clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. #ifdef CONFIG_MX53
  38. PLL4_CLOCK,
  39. #endif
  40. PLL_CLOCKS,
  41. };
  42. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  43. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  44. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  45. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  46. #ifdef CONFIG_MX53
  47. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  48. #endif
  49. };
  50. #define AHB_CLK_ROOT 133333333
  51. #define SZ_DEC_1M 1000000
  52. #define PLL_PD_MAX 16 /* Actual pd+1 */
  53. #define PLL_MFI_MAX 15
  54. #define PLL_MFI_MIN 5
  55. #define ARM_DIV_MAX 8
  56. #define IPG_DIV_MAX 4
  57. #define AHB_DIV_MAX 8
  58. #define EMI_DIV_MAX 8
  59. #define NFC_DIV_MAX 8
  60. #define MX5_CBCMR 0x00015154
  61. #define MX5_CBCDR 0x02888945
  62. struct fixed_pll_mfd {
  63. u32 ref_clk_hz;
  64. u32 mfd;
  65. };
  66. const struct fixed_pll_mfd fixed_mfd[] = {
  67. {MXC_HCLK, 24 * 16},
  68. };
  69. struct pll_param {
  70. u32 pd;
  71. u32 mfi;
  72. u32 mfn;
  73. u32 mfd;
  74. };
  75. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  76. #define PLL_FREQ_MIN(ref_clk) \
  77. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  78. #define MAX_DDR_CLK 420000000
  79. #define NFC_CLK_MAX 34000000
  80. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  81. void set_usboh3_clk(void)
  82. {
  83. clrsetbits_le32(&mxc_ccm->cscmr1,
  84. MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK,
  85. MXC_CCM_CSCMR1_USBOH3_CLK_SEL(1));
  86. clrsetbits_le32(&mxc_ccm->cscdr1,
  87. MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK |
  88. MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK,
  89. MXC_CCM_CSCDR1_USBOH3_CLK_PRED(4) |
  90. MXC_CCM_CSCDR1_USBOH3_CLK_PODF(1));
  91. }
  92. void enable_usboh3_clk(unsigned char enable)
  93. {
  94. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  95. clrsetbits_le32(&mxc_ccm->CCGR2,
  96. MXC_CCM_CCGR2_USBOH3_60M(MXC_CCM_CCGR_CG_MASK),
  97. MXC_CCM_CCGR2_USBOH3_60M(cg));
  98. }
  99. #ifdef CONFIG_I2C_MXC
  100. /* i2c_num can be from 0, to 1 for i.MX51 and 2 for i.MX53 */
  101. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  102. {
  103. u32 mask;
  104. #if defined(CONFIG_MX51)
  105. if (i2c_num > 1)
  106. #elif defined(CONFIG_MX53)
  107. if (i2c_num > 2)
  108. #endif
  109. return -EINVAL;
  110. mask = MXC_CCM_CCGR_CG_MASK <<
  111. (MXC_CCM_CCGR1_I2C1_OFFSET + (i2c_num << 1));
  112. if (enable)
  113. setbits_le32(&mxc_ccm->CCGR1, mask);
  114. else
  115. clrbits_le32(&mxc_ccm->CCGR1, mask);
  116. return 0;
  117. }
  118. #endif
  119. void set_usb_phy_clk(void)
  120. {
  121. clrbits_le32(&mxc_ccm->cscmr1, MXC_CCM_CSCMR1_USB_PHY_CLK_SEL);
  122. }
  123. #if defined(CONFIG_MX51)
  124. void enable_usb_phy1_clk(unsigned char enable)
  125. {
  126. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  127. clrsetbits_le32(&mxc_ccm->CCGR2,
  128. MXC_CCM_CCGR2_USB_PHY(MXC_CCM_CCGR_CG_MASK),
  129. MXC_CCM_CCGR2_USB_PHY(cg));
  130. }
  131. void enable_usb_phy2_clk(unsigned char enable)
  132. {
  133. /* i.MX51 has a single USB PHY clock, so do nothing here. */
  134. }
  135. #elif defined(CONFIG_MX53)
  136. void enable_usb_phy1_clk(unsigned char enable)
  137. {
  138. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  139. clrsetbits_le32(&mxc_ccm->CCGR4,
  140. MXC_CCM_CCGR4_USB_PHY1(MXC_CCM_CCGR_CG_MASK),
  141. MXC_CCM_CCGR4_USB_PHY1(cg));
  142. }
  143. void enable_usb_phy2_clk(unsigned char enable)
  144. {
  145. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  146. clrsetbits_le32(&mxc_ccm->CCGR4,
  147. MXC_CCM_CCGR4_USB_PHY2(MXC_CCM_CCGR_CG_MASK),
  148. MXC_CCM_CCGR4_USB_PHY2(cg));
  149. }
  150. #endif
  151. /*
  152. * Calculate the frequency of PLLn.
  153. */
  154. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  155. {
  156. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  157. uint64_t refclk, temp;
  158. int32_t mfn_abs;
  159. ctrl = readl(&pll->ctrl);
  160. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  161. mfn = readl(&pll->hfs_mfn);
  162. mfd = readl(&pll->hfs_mfd);
  163. op = readl(&pll->hfs_op);
  164. } else {
  165. mfn = readl(&pll->mfn);
  166. mfd = readl(&pll->mfd);
  167. op = readl(&pll->op);
  168. }
  169. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  170. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  171. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  172. mfi = MXC_DPLLC_OP_MFI_RD(op);
  173. /* 21.2.3 */
  174. if (mfi < 5)
  175. mfi = 5;
  176. /* Sign extend */
  177. if (mfn >= 0x04000000) {
  178. mfn |= 0xfc000000;
  179. mfn_abs = -mfn;
  180. } else
  181. mfn_abs = mfn;
  182. refclk = infreq * 2;
  183. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  184. refclk *= 2;
  185. do_div(refclk, pdf + 1);
  186. temp = refclk * mfn_abs;
  187. do_div(temp, mfd + 1);
  188. ret = refclk * mfi;
  189. if ((int)mfn < 0)
  190. ret -= temp;
  191. else
  192. ret += temp;
  193. return ret;
  194. }
  195. #ifdef CONFIG_MX51
  196. /*
  197. * This function returns the Frequency Pre-Multiplier clock.
  198. */
  199. static u32 get_fpm(void)
  200. {
  201. u32 mult;
  202. u32 ccr = readl(&mxc_ccm->ccr);
  203. if (ccr & MXC_CCM_CCR_FPM_MULT)
  204. mult = 1024;
  205. else
  206. mult = 512;
  207. return MXC_CLK32 * mult;
  208. }
  209. #endif
  210. /*
  211. * This function returns the low power audio clock.
  212. */
  213. static u32 get_lp_apm(void)
  214. {
  215. u32 ret_val = 0;
  216. u32 ccsr = readl(&mxc_ccm->ccsr);
  217. if (ccsr & MXC_CCM_CCSR_LP_APM)
  218. #if defined(CONFIG_MX51)
  219. ret_val = get_fpm();
  220. #elif defined(CONFIG_MX53)
  221. ret_val = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  222. #endif
  223. else
  224. ret_val = MXC_HCLK;
  225. return ret_val;
  226. }
  227. /*
  228. * Get mcu main rate
  229. */
  230. u32 get_mcu_main_clk(void)
  231. {
  232. u32 reg, freq;
  233. reg = MXC_CCM_CACRR_ARM_PODF_RD(readl(&mxc_ccm->cacrr));
  234. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  235. return freq / (reg + 1);
  236. }
  237. /*
  238. * Get the rate of peripheral's root clock.
  239. */
  240. u32 get_periph_clk(void)
  241. {
  242. u32 reg;
  243. reg = readl(&mxc_ccm->cbcdr);
  244. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  245. return decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  246. reg = readl(&mxc_ccm->cbcmr);
  247. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(reg)) {
  248. case 0:
  249. return decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  250. case 1:
  251. return decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  252. case 2:
  253. return get_lp_apm();
  254. default:
  255. return 0;
  256. }
  257. /* NOTREACHED */
  258. }
  259. /*
  260. * Get the rate of ipg clock.
  261. */
  262. static u32 get_ipg_clk(void)
  263. {
  264. uint32_t freq, reg, div;
  265. freq = get_ahb_clk();
  266. reg = readl(&mxc_ccm->cbcdr);
  267. div = MXC_CCM_CBCDR_IPG_PODF_RD(reg) + 1;
  268. return freq / div;
  269. }
  270. /*
  271. * Get the rate of ipg_per clock.
  272. */
  273. static u32 get_ipg_per_clk(void)
  274. {
  275. u32 freq, pred1, pred2, podf;
  276. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  277. return get_ipg_clk();
  278. if (readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL)
  279. freq = get_lp_apm();
  280. else
  281. freq = get_periph_clk();
  282. podf = readl(&mxc_ccm->cbcdr);
  283. pred1 = MXC_CCM_CBCDR_PERCLK_PRED1_RD(podf);
  284. pred2 = MXC_CCM_CBCDR_PERCLK_PRED2_RD(podf);
  285. podf = MXC_CCM_CBCDR_PERCLK_PODF_RD(podf);
  286. return freq / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  287. }
  288. /* Get the output clock rate of a standard PLL MUX for peripherals. */
  289. static u32 get_standard_pll_sel_clk(u32 clk_sel)
  290. {
  291. u32 freq = 0;
  292. switch (clk_sel & 0x3) {
  293. case 0:
  294. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  295. break;
  296. case 1:
  297. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  298. break;
  299. case 2:
  300. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  301. break;
  302. case 3:
  303. freq = get_lp_apm();
  304. break;
  305. }
  306. return freq;
  307. }
  308. /*
  309. * Get the rate of uart clk.
  310. */
  311. static u32 get_uart_clk(void)
  312. {
  313. unsigned int clk_sel, freq, reg, pred, podf;
  314. reg = readl(&mxc_ccm->cscmr1);
  315. clk_sel = MXC_CCM_CSCMR1_UART_CLK_SEL_RD(reg);
  316. freq = get_standard_pll_sel_clk(clk_sel);
  317. reg = readl(&mxc_ccm->cscdr1);
  318. pred = MXC_CCM_CSCDR1_UART_CLK_PRED_RD(reg);
  319. podf = MXC_CCM_CSCDR1_UART_CLK_PODF_RD(reg);
  320. freq /= (pred + 1) * (podf + 1);
  321. return freq;
  322. }
  323. /*
  324. * get cspi clock rate.
  325. */
  326. static u32 imx_get_cspiclk(void)
  327. {
  328. u32 ret_val = 0, pdf, pre_pdf, clk_sel, freq;
  329. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  330. u32 cscdr2 = readl(&mxc_ccm->cscdr2);
  331. pre_pdf = MXC_CCM_CSCDR2_CSPI_CLK_PRED_RD(cscdr2);
  332. pdf = MXC_CCM_CSCDR2_CSPI_CLK_PODF_RD(cscdr2);
  333. clk_sel = MXC_CCM_CSCMR1_CSPI_CLK_SEL_RD(cscmr1);
  334. freq = get_standard_pll_sel_clk(clk_sel);
  335. ret_val = freq / ((pre_pdf + 1) * (pdf + 1));
  336. return ret_val;
  337. }
  338. /*
  339. * get esdhc clock rate.
  340. */
  341. static u32 get_esdhc_clk(u32 port)
  342. {
  343. u32 clk_sel = 0, pred = 0, podf = 0, freq = 0;
  344. u32 cscmr1 = readl(&mxc_ccm->cscmr1);
  345. u32 cscdr1 = readl(&mxc_ccm->cscdr1);
  346. switch (port) {
  347. case 0:
  348. clk_sel = MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_RD(cscmr1);
  349. pred = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_RD(cscdr1);
  350. podf = MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_RD(cscdr1);
  351. break;
  352. case 1:
  353. clk_sel = MXC_CCM_CSCMR1_ESDHC2_MSHC2_CLK_SEL_RD(cscmr1);
  354. pred = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PRED_RD(cscdr1);
  355. podf = MXC_CCM_CSCDR1_ESDHC2_MSHC2_CLK_PODF_RD(cscdr1);
  356. break;
  357. case 2:
  358. if (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_CLK_SEL)
  359. return get_esdhc_clk(1);
  360. else
  361. return get_esdhc_clk(0);
  362. case 3:
  363. if (cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL)
  364. return get_esdhc_clk(1);
  365. else
  366. return get_esdhc_clk(0);
  367. default:
  368. break;
  369. }
  370. freq = get_standard_pll_sel_clk(clk_sel) / ((pred + 1) * (podf + 1));
  371. return freq;
  372. }
  373. static u32 get_axi_a_clk(void)
  374. {
  375. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  376. u32 pdf = MXC_CCM_CBCDR_AXI_A_PODF_RD(cbcdr);
  377. return get_periph_clk() / (pdf + 1);
  378. }
  379. static u32 get_axi_b_clk(void)
  380. {
  381. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  382. u32 pdf = MXC_CCM_CBCDR_AXI_B_PODF_RD(cbcdr);
  383. return get_periph_clk() / (pdf + 1);
  384. }
  385. static u32 get_emi_slow_clk(void)
  386. {
  387. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  388. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  389. u32 pdf = MXC_CCM_CBCDR_EMI_PODF_RD(cbcdr);
  390. if (emi_clk_sel)
  391. return get_ahb_clk() / (pdf + 1);
  392. return get_periph_clk() / (pdf + 1);
  393. }
  394. static u32 get_ddr_clk(void)
  395. {
  396. u32 ret_val = 0;
  397. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  398. u32 ddr_clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  399. #ifdef CONFIG_MX51
  400. u32 cbcdr = readl(&mxc_ccm->cbcdr);
  401. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  402. u32 ddr_clk_podf = MXC_CCM_CBCDR_DDR_PODF_RD(cbcdr);
  403. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  404. ret_val /= ddr_clk_podf + 1;
  405. return ret_val;
  406. }
  407. #endif
  408. switch (ddr_clk_sel) {
  409. case 0:
  410. ret_val = get_axi_a_clk();
  411. break;
  412. case 1:
  413. ret_val = get_axi_b_clk();
  414. break;
  415. case 2:
  416. ret_val = get_emi_slow_clk();
  417. break;
  418. case 3:
  419. ret_val = get_ahb_clk();
  420. break;
  421. default:
  422. break;
  423. }
  424. return ret_val;
  425. }
  426. /*
  427. * The API of get mxc clocks.
  428. */
  429. unsigned int mxc_get_clock(enum mxc_clock clk)
  430. {
  431. switch (clk) {
  432. case MXC_ARM_CLK:
  433. return get_mcu_main_clk();
  434. case MXC_AHB_CLK:
  435. return get_ahb_clk();
  436. case MXC_IPG_CLK:
  437. return get_ipg_clk();
  438. case MXC_IPG_PERCLK:
  439. case MXC_I2C_CLK:
  440. return get_ipg_per_clk();
  441. case MXC_UART_CLK:
  442. return get_uart_clk();
  443. case MXC_CSPI_CLK:
  444. return imx_get_cspiclk();
  445. case MXC_ESDHC_CLK:
  446. return get_esdhc_clk(0);
  447. case MXC_ESDHC2_CLK:
  448. return get_esdhc_clk(1);
  449. case MXC_ESDHC3_CLK:
  450. return get_esdhc_clk(2);
  451. case MXC_ESDHC4_CLK:
  452. return get_esdhc_clk(3);
  453. case MXC_FEC_CLK:
  454. return get_ipg_clk();
  455. case MXC_SATA_CLK:
  456. return get_ahb_clk();
  457. case MXC_DDR_CLK:
  458. return get_ddr_clk();
  459. default:
  460. break;
  461. }
  462. return -EINVAL;
  463. }
  464. u32 imx_get_uartclk(void)
  465. {
  466. return get_uart_clk();
  467. }
  468. u32 imx_get_fecclk(void)
  469. {
  470. return get_ipg_clk();
  471. }
  472. static int gcd(int m, int n)
  473. {
  474. int t;
  475. while (m > 0) {
  476. if (n > m) {
  477. t = m;
  478. m = n;
  479. n = t;
  480. } /* swap */
  481. m -= n;
  482. }
  483. return n;
  484. }
  485. /*
  486. * This is to calculate various parameters based on reference clock and
  487. * targeted clock based on the equation:
  488. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  489. * This calculation is based on a fixed MFD value for simplicity.
  490. */
  491. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  492. {
  493. u64 pd, mfi = 1, mfn, mfd, t1;
  494. u32 n_target = target;
  495. u32 n_ref = ref, i;
  496. /*
  497. * Make sure targeted freq is in the valid range.
  498. * Otherwise the following calculation might be wrong!!!
  499. */
  500. if (n_target < PLL_FREQ_MIN(ref) ||
  501. n_target > PLL_FREQ_MAX(ref)) {
  502. printf("Targeted peripheral clock should be"
  503. "within [%d - %d]\n",
  504. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  505. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  506. return -EINVAL;
  507. }
  508. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  509. if (fixed_mfd[i].ref_clk_hz == ref) {
  510. mfd = fixed_mfd[i].mfd;
  511. break;
  512. }
  513. }
  514. if (i == ARRAY_SIZE(fixed_mfd))
  515. return -EINVAL;
  516. /* Use n_target and n_ref to avoid overflow */
  517. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  518. t1 = n_target * pd;
  519. do_div(t1, (4 * n_ref));
  520. mfi = t1;
  521. if (mfi > PLL_MFI_MAX)
  522. return -EINVAL;
  523. else if (mfi < 5)
  524. continue;
  525. break;
  526. }
  527. /*
  528. * Now got pd and mfi already
  529. *
  530. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  531. */
  532. t1 = n_target * pd;
  533. do_div(t1, 4);
  534. t1 -= n_ref * mfi;
  535. t1 *= mfd;
  536. do_div(t1, n_ref);
  537. mfn = t1;
  538. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  539. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  540. i = 1;
  541. if (mfn != 0)
  542. i = gcd(mfd, mfn);
  543. pll->pd = (u32)pd;
  544. pll->mfi = (u32)mfi;
  545. do_div(mfn, i);
  546. pll->mfn = (u32)mfn;
  547. do_div(mfd, i);
  548. pll->mfd = (u32)mfd;
  549. return 0;
  550. }
  551. #define calc_div(tgt_clk, src_clk, limit) ({ \
  552. u32 v = 0; \
  553. if (((src_clk) % (tgt_clk)) <= 100) \
  554. v = (src_clk) / (tgt_clk); \
  555. else \
  556. v = ((src_clk) / (tgt_clk)) + 1;\
  557. if (v > limit) \
  558. v = limit; \
  559. (v - 1); \
  560. })
  561. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  562. { \
  563. writel(0x1232, &pll->ctrl); \
  564. writel(0x2, &pll->config); \
  565. writel((((pd) - 1) << 0) | ((fi) << 4), \
  566. &pll->op); \
  567. writel(fn, &(pll->mfn)); \
  568. writel((fd) - 1, &pll->mfd); \
  569. writel((((pd) - 1) << 0) | ((fi) << 4), \
  570. &pll->hfs_op); \
  571. writel(fn, &pll->hfs_mfn); \
  572. writel((fd) - 1, &pll->hfs_mfd); \
  573. writel(0x1232, &pll->ctrl); \
  574. while (!readl(&pll->ctrl) & 0x1) \
  575. ;\
  576. }
  577. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  578. {
  579. u32 ccsr = readl(&mxc_ccm->ccsr);
  580. struct mxc_pll_reg *pll = mxc_plls[index];
  581. switch (index) {
  582. case PLL1_CLOCK:
  583. /* Switch ARM to PLL2 clock */
  584. writel(ccsr | MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
  585. &mxc_ccm->ccsr);
  586. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  587. pll_param->mfi, pll_param->mfn,
  588. pll_param->mfd);
  589. /* Switch back */
  590. writel(ccsr & ~MXC_CCM_CCSR_PLL1_SW_CLK_SEL,
  591. &mxc_ccm->ccsr);
  592. break;
  593. case PLL2_CLOCK:
  594. /* Switch to pll2 bypass clock */
  595. writel(ccsr | MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
  596. &mxc_ccm->ccsr);
  597. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  598. pll_param->mfi, pll_param->mfn,
  599. pll_param->mfd);
  600. /* Switch back */
  601. writel(ccsr & ~MXC_CCM_CCSR_PLL2_SW_CLK_SEL,
  602. &mxc_ccm->ccsr);
  603. break;
  604. case PLL3_CLOCK:
  605. /* Switch to pll3 bypass clock */
  606. writel(ccsr | MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
  607. &mxc_ccm->ccsr);
  608. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  609. pll_param->mfi, pll_param->mfn,
  610. pll_param->mfd);
  611. /* Switch back */
  612. writel(ccsr & ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL,
  613. &mxc_ccm->ccsr);
  614. break;
  615. #ifdef CONFIG_MX53
  616. case PLL4_CLOCK:
  617. /* Switch to pll4 bypass clock */
  618. writel(ccsr | MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
  619. &mxc_ccm->ccsr);
  620. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  621. pll_param->mfi, pll_param->mfn,
  622. pll_param->mfd);
  623. /* Switch back */
  624. writel(ccsr & ~MXC_CCM_CCSR_PLL4_SW_CLK_SEL,
  625. &mxc_ccm->ccsr);
  626. break;
  627. #endif
  628. default:
  629. return -EINVAL;
  630. }
  631. return 0;
  632. }
  633. /* Config CPU clock */
  634. static int config_core_clk(u32 ref, u32 freq)
  635. {
  636. int ret = 0;
  637. struct pll_param pll_param;
  638. memset(&pll_param, 0, sizeof(struct pll_param));
  639. /* The case that periph uses PLL1 is not considered here */
  640. ret = calc_pll_params(ref, freq, &pll_param);
  641. if (ret != 0) {
  642. printf("Error:Can't find pll parameters: %d\n", ret);
  643. return ret;
  644. }
  645. return config_pll_clk(PLL1_CLOCK, &pll_param);
  646. }
  647. static int config_nfc_clk(u32 nfc_clk)
  648. {
  649. u32 parent_rate = get_emi_slow_clk();
  650. u32 div;
  651. if (nfc_clk == 0)
  652. return -EINVAL;
  653. div = parent_rate / nfc_clk;
  654. if (div == 0)
  655. div++;
  656. if (parent_rate / div > NFC_CLK_MAX)
  657. div++;
  658. clrsetbits_le32(&mxc_ccm->cbcdr,
  659. MXC_CCM_CBCDR_NFC_PODF_MASK,
  660. MXC_CCM_CBCDR_NFC_PODF(div - 1));
  661. while (readl(&mxc_ccm->cdhipr) != 0)
  662. ;
  663. return 0;
  664. }
  665. void enable_nfc_clk(unsigned char enable)
  666. {
  667. unsigned int cg = enable ? MXC_CCM_CCGR_CG_ON : MXC_CCM_CCGR_CG_OFF;
  668. clrsetbits_le32(&mxc_ccm->CCGR5,
  669. MXC_CCM_CCGR5_EMI_ENFC(MXC_CCM_CCGR_CG_MASK),
  670. MXC_CCM_CCGR5_EMI_ENFC(cg));
  671. }
  672. /* Config main_bus_clock for periphs */
  673. static int config_periph_clk(u32 ref, u32 freq)
  674. {
  675. int ret = 0;
  676. struct pll_param pll_param;
  677. memset(&pll_param, 0, sizeof(struct pll_param));
  678. if (readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  679. ret = calc_pll_params(ref, freq, &pll_param);
  680. if (ret != 0) {
  681. printf("Error:Can't find pll parameters: %d\n",
  682. ret);
  683. return ret;
  684. }
  685. switch (MXC_CCM_CBCMR_PERIPH_CLK_SEL_RD(
  686. readl(&mxc_ccm->cbcmr))) {
  687. case 0:
  688. return config_pll_clk(PLL1_CLOCK, &pll_param);
  689. break;
  690. case 1:
  691. return config_pll_clk(PLL3_CLOCK, &pll_param);
  692. break;
  693. default:
  694. return -EINVAL;
  695. }
  696. }
  697. return 0;
  698. }
  699. static int config_ddr_clk(u32 emi_clk)
  700. {
  701. u32 clk_src;
  702. s32 shift = 0, clk_sel, div = 1;
  703. u32 cbcmr = readl(&mxc_ccm->cbcmr);
  704. if (emi_clk > MAX_DDR_CLK) {
  705. printf("Warning:DDR clock should not exceed %d MHz\n",
  706. MAX_DDR_CLK / SZ_DEC_1M);
  707. emi_clk = MAX_DDR_CLK;
  708. }
  709. clk_src = get_periph_clk();
  710. /* Find DDR clock input */
  711. clk_sel = MXC_CCM_CBCMR_DDR_CLK_SEL_RD(cbcmr);
  712. switch (clk_sel) {
  713. case 0:
  714. shift = 16;
  715. break;
  716. case 1:
  717. shift = 19;
  718. break;
  719. case 2:
  720. shift = 22;
  721. break;
  722. case 3:
  723. shift = 10;
  724. break;
  725. default:
  726. return -EINVAL;
  727. }
  728. if ((clk_src % emi_clk) < 10000000)
  729. div = clk_src / emi_clk;
  730. else
  731. div = (clk_src / emi_clk) + 1;
  732. if (div > 8)
  733. div = 8;
  734. clrsetbits_le32(&mxc_ccm->cbcdr, 0x7 << shift, (div - 1) << shift);
  735. while (readl(&mxc_ccm->cdhipr) != 0)
  736. ;
  737. writel(0x0, &mxc_ccm->ccdr);
  738. return 0;
  739. }
  740. /*
  741. * This function assumes the expected core clock has to be changed by
  742. * modifying the PLL. This is NOT true always but for most of the times,
  743. * it is. So it assumes the PLL output freq is the same as the expected
  744. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  745. * In the latter case, it will try to increase the presc value until
  746. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  747. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  748. * on the targeted PLL and reference input clock to the PLL. Lastly,
  749. * it sets the register based on these values along with the dividers.
  750. * Note 1) There is no value checking for the passed-in divider values
  751. * so the caller has to make sure those values are sensible.
  752. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  753. * exceed NFC_CLK_MAX.
  754. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  755. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  756. * 4) This function should not have allowed diag_printf() calls since
  757. * the serial driver has been stoped. But leave then here to allow
  758. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  759. */
  760. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  761. {
  762. freq *= SZ_DEC_1M;
  763. switch (clk) {
  764. case MXC_ARM_CLK:
  765. if (config_core_clk(ref, freq))
  766. return -EINVAL;
  767. break;
  768. case MXC_PERIPH_CLK:
  769. if (config_periph_clk(ref, freq))
  770. return -EINVAL;
  771. break;
  772. case MXC_DDR_CLK:
  773. if (config_ddr_clk(freq))
  774. return -EINVAL;
  775. break;
  776. case MXC_NFC_CLK:
  777. if (config_nfc_clk(freq))
  778. return -EINVAL;
  779. break;
  780. default:
  781. printf("Warning:Unsupported or invalid clock type\n");
  782. }
  783. return 0;
  784. }
  785. #ifdef CONFIG_MX53
  786. /*
  787. * The clock for the external interface can be set to use internal clock
  788. * if fuse bank 4, row 3, bit 2 is set.
  789. * This is an undocumented feature and it was confirmed by Freescale's support:
  790. * Fuses (but not pins) may be used to configure SATA clocks.
  791. * Particularly the i.MX53 Fuse_Map contains the next information
  792. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  793. * '00' - 100MHz (External)
  794. * '01' - 50MHz (External)
  795. * '10' - 120MHz, internal (USB PHY)
  796. * '11' - Reserved
  797. */
  798. void mxc_set_sata_internal_clock(void)
  799. {
  800. u32 *tmp_base =
  801. (u32 *)(IIM_BASE_ADDR + 0x180c);
  802. set_usb_phy_clk();
  803. clrsetbits_le32(tmp_base, 0x6, 0x4);
  804. }
  805. #endif
  806. /*
  807. * Dump some core clockes.
  808. */
  809. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  810. {
  811. u32 freq;
  812. freq = decode_pll(mxc_plls[PLL1_CLOCK], MXC_HCLK);
  813. printf("PLL1 %8d MHz\n", freq / 1000000);
  814. freq = decode_pll(mxc_plls[PLL2_CLOCK], MXC_HCLK);
  815. printf("PLL2 %8d MHz\n", freq / 1000000);
  816. freq = decode_pll(mxc_plls[PLL3_CLOCK], MXC_HCLK);
  817. printf("PLL3 %8d MHz\n", freq / 1000000);
  818. #ifdef CONFIG_MX53
  819. freq = decode_pll(mxc_plls[PLL4_CLOCK], MXC_HCLK);
  820. printf("PLL4 %8d MHz\n", freq / 1000000);
  821. #endif
  822. printf("\n");
  823. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  824. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  825. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  826. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  827. #ifdef CONFIG_MXC_SPI
  828. printf("CSPI %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
  829. #endif
  830. return 0;
  831. }
  832. /***************************************************/
  833. U_BOOT_CMD(
  834. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  835. "display clocks",
  836. ""
  837. );