44x_spd_ddr2.c 93 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define CONFIG_ECC_ERROR_RESET /* test-only: see description below, at check_ecc() */
  96. /*
  97. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  98. * region. Right now the cache should still be disabled in U-Boot because of the
  99. * EMAC driver, that need it's buffer descriptor to be located in non cached
  100. * memory.
  101. *
  102. * If at some time this restriction doesn't apply anymore, just define
  103. * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
  104. * everything correctly.
  105. */
  106. #ifdef CFG_ENABLE_SDRAM_CACHE
  107. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  108. #else
  109. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  110. #endif
  111. /* Private Structure Definitions */
  112. /* enum only to ease code for cas latency setting */
  113. typedef enum ddr_cas_id {
  114. DDR_CAS_2 = 20,
  115. DDR_CAS_2_5 = 25,
  116. DDR_CAS_3 = 30,
  117. DDR_CAS_4 = 40,
  118. DDR_CAS_5 = 50
  119. } ddr_cas_id_t;
  120. /*-----------------------------------------------------------------------------+
  121. * Prototypes
  122. *-----------------------------------------------------------------------------*/
  123. static unsigned long sdram_memsize(void);
  124. void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
  125. static void get_spd_info(unsigned long *dimm_populated,
  126. unsigned char *iic0_dimm_addr,
  127. unsigned long num_dimm_banks);
  128. static void check_mem_type(unsigned long *dimm_populated,
  129. unsigned char *iic0_dimm_addr,
  130. unsigned long num_dimm_banks);
  131. static void check_frequency(unsigned long *dimm_populated,
  132. unsigned char *iic0_dimm_addr,
  133. unsigned long num_dimm_banks);
  134. static void check_rank_number(unsigned long *dimm_populated,
  135. unsigned char *iic0_dimm_addr,
  136. unsigned long num_dimm_banks);
  137. static void check_voltage_type(unsigned long *dimm_populated,
  138. unsigned char *iic0_dimm_addr,
  139. unsigned long num_dimm_banks);
  140. static void program_memory_queue(unsigned long *dimm_populated,
  141. unsigned char *iic0_dimm_addr,
  142. unsigned long num_dimm_banks);
  143. static void program_codt(unsigned long *dimm_populated,
  144. unsigned char *iic0_dimm_addr,
  145. unsigned long num_dimm_banks);
  146. static void program_mode(unsigned long *dimm_populated,
  147. unsigned char *iic0_dimm_addr,
  148. unsigned long num_dimm_banks,
  149. ddr_cas_id_t *selected_cas,
  150. int *write_recovery);
  151. static void program_tr(unsigned long *dimm_populated,
  152. unsigned char *iic0_dimm_addr,
  153. unsigned long num_dimm_banks);
  154. static void program_rtr(unsigned long *dimm_populated,
  155. unsigned char *iic0_dimm_addr,
  156. unsigned long num_dimm_banks);
  157. static void program_bxcf(unsigned long *dimm_populated,
  158. unsigned char *iic0_dimm_addr,
  159. unsigned long num_dimm_banks);
  160. static void program_copt1(unsigned long *dimm_populated,
  161. unsigned char *iic0_dimm_addr,
  162. unsigned long num_dimm_banks);
  163. static void program_initplr(unsigned long *dimm_populated,
  164. unsigned char *iic0_dimm_addr,
  165. unsigned long num_dimm_banks,
  166. ddr_cas_id_t selected_cas,
  167. int write_recovery);
  168. static unsigned long is_ecc_enabled(void);
  169. #ifdef CONFIG_DDR_ECC
  170. static void program_ecc(unsigned long *dimm_populated,
  171. unsigned char *iic0_dimm_addr,
  172. unsigned long num_dimm_banks,
  173. unsigned long tlb_word2_i_value);
  174. static void program_ecc_addr(unsigned long start_address,
  175. unsigned long num_bytes,
  176. unsigned long tlb_word2_i_value);
  177. #endif
  178. static void program_DQS_calibration(unsigned long *dimm_populated,
  179. unsigned char *iic0_dimm_addr,
  180. unsigned long num_dimm_banks);
  181. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  182. static void test(void);
  183. #else
  184. static void DQS_calibration_process(void);
  185. #endif
  186. #if defined(DEBUG)
  187. static void ppc440sp_sdram_register_dump(void);
  188. #endif
  189. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  190. void dcbz_area(u32 start_address, u32 num_bytes);
  191. void dflush(void);
  192. static u32 mfdcr_any(u32 dcr)
  193. {
  194. u32 val;
  195. switch (dcr) {
  196. case SDRAM_R0BAS + 0:
  197. val = mfdcr(SDRAM_R0BAS + 0);
  198. break;
  199. case SDRAM_R0BAS + 1:
  200. val = mfdcr(SDRAM_R0BAS + 1);
  201. break;
  202. case SDRAM_R0BAS + 2:
  203. val = mfdcr(SDRAM_R0BAS + 2);
  204. break;
  205. case SDRAM_R0BAS + 3:
  206. val = mfdcr(SDRAM_R0BAS + 3);
  207. break;
  208. default:
  209. printf("DCR %d not defined in case statement!!!\n", dcr);
  210. val = 0; /* just to satisfy the compiler */
  211. }
  212. return val;
  213. }
  214. static void mtdcr_any(u32 dcr, u32 val)
  215. {
  216. switch (dcr) {
  217. case SDRAM_R0BAS + 0:
  218. mtdcr(SDRAM_R0BAS + 0, val);
  219. break;
  220. case SDRAM_R0BAS + 1:
  221. mtdcr(SDRAM_R0BAS + 1, val);
  222. break;
  223. case SDRAM_R0BAS + 2:
  224. mtdcr(SDRAM_R0BAS + 2, val);
  225. break;
  226. case SDRAM_R0BAS + 3:
  227. mtdcr(SDRAM_R0BAS + 3, val);
  228. break;
  229. default:
  230. printf("DCR %d not defined in case statement!!!\n", dcr);
  231. }
  232. }
  233. static unsigned char spd_read(uchar chip, uint addr)
  234. {
  235. unsigned char data[2];
  236. if (i2c_probe(chip) == 0)
  237. if (i2c_read(chip, addr, 1, data, 1) == 0)
  238. return data[0];
  239. return 0;
  240. }
  241. /*-----------------------------------------------------------------------------+
  242. * sdram_memsize
  243. *-----------------------------------------------------------------------------*/
  244. static unsigned long sdram_memsize(void)
  245. {
  246. unsigned long mem_size;
  247. unsigned long mcopt2;
  248. unsigned long mcstat;
  249. unsigned long mb0cf;
  250. unsigned long sdsz;
  251. unsigned long i;
  252. mem_size = 0;
  253. mfsdram(SDRAM_MCOPT2, mcopt2);
  254. mfsdram(SDRAM_MCSTAT, mcstat);
  255. /* DDR controller must be enabled and not in self-refresh. */
  256. /* Otherwise memsize is zero. */
  257. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  258. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  259. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  260. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  261. for (i = 0; i < MAXBXCF; i++) {
  262. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  263. /* Banks enabled */
  264. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  265. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  266. switch(sdsz) {
  267. case SDRAM_RXBAS_SDSZ_8:
  268. mem_size+=8;
  269. break;
  270. case SDRAM_RXBAS_SDSZ_16:
  271. mem_size+=16;
  272. break;
  273. case SDRAM_RXBAS_SDSZ_32:
  274. mem_size+=32;
  275. break;
  276. case SDRAM_RXBAS_SDSZ_64:
  277. mem_size+=64;
  278. break;
  279. case SDRAM_RXBAS_SDSZ_128:
  280. mem_size+=128;
  281. break;
  282. case SDRAM_RXBAS_SDSZ_256:
  283. mem_size+=256;
  284. break;
  285. case SDRAM_RXBAS_SDSZ_512:
  286. mem_size+=512;
  287. break;
  288. case SDRAM_RXBAS_SDSZ_1024:
  289. mem_size+=1024;
  290. break;
  291. case SDRAM_RXBAS_SDSZ_2048:
  292. mem_size+=2048;
  293. break;
  294. case SDRAM_RXBAS_SDSZ_4096:
  295. mem_size+=4096;
  296. break;
  297. default:
  298. mem_size=0;
  299. break;
  300. }
  301. }
  302. }
  303. }
  304. mem_size *= 1024 * 1024;
  305. return(mem_size);
  306. }
  307. /*-----------------------------------------------------------------------------+
  308. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  309. * Note: This routine runs from flash with a stack set up in the chip's
  310. * sram space. It is important that the routine does not require .sbss, .bss or
  311. * .data sections. It also cannot call routines that require these sections.
  312. *-----------------------------------------------------------------------------*/
  313. /*-----------------------------------------------------------------------------
  314. * Function: initdram
  315. * Description: Configures SDRAM memory banks for DDR operation.
  316. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  317. * via the IIC bus and then configures the DDR SDRAM memory
  318. * banks appropriately. If Auto Memory Configuration is
  319. * not used, it is assumed that no DIMM is plugged
  320. *-----------------------------------------------------------------------------*/
  321. long int initdram(int board_type)
  322. {
  323. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  324. unsigned char spd0[MAX_SPD_BYTES];
  325. unsigned char spd1[MAX_SPD_BYTES];
  326. unsigned char *dimm_spd[MAXDIMMS];
  327. unsigned long dimm_populated[MAXDIMMS];
  328. unsigned long num_dimm_banks; /* on board dimm banks */
  329. unsigned long val;
  330. ddr_cas_id_t selected_cas;
  331. int write_recovery;
  332. unsigned long dram_size = 0;
  333. num_dimm_banks = sizeof(iic0_dimm_addr);
  334. /*------------------------------------------------------------------
  335. * Set up an array of SPD matrixes.
  336. *-----------------------------------------------------------------*/
  337. dimm_spd[0] = spd0;
  338. dimm_spd[1] = spd1;
  339. /*------------------------------------------------------------------
  340. * Reset the DDR-SDRAM controller.
  341. *-----------------------------------------------------------------*/
  342. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  343. mtsdr(SDR0_SRST, 0x00000000);
  344. /*
  345. * Make sure I2C controller is initialized
  346. * before continuing.
  347. */
  348. /* switch to correct I2C bus */
  349. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  350. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  351. /*------------------------------------------------------------------
  352. * Clear out the serial presence detect buffers.
  353. * Perform IIC reads from the dimm. Fill in the spds.
  354. * Check to see if the dimm slots are populated
  355. *-----------------------------------------------------------------*/
  356. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  357. /*------------------------------------------------------------------
  358. * Check the memory type for the dimms plugged.
  359. *-----------------------------------------------------------------*/
  360. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  361. /*------------------------------------------------------------------
  362. * Check the frequency supported for the dimms plugged.
  363. *-----------------------------------------------------------------*/
  364. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  365. /*------------------------------------------------------------------
  366. * Check the total rank number.
  367. *-----------------------------------------------------------------*/
  368. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  369. /*------------------------------------------------------------------
  370. * Check the voltage type for the dimms plugged.
  371. *-----------------------------------------------------------------*/
  372. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  373. /*------------------------------------------------------------------
  374. * Program SDRAM controller options 2 register
  375. * Except Enabling of the memory controller.
  376. *-----------------------------------------------------------------*/
  377. mfsdram(SDRAM_MCOPT2, val);
  378. mtsdram(SDRAM_MCOPT2,
  379. (val &
  380. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  381. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  382. SDRAM_MCOPT2_ISIE_MASK))
  383. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  384. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  385. SDRAM_MCOPT2_ISIE_ENABLE));
  386. /*------------------------------------------------------------------
  387. * Program SDRAM controller options 1 register
  388. * Note: Does not enable the memory controller.
  389. *-----------------------------------------------------------------*/
  390. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  391. /*------------------------------------------------------------------
  392. * Set the SDRAM Controller On Die Termination Register
  393. *-----------------------------------------------------------------*/
  394. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  395. /*------------------------------------------------------------------
  396. * Program SDRAM refresh register.
  397. *-----------------------------------------------------------------*/
  398. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  399. /*------------------------------------------------------------------
  400. * Program SDRAM mode register.
  401. *-----------------------------------------------------------------*/
  402. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  403. &selected_cas, &write_recovery);
  404. /*------------------------------------------------------------------
  405. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  406. *-----------------------------------------------------------------*/
  407. mfsdram(SDRAM_WRDTR, val);
  408. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  409. (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  410. /*------------------------------------------------------------------
  411. * Set the SDRAM Clock Timing Register
  412. *-----------------------------------------------------------------*/
  413. mfsdram(SDRAM_CLKTR, val);
  414. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
  415. /*------------------------------------------------------------------
  416. * Program the BxCF registers.
  417. *-----------------------------------------------------------------*/
  418. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  419. /*------------------------------------------------------------------
  420. * Program SDRAM timing registers.
  421. *-----------------------------------------------------------------*/
  422. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  423. /*------------------------------------------------------------------
  424. * Set the Extended Mode register
  425. *-----------------------------------------------------------------*/
  426. mfsdram(SDRAM_MEMODE, val);
  427. mtsdram(SDRAM_MEMODE,
  428. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  429. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  430. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  431. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  432. /*------------------------------------------------------------------
  433. * Program Initialization preload registers.
  434. *-----------------------------------------------------------------*/
  435. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  436. selected_cas, write_recovery);
  437. /*------------------------------------------------------------------
  438. * Delay to ensure 200usec have elapsed since reset.
  439. *-----------------------------------------------------------------*/
  440. udelay(400);
  441. /*------------------------------------------------------------------
  442. * Set the memory queue core base addr.
  443. *-----------------------------------------------------------------*/
  444. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  445. /*------------------------------------------------------------------
  446. * Program SDRAM controller options 2 register
  447. * Enable the memory controller.
  448. *-----------------------------------------------------------------*/
  449. mfsdram(SDRAM_MCOPT2, val);
  450. mtsdram(SDRAM_MCOPT2,
  451. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  452. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  453. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  454. /*------------------------------------------------------------------
  455. * Wait for SDRAM_CFG0_DC_EN to complete.
  456. *-----------------------------------------------------------------*/
  457. do {
  458. mfsdram(SDRAM_MCSTAT, val);
  459. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  460. /* get installed memory size */
  461. dram_size = sdram_memsize();
  462. /* and program tlb entries for this size (dynamic) */
  463. program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
  464. /*------------------------------------------------------------------
  465. * DQS calibration.
  466. *-----------------------------------------------------------------*/
  467. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  468. #ifdef CONFIG_DDR_ECC
  469. /*------------------------------------------------------------------
  470. * If ecc is enabled, initialize the parity bits.
  471. *-----------------------------------------------------------------*/
  472. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
  473. #endif
  474. #ifdef DEBUG
  475. ppc440sp_sdram_register_dump();
  476. #endif
  477. return dram_size;
  478. }
  479. static void get_spd_info(unsigned long *dimm_populated,
  480. unsigned char *iic0_dimm_addr,
  481. unsigned long num_dimm_banks)
  482. {
  483. unsigned long dimm_num;
  484. unsigned long dimm_found;
  485. unsigned char num_of_bytes;
  486. unsigned char total_size;
  487. dimm_found = FALSE;
  488. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  489. num_of_bytes = 0;
  490. total_size = 0;
  491. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  492. debug("\nspd_read(0x%x) returned %d\n",
  493. iic0_dimm_addr[dimm_num], num_of_bytes);
  494. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  495. debug("spd_read(0x%x) returned %d\n",
  496. iic0_dimm_addr[dimm_num], total_size);
  497. if ((num_of_bytes != 0) && (total_size != 0)) {
  498. dimm_populated[dimm_num] = TRUE;
  499. dimm_found = TRUE;
  500. debug("DIMM slot %lu: populated\n", dimm_num);
  501. } else {
  502. dimm_populated[dimm_num] = FALSE;
  503. debug("DIMM slot %lu: Not populated\n", dimm_num);
  504. }
  505. }
  506. if (dimm_found == FALSE) {
  507. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  508. hang();
  509. }
  510. }
  511. #ifdef CONFIG_ADD_RAM_INFO
  512. void board_add_ram_info(int use_default)
  513. {
  514. if (is_ecc_enabled())
  515. puts(" (ECC enabled)");
  516. else
  517. puts(" (ECC not enabled)");
  518. }
  519. #endif
  520. /*------------------------------------------------------------------
  521. * For the memory DIMMs installed, this routine verifies that they
  522. * really are DDR specific DIMMs.
  523. *-----------------------------------------------------------------*/
  524. static void check_mem_type(unsigned long *dimm_populated,
  525. unsigned char *iic0_dimm_addr,
  526. unsigned long num_dimm_banks)
  527. {
  528. unsigned long dimm_num;
  529. unsigned long dimm_type;
  530. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  531. if (dimm_populated[dimm_num] == TRUE) {
  532. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  533. switch (dimm_type) {
  534. case 1:
  535. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  536. "slot %d.\n", (unsigned int)dimm_num);
  537. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  538. printf("Replace the DIMM module with a supported DIMM.\n\n");
  539. hang();
  540. break;
  541. case 2:
  542. printf("ERROR: EDO DIMM detected in slot %d.\n",
  543. (unsigned int)dimm_num);
  544. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  545. printf("Replace the DIMM module with a supported DIMM.\n\n");
  546. hang();
  547. break;
  548. case 3:
  549. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  550. (unsigned int)dimm_num);
  551. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  552. printf("Replace the DIMM module with a supported DIMM.\n\n");
  553. hang();
  554. break;
  555. case 4:
  556. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  557. (unsigned int)dimm_num);
  558. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  559. printf("Replace the DIMM module with a supported DIMM.\n\n");
  560. hang();
  561. break;
  562. case 5:
  563. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  564. (unsigned int)dimm_num);
  565. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  566. printf("Replace the DIMM module with a supported DIMM.\n\n");
  567. hang();
  568. break;
  569. case 6:
  570. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  571. (unsigned int)dimm_num);
  572. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  573. printf("Replace the DIMM module with a supported DIMM.\n\n");
  574. hang();
  575. break;
  576. case 7:
  577. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  578. dimm_populated[dimm_num] = SDRAM_DDR1;
  579. break;
  580. case 8:
  581. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  582. dimm_populated[dimm_num] = SDRAM_DDR2;
  583. break;
  584. default:
  585. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  586. (unsigned int)dimm_num);
  587. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  588. printf("Replace the DIMM module with a supported DIMM.\n\n");
  589. hang();
  590. break;
  591. }
  592. }
  593. }
  594. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  595. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  596. && (dimm_populated[dimm_num] != SDRAM_NONE)
  597. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  598. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  599. hang();
  600. }
  601. }
  602. }
  603. /*------------------------------------------------------------------
  604. * For the memory DIMMs installed, this routine verifies that
  605. * frequency previously calculated is supported.
  606. *-----------------------------------------------------------------*/
  607. static void check_frequency(unsigned long *dimm_populated,
  608. unsigned char *iic0_dimm_addr,
  609. unsigned long num_dimm_banks)
  610. {
  611. unsigned long dimm_num;
  612. unsigned long tcyc_reg;
  613. unsigned long cycle_time;
  614. unsigned long calc_cycle_time;
  615. unsigned long sdram_freq;
  616. unsigned long sdr_ddrpll;
  617. PPC440_SYS_INFO board_cfg;
  618. /*------------------------------------------------------------------
  619. * Get the board configuration info.
  620. *-----------------------------------------------------------------*/
  621. get_sys_info(&board_cfg);
  622. mfsdr(SDR0_DDR0, sdr_ddrpll);
  623. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  624. /*
  625. * calc_cycle_time is calculated from DDR frequency set by board/chip
  626. * and is expressed in multiple of 10 picoseconds
  627. * to match the way DIMM cycle time is calculated below.
  628. */
  629. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  630. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  631. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  632. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  633. /*
  634. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  635. * the higher order nibble (bits 4-7) designates the cycle time
  636. * to a granularity of 1ns;
  637. * the value presented by the lower order nibble (bits 0-3)
  638. * has a granularity of .1ns and is added to the value designated
  639. * by the higher nibble. In addition, four lines of the lower order
  640. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  641. */
  642. /* Convert from hex to decimal */
  643. if ((tcyc_reg & 0x0F) == 0x0D)
  644. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  645. else if ((tcyc_reg & 0x0F) == 0x0C)
  646. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  647. else if ((tcyc_reg & 0x0F) == 0x0B)
  648. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  649. else if ((tcyc_reg & 0x0F) == 0x0A)
  650. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  651. else
  652. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  653. ((tcyc_reg & 0x0F)*10);
  654. if (cycle_time > (calc_cycle_time + 10)) {
  655. /*
  656. * the provided sdram cycle_time is too small
  657. * for the available DIMM cycle_time.
  658. * The additionnal 100ps is here to accept a small incertainty.
  659. */
  660. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  661. "slot %d \n while calculated cycle time is %d ps.\n",
  662. (unsigned int)(cycle_time*10),
  663. (unsigned int)dimm_num,
  664. (unsigned int)(calc_cycle_time*10));
  665. printf("Replace the DIMM, or change DDR frequency via "
  666. "strapping bits.\n\n");
  667. hang();
  668. }
  669. }
  670. }
  671. }
  672. /*------------------------------------------------------------------
  673. * For the memory DIMMs installed, this routine verifies two
  674. * ranks/banks maximum are availables.
  675. *-----------------------------------------------------------------*/
  676. static void check_rank_number(unsigned long *dimm_populated,
  677. unsigned char *iic0_dimm_addr,
  678. unsigned long num_dimm_banks)
  679. {
  680. unsigned long dimm_num;
  681. unsigned long dimm_rank;
  682. unsigned long total_rank = 0;
  683. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  684. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  685. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  686. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  687. dimm_rank = (dimm_rank & 0x0F) +1;
  688. else
  689. dimm_rank = dimm_rank & 0x0F;
  690. if (dimm_rank > MAXRANKS) {
  691. printf("ERROR: DRAM DIMM detected with %d ranks in "
  692. "slot %d is not supported.\n", dimm_rank, dimm_num);
  693. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  694. printf("Replace the DIMM module with a supported DIMM.\n\n");
  695. hang();
  696. } else
  697. total_rank += dimm_rank;
  698. }
  699. if (total_rank > MAXRANKS) {
  700. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  701. "for all slots.\n", (unsigned int)total_rank);
  702. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  703. printf("Remove one of the DIMM modules.\n\n");
  704. hang();
  705. }
  706. }
  707. }
  708. /*------------------------------------------------------------------
  709. * only support 2.5V modules.
  710. * This routine verifies this.
  711. *-----------------------------------------------------------------*/
  712. static void check_voltage_type(unsigned long *dimm_populated,
  713. unsigned char *iic0_dimm_addr,
  714. unsigned long num_dimm_banks)
  715. {
  716. unsigned long dimm_num;
  717. unsigned long voltage_type;
  718. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  719. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  720. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  721. switch (voltage_type) {
  722. case 0x00:
  723. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  724. printf("This DIMM is 5.0 Volt/TTL.\n");
  725. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  726. (unsigned int)dimm_num);
  727. hang();
  728. break;
  729. case 0x01:
  730. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  731. printf("This DIMM is LVTTL.\n");
  732. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  733. (unsigned int)dimm_num);
  734. hang();
  735. break;
  736. case 0x02:
  737. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  738. printf("This DIMM is 1.5 Volt.\n");
  739. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  740. (unsigned int)dimm_num);
  741. hang();
  742. break;
  743. case 0x03:
  744. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  745. printf("This DIMM is 3.3 Volt/TTL.\n");
  746. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  747. (unsigned int)dimm_num);
  748. hang();
  749. break;
  750. case 0x04:
  751. /* 2.5 Voltage only for DDR1 */
  752. break;
  753. case 0x05:
  754. /* 1.8 Voltage only for DDR2 */
  755. break;
  756. default:
  757. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  758. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  759. (unsigned int)dimm_num);
  760. hang();
  761. break;
  762. }
  763. }
  764. }
  765. }
  766. /*-----------------------------------------------------------------------------+
  767. * program_copt1.
  768. *-----------------------------------------------------------------------------*/
  769. static void program_copt1(unsigned long *dimm_populated,
  770. unsigned char *iic0_dimm_addr,
  771. unsigned long num_dimm_banks)
  772. {
  773. unsigned long dimm_num;
  774. unsigned long mcopt1;
  775. unsigned long ecc_enabled;
  776. unsigned long ecc = 0;
  777. unsigned long data_width = 0;
  778. unsigned long dimm_32bit;
  779. unsigned long dimm_64bit;
  780. unsigned long registered = 0;
  781. unsigned long attribute = 0;
  782. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  783. unsigned long bankcount;
  784. unsigned long ddrtype;
  785. unsigned long val;
  786. #ifdef CONFIG_DDR_ECC
  787. ecc_enabled = TRUE;
  788. #else
  789. ecc_enabled = FALSE;
  790. #endif
  791. dimm_32bit = FALSE;
  792. dimm_64bit = FALSE;
  793. buf0 = FALSE;
  794. buf1 = FALSE;
  795. /*------------------------------------------------------------------
  796. * Set memory controller options reg 1, SDRAM_MCOPT1.
  797. *-----------------------------------------------------------------*/
  798. mfsdram(SDRAM_MCOPT1, val);
  799. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  800. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  801. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  802. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  803. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  804. SDRAM_MCOPT1_DREF_MASK);
  805. mcopt1 |= SDRAM_MCOPT1_QDEP;
  806. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  807. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  808. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  809. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  810. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  811. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  812. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  813. /* test ecc support */
  814. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  815. if (ecc != 0x02) /* ecc not supported */
  816. ecc_enabled = FALSE;
  817. /* test bank count */
  818. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  819. if (bankcount == 0x04) /* bank count = 4 */
  820. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  821. else /* bank count = 8 */
  822. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  823. /* test DDR type */
  824. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  825. /* test for buffered/unbuffered, registered, differential clocks */
  826. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  827. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  828. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  829. if (dimm_num == 0) {
  830. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  831. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  832. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  833. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  834. if (registered == 1) { /* DDR2 always buffered */
  835. /* TODO: what about above comments ? */
  836. mcopt1 |= SDRAM_MCOPT1_RDEN;
  837. buf0 = TRUE;
  838. } else {
  839. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  840. if ((attribute & 0x02) == 0x00) {
  841. /* buffered not supported */
  842. buf0 = FALSE;
  843. } else {
  844. mcopt1 |= SDRAM_MCOPT1_RDEN;
  845. buf0 = TRUE;
  846. }
  847. }
  848. }
  849. else if (dimm_num == 1) {
  850. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  851. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  852. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  853. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  854. if (registered == 1) {
  855. /* DDR2 always buffered */
  856. mcopt1 |= SDRAM_MCOPT1_RDEN;
  857. buf1 = TRUE;
  858. } else {
  859. if ((attribute & 0x02) == 0x00) {
  860. /* buffered not supported */
  861. buf1 = FALSE;
  862. } else {
  863. mcopt1 |= SDRAM_MCOPT1_RDEN;
  864. buf1 = TRUE;
  865. }
  866. }
  867. }
  868. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  869. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  870. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  871. switch (data_width) {
  872. case 72:
  873. case 64:
  874. dimm_64bit = TRUE;
  875. break;
  876. case 40:
  877. case 32:
  878. dimm_32bit = TRUE;
  879. break;
  880. default:
  881. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  882. data_width);
  883. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  884. break;
  885. }
  886. }
  887. }
  888. /* verify matching properties */
  889. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  890. if (buf0 != buf1) {
  891. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  892. hang();
  893. }
  894. }
  895. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  896. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  897. hang();
  898. }
  899. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  900. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  901. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  902. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  903. } else {
  904. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  905. hang();
  906. }
  907. if (ecc_enabled == TRUE)
  908. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  909. else
  910. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  911. mtsdram(SDRAM_MCOPT1, mcopt1);
  912. }
  913. /*-----------------------------------------------------------------------------+
  914. * program_codt.
  915. *-----------------------------------------------------------------------------*/
  916. static void program_codt(unsigned long *dimm_populated,
  917. unsigned char *iic0_dimm_addr,
  918. unsigned long num_dimm_banks)
  919. {
  920. unsigned long codt;
  921. unsigned long modt0 = 0;
  922. unsigned long modt1 = 0;
  923. unsigned long modt2 = 0;
  924. unsigned long modt3 = 0;
  925. unsigned char dimm_num;
  926. unsigned char dimm_rank;
  927. unsigned char total_rank = 0;
  928. unsigned char total_dimm = 0;
  929. unsigned char dimm_type = 0;
  930. unsigned char firstSlot = 0;
  931. /*------------------------------------------------------------------
  932. * Set the SDRAM Controller On Die Termination Register
  933. *-----------------------------------------------------------------*/
  934. mfsdram(SDRAM_CODT, codt);
  935. codt |= (SDRAM_CODT_IO_NMODE
  936. & (~SDRAM_CODT_DQS_SINGLE_END
  937. & ~SDRAM_CODT_CKSE_SINGLE_END
  938. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  939. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  940. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  941. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  942. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  943. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  944. dimm_rank = (dimm_rank & 0x0F) + 1;
  945. dimm_type = SDRAM_DDR2;
  946. } else {
  947. dimm_rank = dimm_rank & 0x0F;
  948. dimm_type = SDRAM_DDR1;
  949. }
  950. total_rank += dimm_rank;
  951. total_dimm++;
  952. if ((dimm_num == 0) && (total_dimm == 1))
  953. firstSlot = TRUE;
  954. else
  955. firstSlot = FALSE;
  956. }
  957. }
  958. if (dimm_type == SDRAM_DDR2) {
  959. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  960. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  961. if (total_rank == 1) {
  962. codt |= CALC_ODT_R(0);
  963. modt0 = CALC_ODT_W(0);
  964. modt1 = 0x00000000;
  965. modt2 = 0x00000000;
  966. modt3 = 0x00000000;
  967. }
  968. if (total_rank == 2) {
  969. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  970. modt0 = CALC_ODT_W(0);
  971. modt1 = CALC_ODT_W(0);
  972. modt2 = 0x00000000;
  973. modt3 = 0x00000000;
  974. }
  975. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  976. if (total_rank == 1) {
  977. codt |= CALC_ODT_R(2);
  978. modt0 = 0x00000000;
  979. modt1 = 0x00000000;
  980. modt2 = CALC_ODT_W(2);
  981. modt3 = 0x00000000;
  982. }
  983. if (total_rank == 2) {
  984. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  985. modt0 = 0x00000000;
  986. modt1 = 0x00000000;
  987. modt2 = CALC_ODT_W(2);
  988. modt3 = CALC_ODT_W(2);
  989. }
  990. }
  991. if (total_dimm == 2) {
  992. if (total_rank == 2) {
  993. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  994. modt0 = CALC_ODT_RW(2);
  995. modt1 = 0x00000000;
  996. modt2 = CALC_ODT_RW(0);
  997. modt3 = 0x00000000;
  998. }
  999. if (total_rank == 4) {
  1000. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
  1001. modt0 = CALC_ODT_RW(2);
  1002. modt1 = 0x00000000;
  1003. modt2 = CALC_ODT_RW(0);
  1004. modt3 = 0x00000000;
  1005. }
  1006. }
  1007. } else {
  1008. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1009. modt0 = 0x00000000;
  1010. modt1 = 0x00000000;
  1011. modt2 = 0x00000000;
  1012. modt3 = 0x00000000;
  1013. if (total_dimm == 1) {
  1014. if (total_rank == 1)
  1015. codt |= 0x00800000;
  1016. if (total_rank == 2)
  1017. codt |= 0x02800000;
  1018. }
  1019. if (total_dimm == 2) {
  1020. if (total_rank == 2)
  1021. codt |= 0x08800000;
  1022. if (total_rank == 4)
  1023. codt |= 0x2a800000;
  1024. }
  1025. }
  1026. debug("nb of dimm %d\n", total_dimm);
  1027. debug("nb of rank %d\n", total_rank);
  1028. if (total_dimm == 1)
  1029. debug("dimm in slot %d\n", firstSlot);
  1030. mtsdram(SDRAM_CODT, codt);
  1031. mtsdram(SDRAM_MODT0, modt0);
  1032. mtsdram(SDRAM_MODT1, modt1);
  1033. mtsdram(SDRAM_MODT2, modt2);
  1034. mtsdram(SDRAM_MODT3, modt3);
  1035. }
  1036. /*-----------------------------------------------------------------------------+
  1037. * program_initplr.
  1038. *-----------------------------------------------------------------------------*/
  1039. static void program_initplr(unsigned long *dimm_populated,
  1040. unsigned char *iic0_dimm_addr,
  1041. unsigned long num_dimm_banks,
  1042. ddr_cas_id_t selected_cas,
  1043. int write_recovery)
  1044. {
  1045. u32 cas = 0;
  1046. u32 odt = 0;
  1047. u32 ods = 0;
  1048. u32 mr;
  1049. u32 wr;
  1050. u32 emr;
  1051. u32 emr2;
  1052. u32 emr3;
  1053. int dimm_num;
  1054. int total_dimm = 0;
  1055. /******************************************************
  1056. ** Assumption: if more than one DIMM, all DIMMs are the same
  1057. ** as already checked in check_memory_type
  1058. ******************************************************/
  1059. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1060. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1061. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1062. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1063. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1064. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1065. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1066. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1067. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1068. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1069. switch (selected_cas) {
  1070. case DDR_CAS_3:
  1071. cas = 3 << 4;
  1072. break;
  1073. case DDR_CAS_4:
  1074. cas = 4 << 4;
  1075. break;
  1076. case DDR_CAS_5:
  1077. cas = 5 << 4;
  1078. break;
  1079. default:
  1080. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1081. hang();
  1082. break;
  1083. }
  1084. #if 0
  1085. /*
  1086. * ToDo - Still a problem with the write recovery:
  1087. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1088. * in the INITPLR reg to the value calculated in program_mode()
  1089. * results in not correctly working DDR2 memory (crash after
  1090. * relocation).
  1091. *
  1092. * So for now, set the write recovery to 3. This seems to work
  1093. * on the Corair module too.
  1094. *
  1095. * 2007-03-01, sr
  1096. */
  1097. switch (write_recovery) {
  1098. case 3:
  1099. wr = WRITE_RECOV_3;
  1100. break;
  1101. case 4:
  1102. wr = WRITE_RECOV_4;
  1103. break;
  1104. case 5:
  1105. wr = WRITE_RECOV_5;
  1106. break;
  1107. case 6:
  1108. wr = WRITE_RECOV_6;
  1109. break;
  1110. default:
  1111. printf("ERROR: write recovery not support (%d)", write_recovery);
  1112. hang();
  1113. break;
  1114. }
  1115. #else
  1116. wr = WRITE_RECOV_3; /* test-only, see description above */
  1117. #endif
  1118. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1119. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1120. total_dimm++;
  1121. if (total_dimm == 1) {
  1122. odt = ODT_150_OHM;
  1123. ods = ODS_FULL;
  1124. } else if (total_dimm == 2) {
  1125. odt = ODT_75_OHM;
  1126. ods = ODS_REDUCED;
  1127. } else {
  1128. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1129. hang();
  1130. }
  1131. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1132. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1133. emr2 = CMD_EMR | SELECT_EMR2;
  1134. emr3 = CMD_EMR | SELECT_EMR3;
  1135. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1136. udelay(1000);
  1137. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1138. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1139. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1140. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1141. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1142. udelay(1000);
  1143. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1144. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1145. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1146. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1147. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1148. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1149. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1150. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1151. } else {
  1152. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1153. hang();
  1154. }
  1155. }
  1156. /*------------------------------------------------------------------
  1157. * This routine programs the SDRAM_MMODE register.
  1158. * the selected_cas is an output parameter, that will be passed
  1159. * by caller to call the above program_initplr( )
  1160. *-----------------------------------------------------------------*/
  1161. static void program_mode(unsigned long *dimm_populated,
  1162. unsigned char *iic0_dimm_addr,
  1163. unsigned long num_dimm_banks,
  1164. ddr_cas_id_t *selected_cas,
  1165. int *write_recovery)
  1166. {
  1167. unsigned long dimm_num;
  1168. unsigned long sdram_ddr1;
  1169. unsigned long t_wr_ns;
  1170. unsigned long t_wr_clk;
  1171. unsigned long cas_bit;
  1172. unsigned long cas_index;
  1173. unsigned long sdram_freq;
  1174. unsigned long ddr_check;
  1175. unsigned long mmode;
  1176. unsigned long tcyc_reg;
  1177. unsigned long cycle_2_0_clk;
  1178. unsigned long cycle_2_5_clk;
  1179. unsigned long cycle_3_0_clk;
  1180. unsigned long cycle_4_0_clk;
  1181. unsigned long cycle_5_0_clk;
  1182. unsigned long max_2_0_tcyc_ns_x_100;
  1183. unsigned long max_2_5_tcyc_ns_x_100;
  1184. unsigned long max_3_0_tcyc_ns_x_100;
  1185. unsigned long max_4_0_tcyc_ns_x_100;
  1186. unsigned long max_5_0_tcyc_ns_x_100;
  1187. unsigned long cycle_time_ns_x_100[3];
  1188. PPC440_SYS_INFO board_cfg;
  1189. unsigned char cas_2_0_available;
  1190. unsigned char cas_2_5_available;
  1191. unsigned char cas_3_0_available;
  1192. unsigned char cas_4_0_available;
  1193. unsigned char cas_5_0_available;
  1194. unsigned long sdr_ddrpll;
  1195. /*------------------------------------------------------------------
  1196. * Get the board configuration info.
  1197. *-----------------------------------------------------------------*/
  1198. get_sys_info(&board_cfg);
  1199. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1200. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1201. /*------------------------------------------------------------------
  1202. * Handle the timing. We need to find the worst case timing of all
  1203. * the dimm modules installed.
  1204. *-----------------------------------------------------------------*/
  1205. t_wr_ns = 0;
  1206. cas_2_0_available = TRUE;
  1207. cas_2_5_available = TRUE;
  1208. cas_3_0_available = TRUE;
  1209. cas_4_0_available = TRUE;
  1210. cas_5_0_available = TRUE;
  1211. max_2_0_tcyc_ns_x_100 = 10;
  1212. max_2_5_tcyc_ns_x_100 = 10;
  1213. max_3_0_tcyc_ns_x_100 = 10;
  1214. max_4_0_tcyc_ns_x_100 = 10;
  1215. max_5_0_tcyc_ns_x_100 = 10;
  1216. sdram_ddr1 = TRUE;
  1217. /* loop through all the DIMM slots on the board */
  1218. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1219. /* If a dimm is installed in a particular slot ... */
  1220. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1221. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1222. sdram_ddr1 = TRUE;
  1223. else
  1224. sdram_ddr1 = FALSE;
  1225. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1226. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1227. /* For a particular DIMM, grab the three CAS values it supports */
  1228. for (cas_index = 0; cas_index < 3; cas_index++) {
  1229. switch (cas_index) {
  1230. case 0:
  1231. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1232. break;
  1233. case 1:
  1234. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1235. break;
  1236. default:
  1237. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1238. break;
  1239. }
  1240. if ((tcyc_reg & 0x0F) >= 10) {
  1241. if ((tcyc_reg & 0x0F) == 0x0D) {
  1242. /* Convert from hex to decimal */
  1243. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1244. } else {
  1245. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1246. "in slot %d\n", (unsigned int)dimm_num);
  1247. hang();
  1248. }
  1249. } else {
  1250. /* Convert from hex to decimal */
  1251. cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
  1252. ((tcyc_reg & 0x0F)*10);
  1253. }
  1254. }
  1255. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1256. /* supported for a particular DIMM. */
  1257. cas_index = 0;
  1258. if (sdram_ddr1) {
  1259. /*
  1260. * DDR devices use the following bitmask for CAS latency:
  1261. * Bit 7 6 5 4 3 2 1 0
  1262. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1263. */
  1264. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1265. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1266. cas_index++;
  1267. } else {
  1268. if (cas_index != 0)
  1269. cas_index++;
  1270. cas_4_0_available = FALSE;
  1271. }
  1272. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1273. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1274. cas_index++;
  1275. } else {
  1276. if (cas_index != 0)
  1277. cas_index++;
  1278. cas_3_0_available = FALSE;
  1279. }
  1280. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1281. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1282. cas_index++;
  1283. } else {
  1284. if (cas_index != 0)
  1285. cas_index++;
  1286. cas_2_5_available = FALSE;
  1287. }
  1288. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1289. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1290. cas_index++;
  1291. } else {
  1292. if (cas_index != 0)
  1293. cas_index++;
  1294. cas_2_0_available = FALSE;
  1295. }
  1296. } else {
  1297. /*
  1298. * DDR2 devices use the following bitmask for CAS latency:
  1299. * Bit 7 6 5 4 3 2 1 0
  1300. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1301. */
  1302. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1303. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1304. cas_index++;
  1305. } else {
  1306. if (cas_index != 0)
  1307. cas_index++;
  1308. cas_5_0_available = FALSE;
  1309. }
  1310. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1311. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1312. cas_index++;
  1313. } else {
  1314. if (cas_index != 0)
  1315. cas_index++;
  1316. cas_4_0_available = FALSE;
  1317. }
  1318. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
  1319. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
  1320. cas_index++;
  1321. } else {
  1322. if (cas_index != 0)
  1323. cas_index++;
  1324. cas_3_0_available = FALSE;
  1325. }
  1326. }
  1327. }
  1328. }
  1329. /*------------------------------------------------------------------
  1330. * Set the SDRAM mode, SDRAM_MMODE
  1331. *-----------------------------------------------------------------*/
  1332. mfsdram(SDRAM_MMODE, mmode);
  1333. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1334. /* add 10 here because of rounding problems */
  1335. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1336. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1337. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1338. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1339. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1340. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1341. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1342. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1343. *selected_cas = DDR_CAS_2;
  1344. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1345. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1346. *selected_cas = DDR_CAS_2_5;
  1347. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1348. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1349. *selected_cas = DDR_CAS_3;
  1350. } else {
  1351. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1352. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1353. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1354. hang();
  1355. }
  1356. } else { /* DDR2 */
  1357. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1358. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1359. *selected_cas = DDR_CAS_3;
  1360. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1361. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1362. *selected_cas = DDR_CAS_4;
  1363. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1364. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1365. *selected_cas = DDR_CAS_5;
  1366. } else {
  1367. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1368. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1369. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1370. printf("cas3=%d cas4=%d cas5=%d\n",
  1371. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1372. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1373. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1374. hang();
  1375. }
  1376. }
  1377. if (sdram_ddr1 == TRUE)
  1378. mmode |= SDRAM_MMODE_WR_DDR1;
  1379. else {
  1380. /* loop through all the DIMM slots on the board */
  1381. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1382. /* If a dimm is installed in a particular slot ... */
  1383. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1384. t_wr_ns = max(t_wr_ns,
  1385. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1386. }
  1387. /*
  1388. * convert from nanoseconds to ddr clocks
  1389. * round up if necessary
  1390. */
  1391. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1392. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1393. if (sdram_freq != ddr_check)
  1394. t_wr_clk++;
  1395. switch (t_wr_clk) {
  1396. case 0:
  1397. case 1:
  1398. case 2:
  1399. case 3:
  1400. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1401. break;
  1402. case 4:
  1403. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1404. break;
  1405. case 5:
  1406. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1407. break;
  1408. default:
  1409. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1410. break;
  1411. }
  1412. *write_recovery = t_wr_clk;
  1413. }
  1414. debug("CAS latency = %d\n", *selected_cas);
  1415. debug("Write recovery = %d\n", *write_recovery);
  1416. mtsdram(SDRAM_MMODE, mmode);
  1417. }
  1418. /*-----------------------------------------------------------------------------+
  1419. * program_rtr.
  1420. *-----------------------------------------------------------------------------*/
  1421. static void program_rtr(unsigned long *dimm_populated,
  1422. unsigned char *iic0_dimm_addr,
  1423. unsigned long num_dimm_banks)
  1424. {
  1425. PPC440_SYS_INFO board_cfg;
  1426. unsigned long max_refresh_rate;
  1427. unsigned long dimm_num;
  1428. unsigned long refresh_rate_type;
  1429. unsigned long refresh_rate;
  1430. unsigned long rint;
  1431. unsigned long sdram_freq;
  1432. unsigned long sdr_ddrpll;
  1433. unsigned long val;
  1434. /*------------------------------------------------------------------
  1435. * Get the board configuration info.
  1436. *-----------------------------------------------------------------*/
  1437. get_sys_info(&board_cfg);
  1438. /*------------------------------------------------------------------
  1439. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1440. *-----------------------------------------------------------------*/
  1441. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1442. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1443. max_refresh_rate = 0;
  1444. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1445. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1446. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1447. refresh_rate_type &= 0x7F;
  1448. switch (refresh_rate_type) {
  1449. case 0:
  1450. refresh_rate = 15625;
  1451. break;
  1452. case 1:
  1453. refresh_rate = 3906;
  1454. break;
  1455. case 2:
  1456. refresh_rate = 7812;
  1457. break;
  1458. case 3:
  1459. refresh_rate = 31250;
  1460. break;
  1461. case 4:
  1462. refresh_rate = 62500;
  1463. break;
  1464. case 5:
  1465. refresh_rate = 125000;
  1466. break;
  1467. default:
  1468. refresh_rate = 0;
  1469. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1470. (unsigned int)dimm_num);
  1471. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1472. hang();
  1473. break;
  1474. }
  1475. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1476. }
  1477. }
  1478. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1479. mfsdram(SDRAM_RTR, val);
  1480. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1481. (SDRAM_RTR_RINT_ENCODE(rint)));
  1482. }
  1483. /*------------------------------------------------------------------
  1484. * This routine programs the SDRAM_TRx registers.
  1485. *-----------------------------------------------------------------*/
  1486. static void program_tr(unsigned long *dimm_populated,
  1487. unsigned char *iic0_dimm_addr,
  1488. unsigned long num_dimm_banks)
  1489. {
  1490. unsigned long dimm_num;
  1491. unsigned long sdram_ddr1;
  1492. unsigned long t_rp_ns;
  1493. unsigned long t_rcd_ns;
  1494. unsigned long t_rrd_ns;
  1495. unsigned long t_ras_ns;
  1496. unsigned long t_rc_ns;
  1497. unsigned long t_rfc_ns;
  1498. unsigned long t_wpc_ns;
  1499. unsigned long t_wtr_ns;
  1500. unsigned long t_rpc_ns;
  1501. unsigned long t_rp_clk;
  1502. unsigned long t_rcd_clk;
  1503. unsigned long t_rrd_clk;
  1504. unsigned long t_ras_clk;
  1505. unsigned long t_rc_clk;
  1506. unsigned long t_rfc_clk;
  1507. unsigned long t_wpc_clk;
  1508. unsigned long t_wtr_clk;
  1509. unsigned long t_rpc_clk;
  1510. unsigned long sdtr1, sdtr2, sdtr3;
  1511. unsigned long ddr_check;
  1512. unsigned long sdram_freq;
  1513. unsigned long sdr_ddrpll;
  1514. PPC440_SYS_INFO board_cfg;
  1515. /*------------------------------------------------------------------
  1516. * Get the board configuration info.
  1517. *-----------------------------------------------------------------*/
  1518. get_sys_info(&board_cfg);
  1519. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1520. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1521. /*------------------------------------------------------------------
  1522. * Handle the timing. We need to find the worst case timing of all
  1523. * the dimm modules installed.
  1524. *-----------------------------------------------------------------*/
  1525. t_rp_ns = 0;
  1526. t_rrd_ns = 0;
  1527. t_rcd_ns = 0;
  1528. t_ras_ns = 0;
  1529. t_rc_ns = 0;
  1530. t_rfc_ns = 0;
  1531. t_wpc_ns = 0;
  1532. t_wtr_ns = 0;
  1533. t_rpc_ns = 0;
  1534. sdram_ddr1 = TRUE;
  1535. /* loop through all the DIMM slots on the board */
  1536. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1537. /* If a dimm is installed in a particular slot ... */
  1538. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1539. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1540. sdram_ddr1 = TRUE;
  1541. else
  1542. sdram_ddr1 = FALSE;
  1543. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1544. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1545. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1546. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1547. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1548. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1549. }
  1550. }
  1551. /*------------------------------------------------------------------
  1552. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1553. *-----------------------------------------------------------------*/
  1554. mfsdram(SDRAM_SDTR1, sdtr1);
  1555. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1556. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1557. /* default values */
  1558. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1559. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1560. /* normal operations */
  1561. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1562. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1563. mtsdram(SDRAM_SDTR1, sdtr1);
  1564. /*------------------------------------------------------------------
  1565. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1566. *-----------------------------------------------------------------*/
  1567. mfsdram(SDRAM_SDTR2, sdtr2);
  1568. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1569. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1570. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1571. SDRAM_SDTR2_RRD_MASK);
  1572. /*
  1573. * convert t_rcd from nanoseconds to ddr clocks
  1574. * round up if necessary
  1575. */
  1576. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1577. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1578. if (sdram_freq != ddr_check)
  1579. t_rcd_clk++;
  1580. switch (t_rcd_clk) {
  1581. case 0:
  1582. case 1:
  1583. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1584. break;
  1585. case 2:
  1586. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1587. break;
  1588. case 3:
  1589. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1590. break;
  1591. case 4:
  1592. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1593. break;
  1594. default:
  1595. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1596. break;
  1597. }
  1598. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1599. if (sdram_freq < 200000000) {
  1600. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1601. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1602. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1603. } else {
  1604. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1605. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1606. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1607. }
  1608. } else { /* DDR2 */
  1609. /* loop through all the DIMM slots on the board */
  1610. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1611. /* If a dimm is installed in a particular slot ... */
  1612. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1613. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1614. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1615. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1616. }
  1617. }
  1618. /*
  1619. * convert from nanoseconds to ddr clocks
  1620. * round up if necessary
  1621. */
  1622. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1623. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1624. if (sdram_freq != ddr_check)
  1625. t_wpc_clk++;
  1626. switch (t_wpc_clk) {
  1627. case 0:
  1628. case 1:
  1629. case 2:
  1630. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1631. break;
  1632. case 3:
  1633. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1634. break;
  1635. case 4:
  1636. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1637. break;
  1638. case 5:
  1639. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1640. break;
  1641. default:
  1642. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1643. break;
  1644. }
  1645. /*
  1646. * convert from nanoseconds to ddr clocks
  1647. * round up if necessary
  1648. */
  1649. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1650. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1651. if (sdram_freq != ddr_check)
  1652. t_wtr_clk++;
  1653. switch (t_wtr_clk) {
  1654. case 0:
  1655. case 1:
  1656. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1657. break;
  1658. case 2:
  1659. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1660. break;
  1661. case 3:
  1662. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1663. break;
  1664. default:
  1665. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1666. break;
  1667. }
  1668. /*
  1669. * convert from nanoseconds to ddr clocks
  1670. * round up if necessary
  1671. */
  1672. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1673. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1674. if (sdram_freq != ddr_check)
  1675. t_rpc_clk++;
  1676. switch (t_rpc_clk) {
  1677. case 0:
  1678. case 1:
  1679. case 2:
  1680. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1681. break;
  1682. case 3:
  1683. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1684. break;
  1685. default:
  1686. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1687. break;
  1688. }
  1689. }
  1690. /* default value */
  1691. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1692. /*
  1693. * convert t_rrd from nanoseconds to ddr clocks
  1694. * round up if necessary
  1695. */
  1696. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1697. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1698. if (sdram_freq != ddr_check)
  1699. t_rrd_clk++;
  1700. if (t_rrd_clk == 3)
  1701. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1702. else
  1703. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1704. /*
  1705. * convert t_rp from nanoseconds to ddr clocks
  1706. * round up if necessary
  1707. */
  1708. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1709. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1710. if (sdram_freq != ddr_check)
  1711. t_rp_clk++;
  1712. switch (t_rp_clk) {
  1713. case 0:
  1714. case 1:
  1715. case 2:
  1716. case 3:
  1717. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1718. break;
  1719. case 4:
  1720. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1721. break;
  1722. case 5:
  1723. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1724. break;
  1725. case 6:
  1726. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1727. break;
  1728. default:
  1729. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1730. break;
  1731. }
  1732. mtsdram(SDRAM_SDTR2, sdtr2);
  1733. /*------------------------------------------------------------------
  1734. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1735. *-----------------------------------------------------------------*/
  1736. mfsdram(SDRAM_SDTR3, sdtr3);
  1737. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1738. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1739. /*
  1740. * convert t_ras from nanoseconds to ddr clocks
  1741. * round up if necessary
  1742. */
  1743. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1744. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1745. if (sdram_freq != ddr_check)
  1746. t_ras_clk++;
  1747. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1748. /*
  1749. * convert t_rc from nanoseconds to ddr clocks
  1750. * round up if necessary
  1751. */
  1752. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1753. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1754. if (sdram_freq != ddr_check)
  1755. t_rc_clk++;
  1756. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1757. /* default xcs value */
  1758. sdtr3 |= SDRAM_SDTR3_XCS;
  1759. /*
  1760. * convert t_rfc from nanoseconds to ddr clocks
  1761. * round up if necessary
  1762. */
  1763. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1764. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1765. if (sdram_freq != ddr_check)
  1766. t_rfc_clk++;
  1767. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1768. mtsdram(SDRAM_SDTR3, sdtr3);
  1769. }
  1770. /*-----------------------------------------------------------------------------+
  1771. * program_bxcf.
  1772. *-----------------------------------------------------------------------------*/
  1773. static void program_bxcf(unsigned long *dimm_populated,
  1774. unsigned char *iic0_dimm_addr,
  1775. unsigned long num_dimm_banks)
  1776. {
  1777. unsigned long dimm_num;
  1778. unsigned long num_col_addr;
  1779. unsigned long num_ranks;
  1780. unsigned long num_banks;
  1781. unsigned long mode;
  1782. unsigned long ind_rank;
  1783. unsigned long ind;
  1784. unsigned long ind_bank;
  1785. unsigned long bank_0_populated;
  1786. /*------------------------------------------------------------------
  1787. * Set the BxCF regs. First, wipe out the bank config registers.
  1788. *-----------------------------------------------------------------*/
  1789. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
  1790. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1791. mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
  1792. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1793. mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
  1794. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1795. mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
  1796. mtdcr(SDRAMC_CFGDATA, 0x00000000);
  1797. mode = SDRAM_BXCF_M_BE_ENABLE;
  1798. bank_0_populated = 0;
  1799. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1800. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1801. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1802. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1803. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1804. num_ranks = (num_ranks & 0x0F) +1;
  1805. else
  1806. num_ranks = num_ranks & 0x0F;
  1807. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1808. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1809. if (num_banks == 4)
  1810. ind = 0;
  1811. else
  1812. ind = 5;
  1813. switch (num_col_addr) {
  1814. case 0x08:
  1815. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1816. break;
  1817. case 0x09:
  1818. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1819. break;
  1820. case 0x0A:
  1821. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1822. break;
  1823. case 0x0B:
  1824. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1825. break;
  1826. case 0x0C:
  1827. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1828. break;
  1829. default:
  1830. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1831. (unsigned int)dimm_num);
  1832. printf("ERROR: Unsupported value for number of "
  1833. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1834. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1835. hang();
  1836. }
  1837. }
  1838. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1839. bank_0_populated = 1;
  1840. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1841. mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
  1842. mtdcr(SDRAMC_CFGDATA, mode);
  1843. }
  1844. }
  1845. }
  1846. }
  1847. /*------------------------------------------------------------------
  1848. * program memory queue.
  1849. *-----------------------------------------------------------------*/
  1850. static void program_memory_queue(unsigned long *dimm_populated,
  1851. unsigned char *iic0_dimm_addr,
  1852. unsigned long num_dimm_banks)
  1853. {
  1854. unsigned long dimm_num;
  1855. unsigned long rank_base_addr;
  1856. unsigned long rank_reg;
  1857. unsigned long rank_size_bytes;
  1858. unsigned long rank_size_id;
  1859. unsigned long num_ranks;
  1860. unsigned long baseadd_size;
  1861. unsigned long i;
  1862. unsigned long bank_0_populated = 0;
  1863. /*------------------------------------------------------------------
  1864. * Reset the rank_base_address.
  1865. *-----------------------------------------------------------------*/
  1866. rank_reg = SDRAM_R0BAS;
  1867. rank_base_addr = 0x00000000;
  1868. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1869. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1870. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1871. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1872. num_ranks = (num_ranks & 0x0F) + 1;
  1873. else
  1874. num_ranks = num_ranks & 0x0F;
  1875. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1876. /*------------------------------------------------------------------
  1877. * Set the sizes
  1878. *-----------------------------------------------------------------*/
  1879. baseadd_size = 0;
  1880. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1881. switch (rank_size_id) {
  1882. case 0x02:
  1883. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1884. break;
  1885. case 0x04:
  1886. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1887. break;
  1888. case 0x08:
  1889. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1890. break;
  1891. case 0x10:
  1892. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1893. break;
  1894. case 0x20:
  1895. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1896. break;
  1897. case 0x40:
  1898. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1899. break;
  1900. case 0x80:
  1901. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1902. break;
  1903. default:
  1904. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1905. (unsigned int)dimm_num);
  1906. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1907. (unsigned int)rank_size_id);
  1908. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1909. hang();
  1910. }
  1911. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1912. bank_0_populated = 1;
  1913. for (i = 0; i < num_ranks; i++) {
  1914. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1915. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1916. baseadd_size));
  1917. rank_base_addr += rank_size_bytes;
  1918. }
  1919. }
  1920. }
  1921. }
  1922. /*-----------------------------------------------------------------------------+
  1923. * is_ecc_enabled.
  1924. *-----------------------------------------------------------------------------*/
  1925. static unsigned long is_ecc_enabled(void)
  1926. {
  1927. unsigned long dimm_num;
  1928. unsigned long ecc;
  1929. unsigned long val;
  1930. ecc = 0;
  1931. /* loop through all the DIMM slots on the board */
  1932. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1933. mfsdram(SDRAM_MCOPT1, val);
  1934. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  1935. }
  1936. return ecc;
  1937. }
  1938. #ifdef CONFIG_DDR_ECC
  1939. /*-----------------------------------------------------------------------------+
  1940. * program_ecc.
  1941. *-----------------------------------------------------------------------------*/
  1942. static void program_ecc(unsigned long *dimm_populated,
  1943. unsigned char *iic0_dimm_addr,
  1944. unsigned long num_dimm_banks,
  1945. unsigned long tlb_word2_i_value)
  1946. {
  1947. unsigned long mcopt1;
  1948. unsigned long mcopt2;
  1949. unsigned long mcstat;
  1950. unsigned long dimm_num;
  1951. unsigned long ecc;
  1952. ecc = 0;
  1953. /* loop through all the DIMM slots on the board */
  1954. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1955. /* If a dimm is installed in a particular slot ... */
  1956. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1957. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  1958. }
  1959. if (ecc == 0)
  1960. return;
  1961. mfsdram(SDRAM_MCOPT1, mcopt1);
  1962. mfsdram(SDRAM_MCOPT2, mcopt2);
  1963. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  1964. /* DDR controller must be enabled and not in self-refresh. */
  1965. mfsdram(SDRAM_MCSTAT, mcstat);
  1966. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  1967. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  1968. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  1969. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  1970. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  1971. }
  1972. }
  1973. return;
  1974. }
  1975. #ifdef CONFIG_ECC_ERROR_RESET
  1976. /*
  1977. * Check for ECC errors and reset board upon any error here
  1978. *
  1979. * On the Katmai 440SPe eval board, from time to time, the first
  1980. * lword write access after DDR2 initializazion with ECC checking
  1981. * enabled, leads to an ECC error. I couldn't find a configuration
  1982. * without this happening. On my board with the current setup it
  1983. * happens about 1 from 10 times.
  1984. *
  1985. * The ECC modules used for testing are:
  1986. * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
  1987. *
  1988. * This has to get fixed for the Katmai and tested for the other
  1989. * board (440SP/440SPe) that will eventually use this code in the
  1990. * future.
  1991. *
  1992. * 2007-03-01, sr
  1993. */
  1994. static void check_ecc(void)
  1995. {
  1996. u32 val;
  1997. mfsdram(SDRAM_ECCCR, val);
  1998. if (val != 0) {
  1999. printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
  2000. val, mfdcr(0x4c), mfdcr(0x4e));
  2001. printf("ECC error occured, resetting board...\n");
  2002. do_reset(NULL, 0, 0, NULL);
  2003. }
  2004. }
  2005. #endif
  2006. static void wait_ddr_idle(void)
  2007. {
  2008. u32 val;
  2009. do {
  2010. mfsdram(SDRAM_MCSTAT, val);
  2011. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2012. }
  2013. /*-----------------------------------------------------------------------------+
  2014. * program_ecc_addr.
  2015. *-----------------------------------------------------------------------------*/
  2016. static void program_ecc_addr(unsigned long start_address,
  2017. unsigned long num_bytes,
  2018. unsigned long tlb_word2_i_value)
  2019. {
  2020. unsigned long current_address;
  2021. unsigned long end_address;
  2022. unsigned long address_increment;
  2023. unsigned long mcopt1;
  2024. char str[] = "ECC generation...";
  2025. int i;
  2026. current_address = start_address;
  2027. mfsdram(SDRAM_MCOPT1, mcopt1);
  2028. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2029. mtsdram(SDRAM_MCOPT1,
  2030. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2031. sync();
  2032. eieio();
  2033. wait_ddr_idle();
  2034. puts(str);
  2035. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2036. /* ECC bit set method for non-cached memory */
  2037. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2038. address_increment = 4;
  2039. else
  2040. address_increment = 8;
  2041. end_address = current_address + num_bytes;
  2042. while (current_address < end_address) {
  2043. *((unsigned long *)current_address) = 0x00000000;
  2044. current_address += address_increment;
  2045. }
  2046. } else {
  2047. /* ECC bit set method for cached memory */
  2048. dcbz_area(start_address, num_bytes);
  2049. dflush();
  2050. }
  2051. for (i=0; i<strlen(str); i++)
  2052. putc('\b');
  2053. sync();
  2054. eieio();
  2055. wait_ddr_idle();
  2056. /* clear ECC error repoting registers */
  2057. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2058. mtdcr(0x4c, 0xffffffff);
  2059. mtsdram(SDRAM_MCOPT1,
  2060. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2061. sync();
  2062. eieio();
  2063. wait_ddr_idle();
  2064. #ifdef CONFIG_ECC_ERROR_RESET
  2065. /*
  2066. * One write to 0 is enough to trigger this ECC error
  2067. * (see description above)
  2068. */
  2069. out_be32(0, 0x12345678);
  2070. check_ecc();
  2071. #endif
  2072. }
  2073. }
  2074. #endif
  2075. /*-----------------------------------------------------------------------------+
  2076. * program_DQS_calibration.
  2077. *-----------------------------------------------------------------------------*/
  2078. static void program_DQS_calibration(unsigned long *dimm_populated,
  2079. unsigned char *iic0_dimm_addr,
  2080. unsigned long num_dimm_banks)
  2081. {
  2082. unsigned long val;
  2083. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2084. mtsdram(SDRAM_RQDC, 0x80000037);
  2085. mtsdram(SDRAM_RDCC, 0x40000000);
  2086. mtsdram(SDRAM_RFDC, 0x000001DF);
  2087. test();
  2088. #else
  2089. /*------------------------------------------------------------------
  2090. * Program RDCC register
  2091. * Read sample cycle auto-update enable
  2092. *-----------------------------------------------------------------*/
  2093. /*
  2094. * Modified for the Katmai platform: with some DIMMs, the DDR2
  2095. * controller automatically selects the T2 read cycle, but this
  2096. * proves unreliable. Go ahead and force the DDR2 controller
  2097. * to use the T4 sample and disable the automatic update of the
  2098. * RDSS field.
  2099. */
  2100. mfsdram(SDRAM_RDCC, val);
  2101. mtsdram(SDRAM_RDCC,
  2102. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2103. | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
  2104. /*------------------------------------------------------------------
  2105. * Program RQDC register
  2106. * Internal DQS delay mechanism enable
  2107. *-----------------------------------------------------------------*/
  2108. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2109. /*------------------------------------------------------------------
  2110. * Program RFDC register
  2111. * Set Feedback Fractional Oversample
  2112. * Auto-detect read sample cycle enable
  2113. *-----------------------------------------------------------------*/
  2114. mfsdram(SDRAM_RFDC, val);
  2115. mtsdram(SDRAM_RFDC,
  2116. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2117. SDRAM_RFDC_RFFD_MASK))
  2118. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2119. SDRAM_RFDC_RFFD_ENCODE(0)));
  2120. DQS_calibration_process();
  2121. #endif
  2122. }
  2123. static u32 short_mem_test(void)
  2124. {
  2125. u32 *membase;
  2126. u32 bxcr_num;
  2127. u32 bxcf;
  2128. int i;
  2129. int j;
  2130. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2131. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2132. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2133. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2134. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2135. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2136. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2137. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2138. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2139. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2140. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2141. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2142. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2143. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2144. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2145. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2146. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2147. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2148. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2149. /* Banks enabled */
  2150. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2151. /* Bank is enabled */
  2152. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2153. /*------------------------------------------------------------------
  2154. * Run the short memory test.
  2155. *-----------------------------------------------------------------*/
  2156. for (i = 0; i < NUMMEMTESTS; i++) {
  2157. for (j = 0; j < NUMMEMWORDS; j++) {
  2158. membase[j] = test[i][j];
  2159. ppcDcbf((u32)&(membase[j]));
  2160. }
  2161. sync();
  2162. for (j = 0; j < NUMMEMWORDS; j++) {
  2163. if (membase[j] != test[i][j]) {
  2164. ppcDcbf((u32)&(membase[j]));
  2165. break;
  2166. }
  2167. ppcDcbf((u32)&(membase[j]));
  2168. }
  2169. sync();
  2170. if (j < NUMMEMWORDS)
  2171. break;
  2172. }
  2173. if (i < NUMMEMTESTS)
  2174. break;
  2175. } /* if bank enabled */
  2176. } /* for bxcf_num */
  2177. return bxcr_num;
  2178. }
  2179. #ifndef HARD_CODED_DQS
  2180. /*-----------------------------------------------------------------------------+
  2181. * DQS_calibration_process.
  2182. *-----------------------------------------------------------------------------*/
  2183. static void DQS_calibration_process(void)
  2184. {
  2185. unsigned long ecc_temp;
  2186. unsigned long rfdc_reg;
  2187. unsigned long rffd;
  2188. unsigned long rqdc_reg;
  2189. unsigned long rqfd;
  2190. unsigned long bxcr_num;
  2191. unsigned long val;
  2192. long rqfd_average;
  2193. long rffd_average;
  2194. long max_start;
  2195. long min_end;
  2196. unsigned long begin_rqfd[MAXRANKS];
  2197. unsigned long begin_rffd[MAXRANKS];
  2198. unsigned long end_rqfd[MAXRANKS];
  2199. unsigned long end_rffd[MAXRANKS];
  2200. char window_found;
  2201. unsigned long dlycal;
  2202. unsigned long dly_val;
  2203. unsigned long max_pass_length;
  2204. unsigned long current_pass_length;
  2205. unsigned long current_fail_length;
  2206. unsigned long current_start;
  2207. long max_end;
  2208. unsigned char fail_found;
  2209. unsigned char pass_found;
  2210. /*------------------------------------------------------------------
  2211. * Test to determine the best read clock delay tuning bits.
  2212. *
  2213. * Before the DDR controller can be used, the read clock delay needs to be
  2214. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2215. * This value cannot be hardcoded into the program because it changes
  2216. * depending on the board's setup and environment.
  2217. * To do this, all delay values are tested to see if they
  2218. * work or not. By doing this, you get groups of fails with groups of
  2219. * passing values. The idea is to find the start and end of a passing
  2220. * window and take the center of it to use as the read clock delay.
  2221. *
  2222. * A failure has to be seen first so that when we hit a pass, we know
  2223. * that it is truely the start of the window. If we get passing values
  2224. * to start off with, we don't know if we are at the start of the window.
  2225. *
  2226. * The code assumes that a failure will always be found.
  2227. * If a failure is not found, there is no easy way to get the middle
  2228. * of the passing window. I guess we can pretty much pick any value
  2229. * but some values will be better than others. Since the lowest speed
  2230. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2231. * from experimentation it is safe to say you will always have a failure.
  2232. *-----------------------------------------------------------------*/
  2233. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2234. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2235. mfsdram(SDRAM_MCOPT1, val);
  2236. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2237. SDRAM_MCOPT1_MCHK_NON);
  2238. max_start = 0;
  2239. min_end = 0;
  2240. begin_rqfd[0] = 0;
  2241. begin_rffd[0] = 0;
  2242. begin_rqfd[1] = 0;
  2243. begin_rffd[1] = 0;
  2244. end_rqfd[0] = 0;
  2245. end_rffd[0] = 0;
  2246. end_rqfd[1] = 0;
  2247. end_rffd[1] = 0;
  2248. window_found = FALSE;
  2249. max_pass_length = 0;
  2250. max_start = 0;
  2251. max_end = 0;
  2252. current_pass_length = 0;
  2253. current_fail_length = 0;
  2254. current_start = 0;
  2255. window_found = FALSE;
  2256. fail_found = FALSE;
  2257. pass_found = FALSE;
  2258. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2259. /* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */
  2260. /*
  2261. * get the delay line calibration register value
  2262. */
  2263. mfsdram(SDRAM_DLCR, dlycal);
  2264. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2265. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2266. mfsdram(SDRAM_RFDC, rfdc_reg);
  2267. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2268. /*------------------------------------------------------------------
  2269. * Set the timing reg for the test.
  2270. *-----------------------------------------------------------------*/
  2271. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2272. /* do the small memory test */
  2273. bxcr_num = short_mem_test();
  2274. /*------------------------------------------------------------------
  2275. * See if the rffd value passed.
  2276. *-----------------------------------------------------------------*/
  2277. if (bxcr_num == MAXBXCF) {
  2278. if (fail_found == TRUE) {
  2279. pass_found = TRUE;
  2280. if (current_pass_length == 0)
  2281. current_start = rffd;
  2282. current_fail_length = 0;
  2283. current_pass_length++;
  2284. if (current_pass_length > max_pass_length) {
  2285. max_pass_length = current_pass_length;
  2286. max_start = current_start;
  2287. max_end = rffd;
  2288. }
  2289. }
  2290. } else {
  2291. current_pass_length = 0;
  2292. current_fail_length++;
  2293. if (current_fail_length >= (dly_val >> 2)) {
  2294. if (fail_found == FALSE) {
  2295. fail_found = TRUE;
  2296. } else if (pass_found == TRUE) {
  2297. window_found = TRUE;
  2298. break;
  2299. }
  2300. }
  2301. }
  2302. } /* for rffd */
  2303. /*------------------------------------------------------------------
  2304. * Set the average RFFD value
  2305. *-----------------------------------------------------------------*/
  2306. rffd_average = ((max_start + max_end) >> 1);
  2307. if (rffd_average < 0)
  2308. rffd_average = 0;
  2309. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2310. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2311. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2312. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2313. max_pass_length = 0;
  2314. max_start = 0;
  2315. max_end = 0;
  2316. current_pass_length = 0;
  2317. current_fail_length = 0;
  2318. current_start = 0;
  2319. window_found = FALSE;
  2320. fail_found = FALSE;
  2321. pass_found = FALSE;
  2322. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2323. mfsdram(SDRAM_RQDC, rqdc_reg);
  2324. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2325. /*------------------------------------------------------------------
  2326. * Set the timing reg for the test.
  2327. *-----------------------------------------------------------------*/
  2328. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2329. /* do the small memory test */
  2330. bxcr_num = short_mem_test();
  2331. /*------------------------------------------------------------------
  2332. * See if the rffd value passed.
  2333. *-----------------------------------------------------------------*/
  2334. if (bxcr_num == MAXBXCF) {
  2335. if (fail_found == TRUE) {
  2336. pass_found = TRUE;
  2337. if (current_pass_length == 0)
  2338. current_start = rqfd;
  2339. current_fail_length = 0;
  2340. current_pass_length++;
  2341. if (current_pass_length > max_pass_length) {
  2342. max_pass_length = current_pass_length;
  2343. max_start = current_start;
  2344. max_end = rqfd;
  2345. }
  2346. }
  2347. } else {
  2348. current_pass_length = 0;
  2349. current_fail_length++;
  2350. if (fail_found == FALSE) {
  2351. fail_found = TRUE;
  2352. } else if (pass_found == TRUE) {
  2353. window_found = TRUE;
  2354. break;
  2355. }
  2356. }
  2357. }
  2358. /*------------------------------------------------------------------
  2359. * Make sure we found the valid read passing window. Halt if not
  2360. *-----------------------------------------------------------------*/
  2361. if (window_found == FALSE) {
  2362. printf("ERROR: Cannot determine a common read delay for the "
  2363. "DIMM(s) installed.\n");
  2364. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2365. hang();
  2366. }
  2367. rqfd_average = ((max_start + max_end) >> 1);
  2368. if (rqfd_average < 0)
  2369. rqfd_average = 0;
  2370. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2371. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2372. /*------------------------------------------------------------------
  2373. * Restore the ECC variable to what it originally was
  2374. *-----------------------------------------------------------------*/
  2375. mfsdram(SDRAM_MCOPT1, val);
  2376. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);
  2377. mtsdram(SDRAM_RQDC,
  2378. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2379. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2380. mfsdram(SDRAM_DLCR, val);
  2381. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2382. mfsdram(SDRAM_RQDC, val);
  2383. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2384. mfsdram(SDRAM_RFDC, val);
  2385. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2386. }
  2387. #else /* calibration test with hardvalues */
  2388. /*-----------------------------------------------------------------------------+
  2389. * DQS_calibration_process.
  2390. *-----------------------------------------------------------------------------*/
  2391. static void test(void)
  2392. {
  2393. unsigned long dimm_num;
  2394. unsigned long ecc_temp;
  2395. unsigned long i, j;
  2396. unsigned long *membase;
  2397. unsigned long bxcf[MAXRANKS];
  2398. unsigned long val;
  2399. char window_found;
  2400. char begin_found[MAXDIMMS];
  2401. char end_found[MAXDIMMS];
  2402. char search_end[MAXDIMMS];
  2403. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2404. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2405. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2406. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2407. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2408. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2409. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2410. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2411. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2412. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2413. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2414. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2415. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2416. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2417. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2418. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2419. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2420. /*------------------------------------------------------------------
  2421. * Test to determine the best read clock delay tuning bits.
  2422. *
  2423. * Before the DDR controller can be used, the read clock delay needs to be
  2424. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2425. * This value cannot be hardcoded into the program because it changes
  2426. * depending on the board's setup and environment.
  2427. * To do this, all delay values are tested to see if they
  2428. * work or not. By doing this, you get groups of fails with groups of
  2429. * passing values. The idea is to find the start and end of a passing
  2430. * window and take the center of it to use as the read clock delay.
  2431. *
  2432. * A failure has to be seen first so that when we hit a pass, we know
  2433. * that it is truely the start of the window. If we get passing values
  2434. * to start off with, we don't know if we are at the start of the window.
  2435. *
  2436. * The code assumes that a failure will always be found.
  2437. * If a failure is not found, there is no easy way to get the middle
  2438. * of the passing window. I guess we can pretty much pick any value
  2439. * but some values will be better than others. Since the lowest speed
  2440. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2441. * from experimentation it is safe to say you will always have a failure.
  2442. *-----------------------------------------------------------------*/
  2443. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2444. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2445. mfsdram(SDRAM_MCOPT1, val);
  2446. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2447. SDRAM_MCOPT1_MCHK_NON);
  2448. window_found = FALSE;
  2449. begin_found[0] = FALSE;
  2450. end_found[0] = FALSE;
  2451. search_end[0] = FALSE;
  2452. begin_found[1] = FALSE;
  2453. end_found[1] = FALSE;
  2454. search_end[1] = FALSE;
  2455. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2456. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2457. /* Banks enabled */
  2458. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2459. /* Bank is enabled */
  2460. membase =
  2461. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2462. /*------------------------------------------------------------------
  2463. * Run the short memory test.
  2464. *-----------------------------------------------------------------*/
  2465. for (i = 0; i < NUMMEMTESTS; i++) {
  2466. for (j = 0; j < NUMMEMWORDS; j++) {
  2467. membase[j] = test[i][j];
  2468. ppcDcbf((u32)&(membase[j]));
  2469. }
  2470. sync();
  2471. for (j = 0; j < NUMMEMWORDS; j++) {
  2472. if (membase[j] != test[i][j]) {
  2473. ppcDcbf((u32)&(membase[j]));
  2474. break;
  2475. }
  2476. ppcDcbf((u32)&(membase[j]));
  2477. }
  2478. sync();
  2479. if (j < NUMMEMWORDS)
  2480. break;
  2481. }
  2482. /*------------------------------------------------------------------
  2483. * See if the rffd value passed.
  2484. *-----------------------------------------------------------------*/
  2485. if (i < NUMMEMTESTS) {
  2486. if ((end_found[dimm_num] == FALSE) &&
  2487. (search_end[dimm_num] == TRUE)) {
  2488. end_found[dimm_num] = TRUE;
  2489. }
  2490. if ((end_found[0] == TRUE) &&
  2491. (end_found[1] == TRUE))
  2492. break;
  2493. } else {
  2494. if (begin_found[dimm_num] == FALSE) {
  2495. begin_found[dimm_num] = TRUE;
  2496. search_end[dimm_num] = TRUE;
  2497. }
  2498. }
  2499. } else {
  2500. begin_found[dimm_num] = TRUE;
  2501. end_found[dimm_num] = TRUE;
  2502. }
  2503. }
  2504. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2505. window_found = TRUE;
  2506. /*------------------------------------------------------------------
  2507. * Make sure we found the valid read passing window. Halt if not
  2508. *-----------------------------------------------------------------*/
  2509. if (window_found == FALSE) {
  2510. printf("ERROR: Cannot determine a common read delay for the "
  2511. "DIMM(s) installed.\n");
  2512. hang();
  2513. }
  2514. /*------------------------------------------------------------------
  2515. * Restore the ECC variable to what it originally was
  2516. *-----------------------------------------------------------------*/
  2517. mtsdram(SDRAM_MCOPT1,
  2518. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2519. | ecc_temp);
  2520. }
  2521. #endif
  2522. #if defined(DEBUG)
  2523. static void ppc440sp_sdram_register_dump(void)
  2524. {
  2525. unsigned int sdram_reg;
  2526. unsigned int sdram_data;
  2527. unsigned int dcr_data;
  2528. printf("\n Register Dump:\n");
  2529. sdram_reg = SDRAM_MCSTAT;
  2530. mfsdram(sdram_reg, sdram_data);
  2531. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2532. sdram_reg = SDRAM_MCOPT1;
  2533. mfsdram(sdram_reg, sdram_data);
  2534. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2535. sdram_reg = SDRAM_MCOPT2;
  2536. mfsdram(sdram_reg, sdram_data);
  2537. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2538. sdram_reg = SDRAM_MODT0;
  2539. mfsdram(sdram_reg, sdram_data);
  2540. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2541. sdram_reg = SDRAM_MODT1;
  2542. mfsdram(sdram_reg, sdram_data);
  2543. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2544. sdram_reg = SDRAM_MODT2;
  2545. mfsdram(sdram_reg, sdram_data);
  2546. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2547. sdram_reg = SDRAM_MODT3;
  2548. mfsdram(sdram_reg, sdram_data);
  2549. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2550. sdram_reg = SDRAM_CODT;
  2551. mfsdram(sdram_reg, sdram_data);
  2552. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2553. sdram_reg = SDRAM_VVPR;
  2554. mfsdram(sdram_reg, sdram_data);
  2555. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2556. sdram_reg = SDRAM_OPARS;
  2557. mfsdram(sdram_reg, sdram_data);
  2558. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2559. /*
  2560. * OPAR2 is only used as a trigger register.
  2561. * No data is contained in this register, and reading or writing
  2562. * to is can cause bad things to happen (hangs). Just skip it
  2563. * and report NA
  2564. * sdram_reg = SDRAM_OPAR2;
  2565. * mfsdram(sdram_reg, sdram_data);
  2566. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2567. */
  2568. printf(" SDRAM_OPART = N/A ");
  2569. sdram_reg = SDRAM_RTR;
  2570. mfsdram(sdram_reg, sdram_data);
  2571. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2572. sdram_reg = SDRAM_MB0CF;
  2573. mfsdram(sdram_reg, sdram_data);
  2574. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2575. sdram_reg = SDRAM_MB1CF;
  2576. mfsdram(sdram_reg, sdram_data);
  2577. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2578. sdram_reg = SDRAM_MB2CF;
  2579. mfsdram(sdram_reg, sdram_data);
  2580. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2581. sdram_reg = SDRAM_MB3CF;
  2582. mfsdram(sdram_reg, sdram_data);
  2583. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2584. sdram_reg = SDRAM_INITPLR0;
  2585. mfsdram(sdram_reg, sdram_data);
  2586. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2587. sdram_reg = SDRAM_INITPLR1;
  2588. mfsdram(sdram_reg, sdram_data);
  2589. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2590. sdram_reg = SDRAM_INITPLR2;
  2591. mfsdram(sdram_reg, sdram_data);
  2592. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2593. sdram_reg = SDRAM_INITPLR3;
  2594. mfsdram(sdram_reg, sdram_data);
  2595. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2596. sdram_reg = SDRAM_INITPLR4;
  2597. mfsdram(sdram_reg, sdram_data);
  2598. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2599. sdram_reg = SDRAM_INITPLR5;
  2600. mfsdram(sdram_reg, sdram_data);
  2601. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2602. sdram_reg = SDRAM_INITPLR6;
  2603. mfsdram(sdram_reg, sdram_data);
  2604. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2605. sdram_reg = SDRAM_INITPLR7;
  2606. mfsdram(sdram_reg, sdram_data);
  2607. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2608. sdram_reg = SDRAM_INITPLR8;
  2609. mfsdram(sdram_reg, sdram_data);
  2610. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2611. sdram_reg = SDRAM_INITPLR9;
  2612. mfsdram(sdram_reg, sdram_data);
  2613. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2614. sdram_reg = SDRAM_INITPLR10;
  2615. mfsdram(sdram_reg, sdram_data);
  2616. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2617. sdram_reg = SDRAM_INITPLR11;
  2618. mfsdram(sdram_reg, sdram_data);
  2619. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2620. sdram_reg = SDRAM_INITPLR12;
  2621. mfsdram(sdram_reg, sdram_data);
  2622. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2623. sdram_reg = SDRAM_INITPLR13;
  2624. mfsdram(sdram_reg, sdram_data);
  2625. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2626. sdram_reg = SDRAM_INITPLR14;
  2627. mfsdram(sdram_reg, sdram_data);
  2628. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2629. sdram_reg = SDRAM_INITPLR15;
  2630. mfsdram(sdram_reg, sdram_data);
  2631. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2632. sdram_reg = SDRAM_RQDC;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2635. sdram_reg = SDRAM_RFDC;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2638. sdram_reg = SDRAM_RDCC;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2641. sdram_reg = SDRAM_DLCR;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2644. sdram_reg = SDRAM_CLKTR;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2647. sdram_reg = SDRAM_WRDTR;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2650. sdram_reg = SDRAM_SDTR1;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2653. sdram_reg = SDRAM_SDTR2;
  2654. mfsdram(sdram_reg, sdram_data);
  2655. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2656. sdram_reg = SDRAM_SDTR3;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2659. sdram_reg = SDRAM_MMODE;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2662. sdram_reg = SDRAM_MEMODE;
  2663. mfsdram(sdram_reg, sdram_data);
  2664. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2665. sdram_reg = SDRAM_ECCCR;
  2666. mfsdram(sdram_reg, sdram_data);
  2667. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2668. dcr_data = mfdcr(SDRAM_R0BAS);
  2669. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2670. dcr_data = mfdcr(SDRAM_R1BAS);
  2671. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2672. dcr_data = mfdcr(SDRAM_R2BAS);
  2673. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2674. dcr_data = mfdcr(SDRAM_R3BAS);
  2675. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2676. }
  2677. #endif
  2678. #endif /* CONFIG_SPD_EEPROM */