* exynos: return pll clock frequency */
  83. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  84. {
  85. unsigned long m, p, s = 0, mask, fout;
  86. unsigned int div;
  87. unsigned int freq;
  88. /*
  89. * APLL_CON: MIDV [25:16]
  90. * MPLL_CON: MIDV [25:16]
  91. * EPLL_CON: MIDV [24:16]
  92. * VPLL_CON: MIDV [24:16]
  93. * BPLL_CON: MIDV [25:16]: Exynos5
  94. */
  95. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  96. mask = 0x3ff;
  97. else
  98. mask = 0x1ff;
  99. m = (r >> 16) & mask;
  100. /* PDIV [13:8] */
  101. p = (r >> 8) & 0x3f;
  102. /* SDIV [2:0] */
  103. s = r & 0x7;
  104. freq = CONFIG_SYS_CLK_FREQ;
  105. if (pllreg == EPLL) {
  106. k = k & 0xffff;
  107. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  108. fout = (m + k / PLL_DIV_65536) * (freq / (p * (1 << s)));
  109. } else if (pllreg == VPLL) {
  110. k = k & 0xfff;
  111. /*
  112. * Exynos4210
  113. * FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV)
  114. *
  115. * Exynos4412
  116. * FOUT = (MDIV + K / 65535) * FIN / (PDIV * 2^SDIV)
  117. *
  118. * Exynos5250
  119. * FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV)
  120. */
  121. if (proid_is_exynos4210())
  122. div = PLL_DIV_1024;
  123. else if (proid_is_exynos4412())
  124. div = PLL_DIV_65535;
  125. else if (proid_is_exynos5250())
  126. div = PLL_DIV_65536;
  127. else
  128. return 0;
  129. fout = (m + k / div) * (freq / (p * (1 << s)));
  130. } else {
  131. /*
  132. * Exynos4210
  133. * FOUT = MDIV * FIN / (PDIV * 2^SDIV)
  134. *
  135. * Exynos4412 / Exynos5250
  136. * FOUT = MDIV * FIN / (PDIV * 2^(SDIV-1))
  137. */
  138. if (proid_is_exynos4210())
  139. fout = m * (freq / (p * (1 << s)));
  140. else
  141. fout = m * (freq / (p * (1 << (s - 1))));
  142. }
  143. return fout;
  144. }
  145. /* exynos4: return pll clock frequency */
  146. static unsigned long exynos4_get_pll_clk(int pllreg)
  147. {
  148. struct exynos4_clock *clk =
  149. (struct exynos4_clock *)samsung_get_base_clock();
  150. unsigned long r, k = 0;
  151. switch (pllreg) {
  152. case APLL:
  153. r = readl(&clk->apll_con0);
  154. break;
  155. case MPLL:
  156. r = readl(&clk->mpll_con0);
  157. break;
  158. case EPLL:
  159. r = readl(&clk->epll_con0);
  160. k = readl(&clk->epll_con1);
  161. break;
  162. case VPLL:
  163. r = readl(&clk->vpll_con0);
  164. k = readl(&clk->vpll_con1);
  165. break;
  166. default:
  167. printf("Unsupported PLL (%d)\n", pllreg);
  168. return 0;
  169. }
  170. return exynos_get_pll_clk(pllreg, r, k);
  171. }
  172. /* exynos4x12: return pll clock frequency */
  173. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  174. {
  175. struct exynos4x12_clock *clk =
  176. (struct exynos4x12_clock *)samsung_get_base_clock();
  177. unsigned long r, k = 0;
  178. switch (pllreg) {
  179. case APLL:
  180. r = readl(&clk->apll_con0);
  181. break;
  182. case MPLL:
  183. r = readl(&clk->mpll_con0);
  184. break;
  185. case EPLL:
  186. r = readl(&clk->epll_con0);
  187. k = readl(&clk->epll_con1);
  188. break;
  189. case VPLL:
  190. r = readl(&clk->vpll_con0);
  191. k = readl(&clk->vpll_con1);
  192. break;
  193. default:
  194. printf("Unsupported PLL (%d)\n", pllreg);
  195. return 0;
  196. }
  197. return exynos_get_pll_clk(pllreg, r, k);
  198. }
  199. /* exynos5: return pll clock frequency */
  200. static unsigned long exynos5_get_pll_clk(int pllreg)
  201. {
  202. struct exynos5_clock *clk =
  203. (struct exynos5_clock *)samsung_get_base_clock();
  204. unsigned long r, k = 0, fout;
  205. unsigned int pll_div2_sel, fout_sel;
  206. switch (pllreg) {
  207. case APLL:
  208. r = readl(&clk->apll_con0);
  209. break;
  210. case MPLL:
  211. r = readl(&clk->mpll_con0);
  212. break;
  213. case EPLL:
  214. r = readl(&clk->epll_con0);
  215. k = readl(&clk->epll_con1);
  216. break;
  217. case VPLL:
  218. r = readl(&clk->vpll_con0);
  219. k = readl(&clk->vpll_con1);
  220. break;
  221. case BPLL:
  222. r = readl(&clk->bpll_con0);
  223. break;
  224. default:
  225. printf("Unsupported PLL (%d)\n", pllreg);
  226. return 0;
  227. }
  228. fout = exynos_get_pll_clk(pllreg, r, k);
  229. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  230. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  231. if (pllreg == MPLL || pllreg == BPLL) {
  232. pll_div2_sel = readl(&clk->pll_div2_sel);
  233. switch (pllreg) {
  234. case MPLL:
  235. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  236. & MPLL_FOUT_SEL_MASK;
  237. break;
  238. case BPLL:
  239. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  240. & BPLL_FOUT_SEL_MASK;
  241. break;
  242. default:
  243. fout_sel = -1;
  244. break;
  245. }
  246. if (fout_sel == 0)
  247. fout /= 2;
  248. }
  249. return fout;
  250. }
  251. static unsigned long exynos5_get_periph_rate(int peripheral)
  252. {
  253. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  254. unsigned long sclk, sub_clk;
  255. unsigned int src, div, sub_div;
  256. struct exynos5_clock *clk =
  257. (struct exynos5_clock *)samsung_get_base_clock();
  258. switch (peripheral) {
  259. case PERIPH_ID_UART0:
  260. case PERIPH_ID_UART1:
  261. case PERIPH_ID_UART2:
  262. case PERIPH_ID_UART3:
  263. src = readl(&clk->src_peric0);
  264. div = readl(&clk->div_peric0);
  265. break;
  266. case PERIPH_ID_PWM0:
  267. case PERIPH_ID_PWM1:
  268. case PERIPH_ID_PWM2:
  269. case PERIPH_ID_PWM3:
  270. case PERIPH_ID_PWM4:
  271. src = readl(&clk->src_peric0);
  272. div = readl(&clk->div_peric3);
  273. break;
  274. case PERIPH_ID_SPI0:
  275. case PERIPH_ID_SPI1:
  276. src = readl(&clk->src_peric1);
  277. div = readl(&clk->div_peric1);
  278. break;
  279. case PERIPH_ID_SPI2:
  280. src = readl(&clk->src_peric1);
  281. div = readl(&clk->div_peric2);
  282. break;
  283. case PERIPH_ID_SPI3:
  284. case PERIPH_ID_SPI4:
  285. src = readl(&clk->sclk_src_isp);
  286. div = readl(&clk->sclk_div_isp);
  287. break;
  288. case PERIPH_ID_SDMMC0:
  289. case PERIPH_ID_SDMMC1:
  290. case PERIPH_ID_SDMMC2:
  291. case PERIPH_ID_SDMMC3:
  292. src = readl(&clk->src_fsys);
  293. div = readl(&clk->div_fsys1);
  294. break;
  295. case PERIPH_ID_I2C0:
  296. case PERIPH_ID_I2C1:
  297. case PERIPH_ID_I2C2:
  298. case PERIPH_ID_I2C3:
  299. case PERIPH_ID_I2C4:
  300. case PERIPH_ID_I2C5:
  301. case PERIPH_ID_I2C6:
  302. case PERIPH_ID_I2C7:
  303. sclk = exynos5_get_pll_clk(MPLL);
  304. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  305. & 0x7) + 1;
  306. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  307. & 0x7) + 1;
  308. return (sclk / sub_div) / div;
  309. default:
  310. debug("%s: invalid peripheral %d", __func__, peripheral);
  311. return -1;
  312. };
  313. src = (src >> bit_info->src_bit) & 0xf;
  314. switch (src) {
  315. case EXYNOS_SRC_MPLL:
  316. sclk = exynos5_get_pll_clk(MPLL);
  317. break;
  318. case EXYNOS_SRC_EPLL:
  319. sclk = exynos5_get_pll_clk(EPLL);
  320. break;
  321. case EXYNOS_SRC_VPLL:
  322. sclk = exynos5_get_pll_clk(VPLL);
  323. break;
  324. default:
  325. return 0;
  326. }
  327. /* Ratio clock division for this peripheral */
  328. sub_div = (div >> bit_info->div_bit) & 0xf;
  329. sub_clk = sclk / (sub_div + 1);
  330. /* Pre-ratio clock division for SDMMC0 and 2 */
  331. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  332. div = (div >> bit_info->prediv_bit) & 0xff;
  333. return sub_clk / (div + 1);
  334. }
  335. return sub_clk;
  336. }
  337. unsigned long clock_get_periph_rate(int peripheral)
  338. {
  339. if (cpu_is_exynos5())
  340. return exynos5_get_periph_rate(peripheral);
  341. else
  342. return 0;
  343. }
  344. /* exynos4: return ARM clock frequency */
  345. static unsigned long exynos4_get_arm_clk(void)
  346. {
  347. struct exynos4_clock *clk =
  348. (struct exynos4_clock *)samsung_get_base_clock();
  349. unsigned long div;
  350. unsigned long armclk;
  351. unsigned int core_ratio;
  352. unsigned int core2_ratio;
  353. div = readl(&clk->div_cpu0);
  354. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  355. core_ratio = (div >> 0) & 0x7;
  356. core2_ratio = (div >> 28) & 0x7;
  357. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  358. armclk /= (core2_ratio + 1);
  359. return armclk;
  360. }
  361. /* exynos4x12: return ARM clock frequency */
  362. static unsigned long exynos4x12_get_arm_clk(void)
  363. {
  364. struct exynos4x12_clock *clk =
  365. (struct exynos4x12_clock *)samsung_get_base_clock();
  366. unsigned long div;
  367. unsigned long armclk;
  368. unsigned int core_ratio;
  369. unsigned int core2_ratio;
  370. div = readl(&clk->div_cpu0);
  371. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  372. core_ratio = (div >> 0) & 0x7;
  373. core2_ratio = (div >> 28) & 0x7;
  374. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  375. armclk /= (core2_ratio + 1);
  376. return armclk;
  377. }
  378. /* exynos5: return ARM clock frequency */
  379. static unsigned long exynos5_get_arm_clk(void)
  380. {
  381. struct exynos5_clock *clk =
  382. (struct exynos5_clock *)samsung_get_base_clock();
  383. unsigned long div;
  384. unsigned long armclk;
  385. unsigned int arm_ratio;
  386. unsigned int arm2_ratio;
  387. div = readl(&clk->div_cpu0);
  388. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  389. arm_ratio = (div >> 0) & 0x7;
  390. arm2_ratio = (div >> 28) & 0x7;
  391. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  392. armclk /= (arm2_ratio + 1);
  393. return armclk;
  394. }
  395. /* exynos4: return pwm clock frequency */
  396. static unsigned long exynos4_get_pwm_clk(void)
  397. {
  398. struct exynos4_clock *clk =
  399. (struct exynos4_clock *)samsung_get_base_clock();
  400. unsigned long pclk, sclk;
  401. unsigned int sel;
  402. unsigned int ratio;
  403. if (s5p_get_cpu_rev() == 0) {
  404. /*
  405. * CLK_SRC_PERIL0
  406. * PWM_SEL [27:24]
  407. */
  408. sel = readl(&clk->src_peril0);
  409. sel = (sel >> 24) & 0xf;
  410. if (sel == 0x6)
  411. sclk = get_pll_clk(MPLL);
  412. else if (sel == 0x7)
  413. sclk = get_pll_clk(EPLL);
  414. else if (sel == 0x8)
  415. sclk = get_pll_clk(VPLL);
  416. else
  417. return 0;
  418. /*
  419. * CLK_DIV_PERIL3
  420. * PWM_RATIO [3:0]
  421. */
  422. ratio = readl(&clk->div_peril3);
  423. ratio = ratio & 0xf;
  424. } else if (s5p_get_cpu_rev() == 1) {
  425. sclk = get_pll_clk(MPLL);
  426. ratio = 8;
  427. } else
  428. return 0;
  429. pclk = sclk / (ratio + 1);
  430. return pclk;
  431. }
  432. /* exynos4x12: return pwm clock frequency */
  433. static unsigned long exynos4x12_get_pwm_clk(void)
  434. {
  435. unsigned long pclk, sclk;
  436. unsigned int ratio;
  437. sclk = get_pll_clk(MPLL);
  438. ratio = 8;
  439. pclk = sclk / (ratio + 1);
  440. return pclk;
  441. }
  442. /* exynos4: return uart clock frequency */
  443. static unsigned long exynos4_get_uart_clk(int dev_index)
  444. {
  445. struct exynos4_clock *clk =
  446. (struct exynos4_clock *)samsung_get_base_clock();
  447. unsigned long uclk, sclk;
  448. unsigned int sel;
  449. unsigned int ratio;
  450. /*
  451. * CLK_SRC_PERIL0
  452. * UART0_SEL [3:0]
  453. * UART1_SEL [7:4]
  454. * UART2_SEL [8:11]
  455. * UART3_SEL [12:15]
  456. * UART4_SEL [16:19]
  457. * UART5_SEL [23:20]
  458. */
  459. sel = readl(&clk->src_peril0);
  460. sel = (sel >> (dev_index << 2)) & 0xf;
  461. if (sel == 0x6)
  462. sclk = get_pll_clk(MPLL);
  463. else if (sel == 0x7)
  464. sclk = get_pll_clk(EPLL);
  465. else if (sel == 0x8)
  466. sclk = get_pll_clk(VPLL);
  467. else
  468. return 0;
  469. /*
  470. * CLK_DIV_PERIL0
  471. * UART0_RATIO [3:0]
  472. * UART1_RATIO [7:4]
  473. * UART2_RATIO [8:11]
  474. * UART3_RATIO [12:15]
  475. * UART4_RATIO [16:19]
  476. * UART5_RATIO [23:20]
  477. */
  478. ratio = readl(&clk->div_peril0);
  479. ratio = (ratio >> (dev_index << 2)) & 0xf;
  480. uclk = sclk / (ratio + 1);
  481. return uclk;
  482. }
  483. /* exynos4x12: return uart clock frequency */
  484. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  485. {
  486. struct exynos4x12_clock *clk =
  487. (struct exynos4x12_clock *)samsung_get_base_clock();
  488. unsigned long uclk, sclk;
  489. unsigned int sel;
  490. unsigned int ratio;
  491. /*
  492. * CLK_SRC_PERIL0
  493. * UART0_SEL [3:0]
  494. * UART1_SEL [7:4]
  495. * UART2_SEL [8:11]
  496. * UART3_SEL [12:15]
  497. * UART4_SEL [16:19]
  498. */
  499. sel = readl(&clk->src_peril0);
  500. sel = (sel >> (dev_index << 2)) & 0xf;
  501. if (sel == 0x6)
  502. sclk = get_pll_clk(MPLL);
  503. else if (sel == 0x7)
  504. sclk = get_pll_clk(EPLL);
  505. else if (sel == 0x8)
  506. sclk = get_pll_clk(VPLL);
  507. else
  508. return 0;
  509. /*
  510. * CLK_DIV_PERIL0
  511. * UART0_RATIO [3:0]
  512. * UART1_RATIO [7:4]
  513. * UART2_RATIO [8:11]
  514. * UART3_RATIO [12:15]
  515. * UART4_RATIO [16:19]
  516. */
  517. ratio = readl(&clk->div_peril0);
  518. ratio = (ratio >> (dev_index << 2)) & 0xf;
  519. uclk = sclk / (ratio + 1);
  520. return uclk;
  521. }
  522. /* exynos5: return uart clock frequency */
  523. static unsigned long exynos5_get_uart_clk(int dev_index)
  524. {
  525. struct exynos5_clock *clk =
  526. (struct exynos5_clock *)samsung_get_base_clock();
  527. unsigned long uclk, sclk;
  528. unsigned int sel;
  529. unsigned int ratio;
  530. /*
  531. * CLK_SRC_PERIC0
  532. * UART0_SEL [3:0]
  533. * UART1_SEL [7:4]
  534. * UART2_SEL [8:11]
  535. * UART3_SEL [12:15]
  536. * UART4_SEL [16:19]
  537. * UART5_SEL [23:20]
  538. */
  539. sel = readl(&clk->src_peric0);
  540. sel = (sel >> (dev_index << 2)) & 0xf;
  541. if (sel == 0x6)
  542. sclk = get_pll_clk(MPLL);
  543. else if (sel == 0x7)
  544. sclk = get_pll_clk(EPLL);
  545. else if (sel == 0x8)
  546. sclk = get_pll_clk(VPLL);
  547. else
  548. return 0;
  549. /*
  550. * CLK_DIV_PERIC0
  551. * UART0_RATIO [3:0]
  552. * UART1_RATIO [7:4]
  553. * UART2_RATIO [8:11]
  554. * UART3_RATIO [12:15]
  555. * UART4_RATIO [16:19]
  556. * UART5_RATIO [23:20]
  557. */
  558. ratio = readl(&clk->div_peric0);
  559. ratio = (ratio >> (dev_index << 2)) & 0xf;
  560. uclk = sclk / (ratio + 1);
  561. return uclk;
  562. }
  563. static unsigned long exynos4_get_mmc_clk(int dev_index)
  564. {
  565. struct exynos4_clock *clk =
  566. (struct exynos4_clock *)samsung_get_base_clock();
  567. unsigned long uclk, sclk;
  568. unsigned int sel, ratio, pre_ratio;
  569. int shift = 0;
  570. sel = readl(&clk->src_fsys);
  571. sel = (sel >> (dev_index << 2)) & 0xf;
  572. if (sel == 0x6)
  573. sclk = get_pll_clk(MPLL);
  574. else if (sel == 0x7)
  575. sclk = get_pll_clk(EPLL);
  576. else if (sel == 0x8)
  577. sclk = get_pll_clk(VPLL);
  578. else
  579. return 0;
  580. switch (dev_index) {
  581. case 0:
  582. case 1:
  583. ratio = readl(&clk->div_fsys1);
  584. pre_ratio = readl(&clk->div_fsys1);
  585. break;
  586. case 2:
  587. case 3:
  588. ratio = readl(&clk->div_fsys2);
  589. pre_ratio = readl(&clk->div_fsys2);
  590. break;
  591. case 4:
  592. ratio = readl(&clk->div_fsys3);
  593. pre_ratio = readl(&clk->div_fsys3);
  594. break;
  595. default:
  596. return 0;
  597. }
  598. if (dev_index == 1 || dev_index == 3)
  599. shift = 16;
  600. ratio = (ratio >> shift) & 0xf;
  601. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  602. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  603. return uclk;
  604. }
  605. static unsigned long exynos5_get_mmc_clk(int dev_index)
  606. {
  607. struct exynos5_clock *clk =
  608. (struct exynos5_clock *)samsung_get_base_clock();
  609. unsigned long uclk, sclk;
  610. unsigned int sel, ratio, pre_ratio;
  611. int shift = 0;
  612. sel = readl(&clk->src_fsys);
  613. sel = (sel >> (dev_index << 2)) & 0xf;
  614. if (sel == 0x6)
  615. sclk = get_pll_clk(MPLL);
  616. else if (sel == 0x7)
  617. sclk = get_pll_clk(EPLL);
  618. else if (sel == 0x8)
  619. sclk = get_pll_clk(VPLL);
  620. else
  621. return 0;
  622. switch (dev_index) {
  623. case 0:
  624. case 1:
  625. ratio = readl(&clk->div_fsys1);
  626. pre_ratio = readl(&clk->div_fsys1);
  627. break;
  628. case 2:
  629. case 3:
  630. ratio = readl(&clk->div_fsys2);
  631. pre_ratio = readl(&clk->div_fsys2);
  632. break;
  633. default:
  634. return 0;
  635. }
  636. if (dev_index == 1 || dev_index == 3)
  637. shift = 16;
  638. ratio = (ratio >> shift) & 0xf;
  639. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  640. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  641. return uclk;
  642. }
  643. /* exynos4: set the mmc clock */
  644. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  645. {
  646. struct exynos4_clock *clk =
  647. (struct exynos4_clock *)samsung_get_base_clock();
  648. unsigned int addr;
  649. unsigned int val;
  650. /*
  651. * CLK_DIV_FSYS1
  652. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  653. * CLK_DIV_FSYS2
  654. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  655. * CLK_DIV_FSYS3
  656. * MMC4_PRE_RATIO [15:8]
  657. */
  658. if (dev_index < 2) {
  659. addr = (unsigned int)&clk->div_fsys1;
  660. } else if (dev_index == 4) {
  661. addr = (unsigned int)&clk->div_fsys3;
  662. dev_index -= 4;
  663. } else {
  664. addr = (unsigned int)&clk->div_fsys2;
  665. dev_index -= 2;
  666. }
  667. val = readl(addr);
  668. val &= ~(0xff << ((dev_index << 4) + 8));
  669. val |= (div & 0xff) << ((dev_index << 4) + 8);
  670. writel(val, addr);
  671. }
  672. /* exynos4x12: set the mmc clock */
  673. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  674. {
  675. struct exynos4x12_clock *clk =
  676. (struct exynos4x12_clock *)samsung_get_base_clock();
  677. unsigned int addr;
  678. unsigned int val;
  679. /*
  680. * CLK_DIV_FSYS1
  681. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  682. * CLK_DIV_FSYS2
  683. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  684. */
  685. if (dev_index < 2) {
  686. addr = (unsigned int)&clk->div_fsys1;
  687. } else {
  688. addr = (unsigned int)&clk->div_fsys2;
  689. dev_index -= 2;
  690. }
  691. val = readl(addr);
  692. val &= ~(0xff << ((dev_index << 4) + 8));
  693. val |= (div & 0xff) << ((dev_index << 4) + 8);
  694. writel(val, addr);
  695. }
  696. /* exynos5: set the mmc clock */
  697. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  698. {
  699. struct exynos5_clock *clk =
  700. (struct exynos5_clock *)samsung_get_base_clock();
  701. unsigned int addr;
  702. unsigned int val;
  703. /*
  704. * CLK_DIV_FSYS1
  705. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  706. * CLK_DIV_FSYS2
  707. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  708. */
  709. if (dev_index < 2) {
  710. addr = (unsigned int)&clk->div_fsys1;
  711. } else {
  712. addr = (unsigned int)&clk->div_fsys2;
  713. dev_index -= 2;
  714. }
  715. val = readl(addr);
  716. val &= ~(0xff << ((dev_index << 4) + 8));
  717. val |= (div & 0xff) << ((dev_index << 4) + 8);
  718. writel(val, addr);
  719. }
  720. /* get_lcd_clk: return lcd clock frequency */
  721. static unsigned long exynos4_get_lcd_clk(void)
  722. {
  723. struct exynos4_clock *clk =
  724. (struct exynos4_clock *)samsung_get_base_clock();
  725. unsigned long pclk, sclk;
  726. unsigned int sel;
  727. unsigned int ratio;
  728. /*
  729. * CLK_SRC_LCD0
  730. * FIMD0_SEL [3:0]
  731. */
  732. sel = readl(&clk->src_lcd0);
  733. sel = sel & 0xf;
  734. /*
  735. * 0x6: SCLK_MPLL
  736. * 0x7: SCLK_EPLL
  737. * 0x8: SCLK_VPLL
  738. */
  739. if (sel == 0x6)
  740. sclk = get_pll_clk(MPLL);
  741. else if (sel == 0x7)
  742. sclk = get_pll_clk(EPLL);
  743. else if (sel == 0x8)
  744. sclk = get_pll_clk(VPLL);
  745. else
  746. return 0;
  747. /*
  748. * CLK_DIV_LCD0
  749. * FIMD0_RATIO [3:0]
  750. */
  751. ratio = readl(&clk->div_lcd0);
  752. ratio = ratio & 0xf;
  753. pclk = sclk / (ratio + 1);
  754. return pclk;
  755. }
  756. /* get_lcd_clk: return lcd clock frequency */
  757. static unsigned long exynos5_get_lcd_clk(void)
  758. {
  759. struct exynos5_clock *clk =
  760. (struct exynos5_clock *)samsung_get_base_clock();
  761. unsigned long pclk, sclk;
  762. unsigned int sel;
  763. unsigned int ratio;
  764. /*
  765. * CLK_SRC_LCD0
  766. * FIMD0_SEL [3:0]
  767. */
  768. sel = readl(&clk->src_disp1_0);
  769. sel = sel & 0xf;
  770. /*
  771. * 0x6: SCLK_MPLL
  772. * 0x7: SCLK_EPLL
  773. * 0x8: SCLK_VPLL
  774. */
  775. if (sel == 0x6)
  776. sclk = get_pll_clk(MPLL);
  777. else if (sel == 0x7)
  778. sclk = get_pll_clk(EPLL);
  779. else if (sel == 0x8)
  780. sclk = get_pll_clk(VPLL);
  781. else
  782. return 0;
  783. /*
  784. * CLK_DIV_LCD0
  785. * FIMD0_RATIO [3:0]
  786. */
  787. ratio = readl(&clk->div_disp1_0);
  788. ratio = ratio & 0xf;
  789. pclk = sclk / (ratio + 1);
  790. return pclk;
  791. }
  792. void exynos4_set_lcd_clk(void)
  793. {
  794. struct exynos4_clock *clk =
  795. (struct exynos4_clock *)samsung_get_base_clock();
  796. unsigned int cfg = 0;
  797. /*
  798. * CLK_GATE_BLOCK
  799. * CLK_CAM [0]
  800. * CLK_TV [1]
  801. * CLK_MFC [2]
  802. * CLK_G3D [3]
  803. * CLK_LCD0 [4]
  804. * CLK_LCD1 [5]
  805. * CLK_GPS [7]
  806. */
  807. cfg = readl(&clk->gate_block);
  808. cfg |= 1 << 4;
  809. writel(cfg, &clk->gate_block);
  810. /*
  811. * CLK_SRC_LCD0
  812. * FIMD0_SEL [3:0]
  813. * MDNIE0_SEL [7:4]
  814. * MDNIE_PWM0_SEL [8:11]
  815. * MIPI0_SEL [12:15]
  816. * set lcd0 src clock 0x6: SCLK_MPLL
  817. */
  818. cfg = readl(&clk->src_lcd0);
  819. cfg &= ~(0xf);
  820. cfg |= 0x6;
  821. writel(cfg, &clk->src_lcd0);
  822. /*
  823. * CLK_GATE_IP_LCD0
  824. * CLK_FIMD0 [0]
  825. * CLK_MIE0 [1]
  826. * CLK_MDNIE0 [2]
  827. * CLK_DSIM0 [3]
  828. * CLK_SMMUFIMD0 [4]
  829. * CLK_PPMULCD0 [5]
  830. * Gating all clocks for FIMD0
  831. */
  832. cfg = readl(&clk->gate_ip_lcd0);
  833. cfg |= 1 << 0;
  834. writel(cfg, &clk->gate_ip_lcd0);
  835. /*
  836. * CLK_DIV_LCD0
  837. * FIMD0_RATIO [3:0]
  838. * MDNIE0_RATIO [7:4]
  839. * MDNIE_PWM0_RATIO [11:8]
  840. * MDNIE_PWM_PRE_RATIO [15:12]
  841. * MIPI0_RATIO [19:16]
  842. * MIPI0_PRE_RATIO [23:20]
  843. * set fimd ratio
  844. */
  845. cfg &= ~(0xf);
  846. cfg |= 0x1;
  847. writel(cfg, &clk->div_lcd0);
  848. }
  849. void exynos5_set_lcd_clk(void)
  850. {
  851. struct exynos5_clock *clk =
  852. (struct exynos5_clock *)samsung_get_base_clock();
  853. unsigned int cfg = 0;
  854. /*
  855. * CLK_GATE_BLOCK
  856. * CLK_CAM [0]
  857. * CLK_TV [1]
  858. * CLK_MFC [2]
  859. * CLK_G3D [3]
  860. * CLK_LCD0 [4]
  861. * CLK_LCD1 [5]
  862. * CLK_GPS [7]
  863. */
  864. cfg = readl(&clk->gate_block);
  865. cfg |= 1 << 4;
  866. writel(cfg, &clk->gate_block);
  867. /*
  868. * CLK_SRC_LCD0
  869. * FIMD0_SEL [3:0]
  870. * MDNIE0_SEL [7:4]
  871. * MDNIE_PWM0_SEL [8:11]
  872. * MIPI0_SEL [12:15]
  873. * set lcd0 src clock 0x6: SCLK_MPLL
  874. */
  875. cfg = readl(&clk->src_disp1_0);
  876. cfg &= ~(0xf);
  877. cfg |= 0x6;
  878. writel(cfg, &clk->src_disp1_0);
  879. /*
  880. * CLK_GATE_IP_LCD0
  881. * CLK_FIMD0 [0]
  882. * CLK_MIE0 [1]
  883. * CLK_MDNIE0 [2]
  884. * CLK_DSIM0 [3]
  885. * CLK_SMMUFIMD0 [4]
  886. * CLK_PPMULCD0 [5]
  887. * Gating all clocks for FIMD0
  888. */
  889. cfg = readl(&clk->gate_ip_disp1);
  890. cfg |= 1 << 0;
  891. writel(cfg, &clk->gate_ip_disp1);
  892. /*
  893. * CLK_DIV_LCD0
  894. * FIMD0_RATIO [3:0]
  895. * MDNIE0_RATIO [7:4]
  896. * MDNIE_PWM0_RATIO [11:8]
  897. * MDNIE_PWM_PRE_RATIO [15:12]
  898. * MIPI0_RATIO [19:16]
  899. * MIPI0_PRE_RATIO [23:20]
  900. * set fimd ratio
  901. */
  902. cfg &= ~(0xf);
  903. cfg |= 0x0;
  904. writel(cfg, &clk->div_disp1_0);
  905. }
  906. void exynos4_set_mipi_clk(void)
  907. {
  908. struct exynos4_clock *clk =
  909. (struct exynos4_clock *)samsung_get_base_clock();
  910. unsigned int cfg = 0;
  911. /*
  912. * CLK_SRC_LCD0
  913. * FIMD0_SEL [3:0]
  914. * MDNIE0_SEL [7:4]
  915. * MDNIE_PWM0_SEL [8:11]
  916. * MIPI0_SEL [12:15]
  917. * set mipi0 src clock 0x6: SCLK_MPLL
  918. */
  919. cfg = readl(&clk->src_lcd0);
  920. cfg &= ~(0xf << 12);
  921. cfg |= (0x6 << 12);
  922. writel(cfg, &clk->src_lcd0);
  923. /*
  924. * CLK_SRC_MASK_LCD0
  925. * FIMD0_MASK [0]
  926. * MDNIE0_MASK [4]
  927. * MDNIE_PWM0_MASK [8]
  928. * MIPI0_MASK [12]
  929. * set src mask mipi0 0x1: Unmask
  930. */
  931. cfg = readl(&clk->src_mask_lcd0);
  932. cfg |= (0x1 << 12);
  933. writel(cfg, &clk->src_mask_lcd0);
  934. /*
  935. * CLK_GATE_IP_LCD0
  936. * CLK_FIMD0 [0]
  937. * CLK_MIE0 [1]
  938. * CLK_MDNIE0 [2]
  939. * CLK_DSIM0 [3]
  940. * CLK_SMMUFIMD0 [4]
  941. * CLK_PPMULCD0 [5]
  942. * Gating all clocks for MIPI0
  943. */
  944. cfg = readl(&clk->gate_ip_lcd0);
  945. cfg |= 1 << 3;
  946. writel(cfg, &clk->gate_ip_lcd0);
  947. /*
  948. * CLK_DIV_LCD0
  949. * FIMD0_RATIO [3:0]
  950. * MDNIE0_RATIO [7:4]
  951. * MDNIE_PWM0_RATIO [11:8]
  952. * MDNIE_PWM_PRE_RATIO [15:12]
  953. * MIPI0_RATIO [19:16]
  954. * MIPI0_PRE_RATIO [23:20]
  955. * set mipi ratio
  956. */
  957. cfg &= ~(0xf << 16);
  958. cfg |= (0x1 << 16);
  959. writel(cfg, &clk->div_lcd0);
  960. }
  961. /*
  962. * I2C
  963. *
  964. * exynos5: obtaining the I2C clock
  965. */
  966. static unsigned long exynos5_get_i2c_clk(void)
  967. {
  968. struct exynos5_clock *clk =
  969. (struct exynos5_clock *)samsung_get_base_clock();
  970. unsigned long aclk_66, aclk_66_pre, sclk;
  971. unsigned int ratio;
  972. sclk = get_pll_clk(MPLL);
  973. ratio = (readl(&clk->div_top1)) >> 24;
  974. ratio &= 0x7;
  975. aclk_66_pre = sclk / (ratio + 1);
  976. ratio = readl(&clk->div_top0);
  977. ratio &= 0x7;
  978. aclk_66 = aclk_66_pre / (ratio + 1);
  979. return aclk_66;
  980. }
  981. int exynos5_set_epll_clk(unsigned long rate)
  982. {
  983. unsigned int epll_con, epll_con_k;
  984. unsigned int i;
  985. unsigned int lockcnt;
  986. unsigned int start;
  987. struct exynos5_clock *clk =
  988. (struct exynos5_clock *)samsung_get_base_clock();
  989. epll_con = readl(&clk->epll_con0);
  990. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  991. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  992. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  993. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  994. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  995. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  996. if (exynos5_epll_div[i].freq_out == rate)
  997. break;
  998. }
  999. if (i == ARRAY_SIZE(exynos5_epll_div))
  1000. return -1;
  1001. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  1002. epll_con |= exynos5_epll_div[i].en_lock_det <<
  1003. EPLL_CON0_LOCK_DET_EN_SHIFT;
  1004. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  1005. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  1006. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  1007. /*
  1008. * Required period ( in cycles) to genarate a stable clock output.
  1009. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  1010. * frequency input (as per spec)
  1011. */
  1012. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  1013. writel(lockcnt, &clk->epll_lock);
  1014. writel(epll_con, &clk->epll_con0);
  1015. writel(epll_con_k, &clk->epll_con1);
  1016. start = get_timer(0);
  1017. while (!(readl(&clk->epll_con0) &
  1018. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  1019. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  1020. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  1021. return -1;
  1022. }
  1023. }
  1024. return 0;
  1025. }
  1026. void exynos5_set_i2s_clk_source(void)
  1027. {
  1028. struct exynos5_clock *clk =
  1029. (struct exynos5_clock *)samsung_get_base_clock();
  1030. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1031. (CLK_SRC_SCLK_EPLL));
  1032. }
  1033. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1034. unsigned int dst_frq)
  1035. {
  1036. struct exynos5_clock *clk =
  1037. (struct exynos5_clock *)samsung_get_base_clock();
  1038. unsigned int div;
  1039. if ((dst_frq == 0) || (src_frq == 0)) {
  1040. debug("%s: Invalid requency input for prescaler\n", __func__);
  1041. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1042. return -1;
  1043. }
  1044. div = (src_frq / dst_frq);
  1045. if (div > AUDIO_1_RATIO_MASK) {
  1046. debug("%s: Frequency ratio is out of range\n", __func__);
  1047. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1048. return -1;
  1049. }
  1050. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1051. (div & AUDIO_1_RATIO_MASK));
  1052. return 0;
  1053. }
  1054. /**
  1055. * Linearly searches for the most accurate main and fine stage clock scalars
  1056. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1057. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1058. * slower than target.
  1059. *
  1060. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1061. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1062. * @param input_freq Clock frequency to be scaled in Hz
  1063. * @param target_freq Desired clock frequency in Hz
  1064. * @param best_fine_scalar Pointer to store the fine stage divisor
  1065. *
  1066. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1067. * found
  1068. */
  1069. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1070. unsigned int fine_scalar_bits, unsigned int input_rate,
  1071. unsigned int target_rate, unsigned int *best_fine_scalar)
  1072. {
  1073. int i;
  1074. int best_main_scalar = -1;
  1075. unsigned int best_error = target_rate;
  1076. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1077. const unsigned int loops = 1 << main_scaler_bits;
  1078. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1079. target_rate, cap);
  1080. assert(best_fine_scalar != NULL);
  1081. assert(main_scaler_bits <= fine_scalar_bits);
  1082. *best_fine_scalar = 1;
  1083. if (input_rate == 0 || target_rate == 0)
  1084. return -1;
  1085. if (target_rate >= input_rate)
  1086. return 1;
  1087. for (i = 1; i <= loops; i++) {
  1088. const unsigned int effective_div = max(min(input_rate / i /
  1089. target_rate, cap), 1);
  1090. const unsigned int effective_rate = input_rate / i /
  1091. effective_div;
  1092. const int error = target_rate - effective_rate;
  1093. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1094. effective_rate, error);
  1095. if (error >= 0 && error <= best_error) {
  1096. best_error = error;
  1097. best_main_scalar = i;
  1098. *best_fine_scalar = effective_div;
  1099. }
  1100. }
  1101. return best_main_scalar;
  1102. }
  1103. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1104. unsigned int rate)
  1105. {
  1106. struct exynos5_clock *clk =
  1107. (struct exynos5_clock *)samsung_get_base_clock();
  1108. int main;
  1109. unsigned int fine;
  1110. unsigned shift, pre_shift;
  1111. unsigned mask = 0xff;
  1112. u32 *reg;
  1113. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1114. if (main < 0) {
  1115. debug("%s: Cannot set clock rate for periph %d",
  1116. __func__, periph_id);
  1117. return -1;
  1118. }
  1119. main = main - 1;
  1120. fine = fine - 1;
  1121. switch (periph_id) {
  1122. case PERIPH_ID_SPI0:
  1123. reg = &clk->div_peric1;
  1124. shift = 0;
  1125. pre_shift = 8;
  1126. break;
  1127. case PERIPH_ID_SPI1:
  1128. reg = &clk->div_peric1;
  1129. shift = 16;
  1130. pre_shift = 24;
  1131. break;
  1132. case PERIPH_ID_SPI2:
  1133. reg = &clk->div_peric2;
  1134. shift = 0;
  1135. pre_shift = 8;
  1136. break;
  1137. case PERIPH_ID_SPI3:
  1138. reg = &clk->sclk_div_isp;
  1139. shift = 0;
  1140. pre_shift = 4;
  1141. break;
  1142. case PERIPH_ID_SPI4:
  1143. reg = &clk->sclk_div_isp;
  1144. shift = 12;
  1145. pre_shift = 16;
  1146. break;
  1147. default:
  1148. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1149. periph_id);
  1150. return -1;
  1151. }
  1152. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1153. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1154. return 0;
  1155. }
  1156. static unsigned long exynos4_get_i2c_clk(void)
  1157. {
  1158. struct exynos4_clock *clk =
  1159. (struct exynos4_clock *)samsung_get_base_clock();
  1160. unsigned long sclk, aclk_100;
  1161. unsigned int ratio;
  1162. sclk = get_pll_clk(APLL);
  1163. ratio = (readl(&clk->div_top)) >> 4;
  1164. ratio &= 0xf;
  1165. aclk_100 = sclk / (ratio + 1);
  1166. return aclk_100;
  1167. }
  1168. unsigned long get_pll_clk(int pllreg)
  1169. {
  1170. if (cpu_is_exynos5())
  1171. return exynos5_get_pll_clk(pllreg);
  1172. else {
  1173. if (proid_is_exynos4412())
  1174. return exynos4x12_get_pll_clk(pllreg);
  1175. return exynos4_get_pll_clk(pllreg);
  1176. }
  1177. }
  1178. unsigned long get_arm_clk(void)
  1179. {
  1180. if (cpu_is_exynos5())
  1181. return exynos5_get_arm_clk();
  1182. else {
  1183. if (proid_is_exynos4412())
  1184. return exynos4x12_get_arm_clk();
  1185. return exynos4_get_arm_clk();
  1186. }
  1187. }
  1188. unsigned long get_i2c_clk(void)
  1189. {
  1190. if (cpu_is_exynos5()) {
  1191. return exynos5_get_i2c_clk();
  1192. } else if (cpu_is_exynos4()) {
  1193. return exynos4_get_i2c_clk();
  1194. } else {
  1195. debug("I2C clock is not set for this CPU\n");
  1196. return 0;
  1197. }
  1198. }
  1199. unsigned long get_pwm_clk(void)
  1200. {
  1201. if (cpu_is_exynos5())
  1202. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1203. else {
  1204. if (proid_is_exynos4412())
  1205. return exynos4x12_get_pwm_clk();
  1206. return exynos4_get_pwm_clk();
  1207. }
  1208. }
  1209. unsigned long get_uart_clk(int dev_index)
  1210. {
  1211. if (cpu_is_exynos5())
  1212. return exynos5_get_uart_clk(dev_index);
  1213. else {
  1214. if (proid_is_exynos4412())
  1215. return exynos4x12_get_uart_clk(dev_index);
  1216. return exynos4_get_uart_clk(dev_index);
  1217. }
  1218. }
  1219. unsigned long get_mmc_clk(int dev_index)
  1220. {
  1221. if (cpu_is_exynos5())
  1222. return exynos5_get_mmc_clk(dev_index);
  1223. else
  1224. return exynos4_get_mmc_clk(dev_index);
  1225. }
  1226. void set_mmc_clk(int dev_index, unsigned int div)
  1227. {
  1228. if (cpu_is_exynos5())
  1229. exynos5_set_mmc_clk(dev_index, div);
  1230. else {
  1231. if (proid_is_exynos4412())
  1232. exynos4x12_set_mmc_clk(dev_index, div);
  1233. exynos4_set_mmc_clk(dev_index, div);
  1234. }
  1235. }
  1236. unsigned long get_lcd_clk(void)
  1237. {
  1238. if (cpu_is_exynos4())
  1239. return exynos4_get_lcd_clk();
  1240. else
  1241. return exynos5_get_lcd_clk();
  1242. }
  1243. void set_lcd_clk(void)
  1244. {
  1245. if (cpu_is_exynos4())
  1246. exynos4_set_lcd_clk();
  1247. else
  1248. exynos5_set_lcd_clk();
  1249. }
  1250. void set_mipi_clk(void)
  1251. {
  1252. if (cpu_is_exynos4())
  1253. exynos4_set_mipi_clk();
  1254. }
  1255. int set_spi_clk(int periph_id, unsigned int rate)
  1256. {
  1257. if (cpu_is_exynos5())
  1258. return exynos5_set_spi_clk(periph_id, rate);
  1259. else
  1260. return 0;
  1261. }
  1262. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1263. {
  1264. if (cpu_is_exynos5())
  1265. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1266. else
  1267. return 0;
  1268. }
  1269. void set_i2s_clk_source(void)
  1270. {
  1271. if (cpu_is_exynos5())
  1272. exynos5_set_i2s_clk_source();
  1273. }
  1274. int set_epll_clk(unsigned long rate)
  1275. {
  1276. if (cpu_is_exynos5())
  1277. return exynos5_set_epll_clk(rate);
  1278. else
  1279. return 0;
  1280. }