ap20.c 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366
  1. /*
  2. * (C) Copyright 2010-2011
  3. * NVIDIA Corporation <www.nvidia.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <asm/io.h>
  24. #include <asm/arch/tegra2.h>
  25. #include <asm/arch/ap20.h>
  26. #include <asm/arch/clk_rst.h>
  27. #include <asm/arch/clock.h>
  28. #include <asm/arch/fuse.h>
  29. #include <asm/arch/gp_padctrl.h>
  30. #include <asm/arch/pmc.h>
  31. #include <asm/arch/pinmux.h>
  32. #include <asm/arch/scu.h>
  33. #include <asm/arch/warmboot.h>
  34. #include <common.h>
  35. int tegra_get_chip_type(void)
  36. {
  37. struct apb_misc_gp_ctlr *gp;
  38. struct fuse_regs *fuse = (struct fuse_regs *)TEGRA2_FUSE_BASE;
  39. uint tegra_sku_id, rev;
  40. /*
  41. * This is undocumented, Chip ID is bits 15:8 of the register
  42. * APB_MISC + 0x804, and has value 0x20 for Tegra20, 0x30 for
  43. * Tegra30
  44. */
  45. gp = (struct apb_misc_gp_ctlr *)TEGRA2_APB_MISC_GP_BASE;
  46. rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
  47. tegra_sku_id = readl(&fuse->sku_info) & 0xff;
  48. switch (rev) {
  49. case CHIPID_TEGRA2:
  50. switch (tegra_sku_id) {
  51. case SKU_ID_T20:
  52. return TEGRA_SOC_T20;
  53. case SKU_ID_T25SE:
  54. case SKU_ID_AP25:
  55. case SKU_ID_T25:
  56. case SKU_ID_AP25E:
  57. case SKU_ID_T25E:
  58. return TEGRA_SOC_T25;
  59. }
  60. break;
  61. }
  62. /* unknown sku id */
  63. return TEGRA_SOC_UNKNOWN;
  64. }
  65. /* Returns 1 if the current CPU executing is a Cortex-A9, else 0 */
  66. static int ap20_cpu_is_cortexa9(void)
  67. {
  68. u32 id = readb(NV_PA_PG_UP_BASE + PG_UP_TAG_0);
  69. return id == (PG_UP_TAG_0_PID_CPU & 0xff);
  70. }
  71. void init_pllx(void)
  72. {
  73. struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  74. struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_XCPU];
  75. u32 reg;
  76. /* If PLLX is already enabled, just return */
  77. if (readl(&pll->pll_base) & PLL_ENABLE_MASK)
  78. return;
  79. /* Set PLLX_MISC */
  80. writel(1 << PLL_CPCON_SHIFT, &pll->pll_misc);
  81. /* Use 12MHz clock here */
  82. reg = PLL_BYPASS_MASK | (12 << PLL_DIVM_SHIFT);
  83. reg |= 1000 << PLL_DIVN_SHIFT;
  84. writel(reg, &pll->pll_base);
  85. reg |= PLL_ENABLE_MASK;
  86. writel(reg, &pll->pll_base);
  87. reg &= ~PLL_BYPASS_MASK;
  88. writel(reg, &pll->pll_base);
  89. }
  90. static void enable_cpu_clock(int enable)
  91. {
  92. struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
  93. u32 clk;
  94. /*
  95. * NOTE:
  96. * Regardless of whether the request is to enable or disable the CPU
  97. * clock, every processor in the CPU complex except the master (CPU 0)
  98. * will have it's clock stopped because the AVP only talks to the
  99. * master. The AVP does not know (nor does it need to know) that there
  100. * are multiple processors in the CPU complex.
  101. */
  102. if (enable) {
  103. /* Initialize PLLX */
  104. init_pllx();
  105. /* Wait until all clocks are stable */
  106. udelay(PLL_STABILIZATION_DELAY);
  107. writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
  108. writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
  109. }
  110. /*
  111. * Read the register containing the individual CPU clock enables and
  112. * always stop the clock to CPU 1.
  113. */
  114. clk = readl(&clkrst->crc_clk_cpu_cmplx);
  115. clk |= 1 << CPU1_CLK_STP_SHIFT;
  116. /* Stop/Unstop the CPU clock */
  117. clk &= ~CPU0_CLK_STP_MASK;
  118. clk |= !enable << CPU0_CLK_STP_SHIFT;
  119. writel(clk, &clkrst->crc_clk_cpu_cmplx);
  120. clock_enable(PERIPH_ID_CPU);
  121. }
  122. static int is_cpu_powered(void)
  123. {
  124. struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE;
  125. return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
  126. }
  127. static void remove_cpu_io_clamps(void)
  128. {
  129. struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE;
  130. u32 reg;
  131. /* Remove the clamps on the CPU I/O signals */
  132. reg = readl(&pmc->pmc_remove_clamping);
  133. reg |= CPU_CLMP;
  134. writel(reg, &pmc->pmc_remove_clamping);
  135. /* Give I/O signals time to stabilize */
  136. udelay(IO_STABILIZATION_DELAY);
  137. }
  138. static void powerup_cpu(void)
  139. {
  140. struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE;
  141. u32 reg;
  142. int timeout = IO_STABILIZATION_DELAY;
  143. if (!is_cpu_powered()) {
  144. /* Toggle the CPU power state (OFF -> ON) */
  145. reg = readl(&pmc->pmc_pwrgate_toggle);
  146. reg &= PARTID_CP;
  147. reg |= START_CP;
  148. writel(reg, &pmc->pmc_pwrgate_toggle);
  149. /* Wait for the power to come up */
  150. while (!is_cpu_powered()) {
  151. if (timeout-- == 0)
  152. printf("CPU failed to power up!\n");
  153. else
  154. udelay(10);
  155. }
  156. /*
  157. * Remove the I/O clamps from CPU power partition.
  158. * Recommended only on a Warm boot, if the CPU partition gets
  159. * power gated. Shouldn't cause any harm when called after a
  160. * cold boot according to HW, probably just redundant.
  161. */
  162. remove_cpu_io_clamps();
  163. }
  164. }
  165. static void enable_cpu_power_rail(void)
  166. {
  167. struct pmc_ctlr *pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE;
  168. u32 reg;
  169. reg = readl(&pmc->pmc_cntrl);
  170. reg |= CPUPWRREQ_OE;
  171. writel(reg, &pmc->pmc_cntrl);
  172. /*
  173. * The TI PMU65861C needs a 3.75ms delay between enabling
  174. * the power rail and enabling the CPU clock. This delay
  175. * between SM1EN and SM1 is for switching time + the ramp
  176. * up of the voltage to the CPU (VDD_CPU from PMU).
  177. */
  178. udelay(3750);
  179. }
  180. static void reset_A9_cpu(int reset)
  181. {
  182. /*
  183. * NOTE: Regardless of whether the request is to hold the CPU in reset
  184. * or take it out of reset, every processor in the CPU complex
  185. * except the master (CPU 0) will be held in reset because the
  186. * AVP only talks to the master. The AVP does not know that there
  187. * are multiple processors in the CPU complex.
  188. */
  189. /* Hold CPU 1 in reset, and CPU 0 if asked */
  190. reset_cmplx_set_enable(1, crc_rst_cpu | crc_rst_de | crc_rst_debug, 1);
  191. reset_cmplx_set_enable(0, crc_rst_cpu | crc_rst_de | crc_rst_debug,
  192. reset);
  193. /* Enable/Disable master CPU reset */
  194. reset_set_enable(PERIPH_ID_CPU, reset);
  195. }
  196. static void clock_enable_coresight(int enable)
  197. {
  198. u32 rst, src;
  199. clock_set_enable(PERIPH_ID_CORESIGHT, enable);
  200. reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
  201. if (enable) {
  202. /*
  203. * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
  204. * 1.5, giving an effective frequency of 144MHz.
  205. * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
  206. * (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
  207. */
  208. src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
  209. clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
  210. /* Unlock the CPU CoreSight interfaces */
  211. rst = 0xC5ACCE55;
  212. writel(rst, CSITE_CPU_DBG0_LAR);
  213. writel(rst, CSITE_CPU_DBG1_LAR);
  214. }
  215. }
  216. void start_cpu(u32 reset_vector)
  217. {
  218. /* Enable VDD_CPU */
  219. enable_cpu_power_rail();
  220. /* Hold the CPUs in reset */
  221. reset_A9_cpu(1);
  222. /* Disable the CPU clock */
  223. enable_cpu_clock(0);
  224. /* Enable CoreSight */
  225. clock_enable_coresight(1);
  226. /*
  227. * Set the entry point for CPU execution from reset,
  228. * if it's a non-zero value.
  229. */
  230. if (reset_vector)
  231. writel(reset_vector, EXCEP_VECTOR_CPU_RESET_VECTOR);
  232. /* Enable the CPU clock */
  233. enable_cpu_clock(1);
  234. /* If the CPU doesn't already have power, power it up */
  235. powerup_cpu();
  236. /* Take the CPU out of reset */
  237. reset_A9_cpu(0);
  238. }
  239. void halt_avp(void)
  240. {
  241. for (;;) {
  242. writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
  243. | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
  244. FLOW_CTLR_HALT_COP_EVENTS);
  245. }
  246. }
  247. void enable_scu(void)
  248. {
  249. struct scu_ctlr *scu = (struct scu_ctlr *)NV_PA_ARM_PERIPHBASE;
  250. u32 reg;
  251. /* If SCU already setup/enabled, return */
  252. if (readl(&scu->scu_ctrl) & SCU_CTRL_ENABLE)
  253. return;
  254. /* Invalidate all ways for all processors */
  255. writel(0xFFFF, &scu->scu_inv_all);
  256. /* Enable SCU - bit 0 */
  257. reg = readl(&scu->scu_ctrl);
  258. reg |= SCU_CTRL_ENABLE;
  259. writel(reg, &scu->scu_ctrl);
  260. }
  261. void init_pmc_scratch(void)
  262. {
  263. struct pmc_ctlr *const pmc = (struct pmc_ctlr *)TEGRA2_PMC_BASE;
  264. int i;
  265. /* SCRATCH0 is initialized by the boot ROM and shouldn't be cleared */
  266. for (i = 0; i < 23; i++)
  267. writel(0, &pmc->pmc_scratch1+i);
  268. /* ODMDATA is for kernel use to determine RAM size, LP config, etc. */
  269. writel(CONFIG_SYS_BOARD_ODMDATA, &pmc->pmc_scratch20);
  270. #ifdef CONFIG_TEGRA2_LP0
  271. /* save Sdram params to PMC 2, 4, and 24 for WB0 */
  272. warmboot_save_sdram_params();
  273. #endif
  274. }
  275. void tegra2_start(void)
  276. {
  277. struct pmux_tri_ctlr *pmt = (struct pmux_tri_ctlr *)NV_PA_APB_MISC_BASE;
  278. /* If we are the AVP, start up the first Cortex-A9 */
  279. if (!ap20_cpu_is_cortexa9()) {
  280. /* enable JTAG */
  281. writel(0xC0, &pmt->pmt_cfg_ctl);
  282. /*
  283. * If we are ARM7 - give it a different stack. We are about to
  284. * start up the A9 which will want to use this one.
  285. */
  286. asm volatile("mov sp, %0\n"
  287. : : "r"(AVP_EARLY_BOOT_STACK_LIMIT));
  288. start_cpu((u32)_start);
  289. halt_avp();
  290. /* not reached */
  291. }
  292. /* Init PMC scratch memory */
  293. init_pmc_scratch();
  294. enable_scu();
  295. /* enable SMP mode and FW for CPU0, by writing to Auxiliary Ctl reg */
  296. asm volatile(
  297. "mrc p15, 0, r0, c1, c0, 1\n"
  298. "orr r0, r0, #0x41\n"
  299. "mcr p15, 0, r0, c1, c0, 1\n");
  300. /* FIXME: should have ap20's L2 disabled too? */
  301. }