44x_spd_ddr2.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those currently are:
  5. *
  6. * 405: 405EX
  7. * 440/460: 440SP/440SPe/460EX/460GT
  8. *
  9. * (C) Copyright 2007-2008
  10. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  11. *
  12. * COPYRIGHT AMCC CORPORATION 2004
  13. *
  14. * See file CREDITS for list of people who contributed to this
  15. * project.
  16. *
  17. * This program is free software; you can redistribute it and/or
  18. * modify it under the terms of the GNU General Public License as
  19. * published by the Free Software Foundation; either version 2 of
  20. * the License, or (at your option) any later version.
  21. *
  22. * This program is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. *
  27. * You should have received a copy of the GNU General Public License
  28. * along with this program; if not, write to the Free Software
  29. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  30. * MA 02111-1307 USA
  31. *
  32. */
  33. /* define DEBUG for debugging output (obviously ;-)) */
  34. #if 0
  35. #define DEBUG
  36. #endif
  37. #include <common.h>
  38. #include <command.h>
  39. #include <ppc4xx.h>
  40. #include <i2c.h>
  41. #include <asm/io.h>
  42. #include <asm/processor.h>
  43. #include <asm/mmu.h>
  44. #include <asm/cache.h>
  45. #if defined(CONFIG_SPD_EEPROM) && \
  46. (defined(CONFIG_440SP) || defined(CONFIG_440SPE) || \
  47. defined(CONFIG_460EX) || defined(CONFIG_460GT))
  48. /*-----------------------------------------------------------------------------+
  49. * Defines
  50. *-----------------------------------------------------------------------------*/
  51. #ifndef TRUE
  52. #define TRUE 1
  53. #endif
  54. #ifndef FALSE
  55. #define FALSE 0
  56. #endif
  57. #define SDRAM_DDR1 1
  58. #define SDRAM_DDR2 2
  59. #define SDRAM_NONE 0
  60. #define MAXDIMMS 2
  61. #define MAXRANKS 4
  62. #define MAXBXCF 4
  63. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  64. #define ONE_BILLION 1000000000
  65. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  66. #define CMD_NOP (7 << 19)
  67. #define CMD_PRECHARGE (2 << 19)
  68. #define CMD_REFRESH (1 << 19)
  69. #define CMD_EMR (0 << 19)
  70. #define CMD_READ (5 << 19)
  71. #define CMD_WRITE (4 << 19)
  72. #define SELECT_MR (0 << 16)
  73. #define SELECT_EMR (1 << 16)
  74. #define SELECT_EMR2 (2 << 16)
  75. #define SELECT_EMR3 (3 << 16)
  76. /* MR */
  77. #define DLL_RESET 0x00000100
  78. #define WRITE_RECOV_2 (1 << 9)
  79. #define WRITE_RECOV_3 (2 << 9)
  80. #define WRITE_RECOV_4 (3 << 9)
  81. #define WRITE_RECOV_5 (4 << 9)
  82. #define WRITE_RECOV_6 (5 << 9)
  83. #define BURST_LEN_4 0x00000002
  84. /* EMR */
  85. #define ODT_0_OHM 0x00000000
  86. #define ODT_50_OHM 0x00000044
  87. #define ODT_75_OHM 0x00000004
  88. #define ODT_150_OHM 0x00000040
  89. #define ODS_FULL 0x00000000
  90. #define ODS_REDUCED 0x00000002
  91. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  92. #define ODT_EB0R (0x80000000 >> 8)
  93. #define ODT_EB0W (0x80000000 >> 7)
  94. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  95. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  96. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  97. /* Defines for the Read Cycle Delay test */
  98. #define NUMMEMTESTS 8
  99. #define NUMMEMWORDS 8
  100. #define NUMLOOPS 64 /* memory test loops */
  101. /*
  102. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  103. * region. Right now the cache should still be disabled in U-Boot because of the
  104. * EMAC driver, that need it's buffer descriptor to be located in non cached
  105. * memory.
  106. *
  107. * If at some time this restriction doesn't apply anymore, just define
  108. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  109. * everything correctly.
  110. */
  111. #ifdef CONFIG_4xx_DCACHE
  112. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  113. #else
  114. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  115. #endif
  116. /*
  117. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  118. */
  119. void __spd_ddr_init_hang (void)
  120. {
  121. hang ();
  122. }
  123. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  124. /*
  125. * To provide an interface for board specific config values in this common
  126. * DDR setup code, we implement he "weak" default functions here. They return
  127. * the default value back to the caller.
  128. *
  129. * Please see include/configs/yucca.h for an example fora board specific
  130. * implementation.
  131. */
  132. u32 __ddr_wrdtr(u32 default_val)
  133. {
  134. return default_val;
  135. }
  136. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  137. u32 __ddr_clktr(u32 default_val)
  138. {
  139. return default_val;
  140. }
  141. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  142. /* Private Structure Definitions */
  143. /* enum only to ease code for cas latency setting */
  144. typedef enum ddr_cas_id {
  145. DDR_CAS_2 = 20,
  146. DDR_CAS_2_5 = 25,
  147. DDR_CAS_3 = 30,
  148. DDR_CAS_4 = 40,
  149. DDR_CAS_5 = 50
  150. } ddr_cas_id_t;
  151. /*-----------------------------------------------------------------------------+
  152. * Prototypes
  153. *-----------------------------------------------------------------------------*/
  154. static unsigned long sdram_memsize(void);
  155. static void get_spd_info(unsigned long *dimm_populated,
  156. unsigned char *iic0_dimm_addr,
  157. unsigned long num_dimm_banks);
  158. static void check_mem_type(unsigned long *dimm_populated,
  159. unsigned char *iic0_dimm_addr,
  160. unsigned long num_dimm_banks);
  161. static void check_frequency(unsigned long *dimm_populated,
  162. unsigned char *iic0_dimm_addr,
  163. unsigned long num_dimm_banks);
  164. static void check_rank_number(unsigned long *dimm_populated,
  165. unsigned char *iic0_dimm_addr,
  166. unsigned long num_dimm_banks);
  167. static void check_voltage_type(unsigned long *dimm_populated,
  168. unsigned char *iic0_dimm_addr,
  169. unsigned long num_dimm_banks);
  170. static void program_memory_queue(unsigned long *dimm_populated,
  171. unsigned char *iic0_dimm_addr,
  172. unsigned long num_dimm_banks);
  173. static void program_codt(unsigned long *dimm_populated,
  174. unsigned char *iic0_dimm_addr,
  175. unsigned long num_dimm_banks);
  176. static void program_mode(unsigned long *dimm_populated,
  177. unsigned char *iic0_dimm_addr,
  178. unsigned long num_dimm_banks,
  179. ddr_cas_id_t *selected_cas,
  180. int *write_recovery);
  181. static void program_tr(unsigned long *dimm_populated,
  182. unsigned char *iic0_dimm_addr,
  183. unsigned long num_dimm_banks);
  184. static void program_rtr(unsigned long *dimm_populated,
  185. unsigned char *iic0_dimm_addr,
  186. unsigned long num_dimm_banks);
  187. static void program_bxcf(unsigned long *dimm_populated,
  188. unsigned char *iic0_dimm_addr,
  189. unsigned long num_dimm_banks);
  190. static void program_copt1(unsigned long *dimm_populated,
  191. unsigned char *iic0_dimm_addr,
  192. unsigned long num_dimm_banks);
  193. static void program_initplr(unsigned long *dimm_populated,
  194. unsigned char *iic0_dimm_addr,
  195. unsigned long num_dimm_banks,
  196. ddr_cas_id_t selected_cas,
  197. int write_recovery);
  198. static unsigned long is_ecc_enabled(void);
  199. #ifdef CONFIG_DDR_ECC
  200. static void program_ecc(unsigned long *dimm_populated,
  201. unsigned char *iic0_dimm_addr,
  202. unsigned long num_dimm_banks,
  203. unsigned long tlb_word2_i_value);
  204. static void program_ecc_addr(unsigned long start_address,
  205. unsigned long num_bytes,
  206. unsigned long tlb_word2_i_value);
  207. #endif
  208. static void program_DQS_calibration(unsigned long *dimm_populated,
  209. unsigned char *iic0_dimm_addr,
  210. unsigned long num_dimm_banks);
  211. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  212. static void test(void);
  213. #else
  214. static void DQS_calibration_process(void);
  215. #endif
  216. static void ppc440sp_sdram_register_dump(void);
  217. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  218. void dcbz_area(u32 start_address, u32 num_bytes);
  219. static u32 mfdcr_any(u32 dcr)
  220. {
  221. u32 val;
  222. switch (dcr) {
  223. case SDRAM_R0BAS + 0:
  224. val = mfdcr(SDRAM_R0BAS + 0);
  225. break;
  226. case SDRAM_R0BAS + 1:
  227. val = mfdcr(SDRAM_R0BAS + 1);
  228. break;
  229. case SDRAM_R0BAS + 2:
  230. val = mfdcr(SDRAM_R0BAS + 2);
  231. break;
  232. case SDRAM_R0BAS + 3:
  233. val = mfdcr(SDRAM_R0BAS + 3);
  234. break;
  235. default:
  236. printf("DCR %d not defined in case statement!!!\n", dcr);
  237. val = 0; /* just to satisfy the compiler */
  238. }
  239. return val;
  240. }
  241. static void mtdcr_any(u32 dcr, u32 val)
  242. {
  243. switch (dcr) {
  244. case SDRAM_R0BAS + 0:
  245. mtdcr(SDRAM_R0BAS + 0, val);
  246. break;
  247. case SDRAM_R0BAS + 1:
  248. mtdcr(SDRAM_R0BAS + 1, val);
  249. break;
  250. case SDRAM_R0BAS + 2:
  251. mtdcr(SDRAM_R0BAS + 2, val);
  252. break;
  253. case SDRAM_R0BAS + 3:
  254. mtdcr(SDRAM_R0BAS + 3, val);
  255. break;
  256. default:
  257. printf("DCR %d not defined in case statement!!!\n", dcr);
  258. }
  259. }
  260. static unsigned char spd_read(uchar chip, uint addr)
  261. {
  262. unsigned char data[2];
  263. if (i2c_probe(chip) == 0)
  264. if (i2c_read(chip, addr, 1, data, 1) == 0)
  265. return data[0];
  266. return 0;
  267. }
  268. /*-----------------------------------------------------------------------------+
  269. * sdram_memsize
  270. *-----------------------------------------------------------------------------*/
  271. static unsigned long sdram_memsize(void)
  272. {
  273. unsigned long mem_size;
  274. unsigned long mcopt2;
  275. unsigned long mcstat;
  276. unsigned long mb0cf;
  277. unsigned long sdsz;
  278. unsigned long i;
  279. mem_size = 0;
  280. mfsdram(SDRAM_MCOPT2, mcopt2);
  281. mfsdram(SDRAM_MCSTAT, mcstat);
  282. /* DDR controller must be enabled and not in self-refresh. */
  283. /* Otherwise memsize is zero. */
  284. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  285. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  286. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  287. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  288. for (i = 0; i < MAXBXCF; i++) {
  289. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  290. /* Banks enabled */
  291. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  292. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  293. switch(sdsz) {
  294. case SDRAM_RXBAS_SDSZ_8:
  295. mem_size+=8;
  296. break;
  297. case SDRAM_RXBAS_SDSZ_16:
  298. mem_size+=16;
  299. break;
  300. case SDRAM_RXBAS_SDSZ_32:
  301. mem_size+=32;
  302. break;
  303. case SDRAM_RXBAS_SDSZ_64:
  304. mem_size+=64;
  305. break;
  306. case SDRAM_RXBAS_SDSZ_128:
  307. mem_size+=128;
  308. break;
  309. case SDRAM_RXBAS_SDSZ_256:
  310. mem_size+=256;
  311. break;
  312. case SDRAM_RXBAS_SDSZ_512:
  313. mem_size+=512;
  314. break;
  315. case SDRAM_RXBAS_SDSZ_1024:
  316. mem_size+=1024;
  317. break;
  318. case SDRAM_RXBAS_SDSZ_2048:
  319. mem_size+=2048;
  320. break;
  321. case SDRAM_RXBAS_SDSZ_4096:
  322. mem_size+=4096;
  323. break;
  324. default:
  325. mem_size=0;
  326. break;
  327. }
  328. }
  329. }
  330. }
  331. mem_size *= 1024 * 1024;
  332. return(mem_size);
  333. }
  334. /*-----------------------------------------------------------------------------+
  335. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  336. * Note: This routine runs from flash with a stack set up in the chip's
  337. * sram space. It is important that the routine does not require .sbss, .bss or
  338. * .data sections. It also cannot call routines that require these sections.
  339. *-----------------------------------------------------------------------------*/
  340. /*-----------------------------------------------------------------------------
  341. * Function: initdram
  342. * Description: Configures SDRAM memory banks for DDR operation.
  343. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  344. * via the IIC bus and then configures the DDR SDRAM memory
  345. * banks appropriately. If Auto Memory Configuration is
  346. * not used, it is assumed that no DIMM is plugged
  347. *-----------------------------------------------------------------------------*/
  348. long int initdram(int board_type)
  349. {
  350. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  351. unsigned char spd0[MAX_SPD_BYTES];
  352. unsigned char spd1[MAX_SPD_BYTES];
  353. unsigned char *dimm_spd[MAXDIMMS];
  354. unsigned long dimm_populated[MAXDIMMS];
  355. unsigned long num_dimm_banks; /* on board dimm banks */
  356. unsigned long val;
  357. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  358. int write_recovery;
  359. unsigned long dram_size = 0;
  360. num_dimm_banks = sizeof(iic0_dimm_addr);
  361. /*------------------------------------------------------------------
  362. * Set up an array of SPD matrixes.
  363. *-----------------------------------------------------------------*/
  364. dimm_spd[0] = spd0;
  365. dimm_spd[1] = spd1;
  366. /*------------------------------------------------------------------
  367. * Reset the DDR-SDRAM controller.
  368. *-----------------------------------------------------------------*/
  369. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  370. mtsdr(SDR0_SRST, 0x00000000);
  371. /*
  372. * Make sure I2C controller is initialized
  373. * before continuing.
  374. */
  375. /* switch to correct I2C bus */
  376. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  377. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  378. /*------------------------------------------------------------------
  379. * Clear out the serial presence detect buffers.
  380. * Perform IIC reads from the dimm. Fill in the spds.
  381. * Check to see if the dimm slots are populated
  382. *-----------------------------------------------------------------*/
  383. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  384. /*------------------------------------------------------------------
  385. * Check the memory type for the dimms plugged.
  386. *-----------------------------------------------------------------*/
  387. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  388. /*------------------------------------------------------------------
  389. * Check the frequency supported for the dimms plugged.
  390. *-----------------------------------------------------------------*/
  391. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  392. /*------------------------------------------------------------------
  393. * Check the total rank number.
  394. *-----------------------------------------------------------------*/
  395. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  396. /*------------------------------------------------------------------
  397. * Check the voltage type for the dimms plugged.
  398. *-----------------------------------------------------------------*/
  399. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  400. /*------------------------------------------------------------------
  401. * Program SDRAM controller options 2 register
  402. * Except Enabling of the memory controller.
  403. *-----------------------------------------------------------------*/
  404. mfsdram(SDRAM_MCOPT2, val);
  405. mtsdram(SDRAM_MCOPT2,
  406. (val &
  407. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  408. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  409. SDRAM_MCOPT2_ISIE_MASK))
  410. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  411. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  412. SDRAM_MCOPT2_ISIE_ENABLE));
  413. /*------------------------------------------------------------------
  414. * Program SDRAM controller options 1 register
  415. * Note: Does not enable the memory controller.
  416. *-----------------------------------------------------------------*/
  417. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  418. /*------------------------------------------------------------------
  419. * Set the SDRAM Controller On Die Termination Register
  420. *-----------------------------------------------------------------*/
  421. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  422. /*------------------------------------------------------------------
  423. * Program SDRAM refresh register.
  424. *-----------------------------------------------------------------*/
  425. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  426. /*------------------------------------------------------------------
  427. * Program SDRAM mode register.
  428. *-----------------------------------------------------------------*/
  429. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  430. &selected_cas, &write_recovery);
  431. /*------------------------------------------------------------------
  432. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  433. *-----------------------------------------------------------------*/
  434. mfsdram(SDRAM_WRDTR, val);
  435. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  436. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  437. /*------------------------------------------------------------------
  438. * Set the SDRAM Clock Timing Register
  439. *-----------------------------------------------------------------*/
  440. mfsdram(SDRAM_CLKTR, val);
  441. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  442. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  443. /*------------------------------------------------------------------
  444. * Program the BxCF registers.
  445. *-----------------------------------------------------------------*/
  446. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  447. /*------------------------------------------------------------------
  448. * Program SDRAM timing registers.
  449. *-----------------------------------------------------------------*/
  450. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  451. /*------------------------------------------------------------------
  452. * Set the Extended Mode register
  453. *-----------------------------------------------------------------*/
  454. mfsdram(SDRAM_MEMODE, val);
  455. mtsdram(SDRAM_MEMODE,
  456. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  457. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  458. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  459. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  460. /*------------------------------------------------------------------
  461. * Program Initialization preload registers.
  462. *-----------------------------------------------------------------*/
  463. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  464. selected_cas, write_recovery);
  465. /*------------------------------------------------------------------
  466. * Delay to ensure 200usec have elapsed since reset.
  467. *-----------------------------------------------------------------*/
  468. udelay(400);
  469. /*------------------------------------------------------------------
  470. * Set the memory queue core base addr.
  471. *-----------------------------------------------------------------*/
  472. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  473. /*------------------------------------------------------------------
  474. * Program SDRAM controller options 2 register
  475. * Enable the memory controller.
  476. *-----------------------------------------------------------------*/
  477. mfsdram(SDRAM_MCOPT2, val);
  478. mtsdram(SDRAM_MCOPT2,
  479. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  480. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  481. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  482. /*------------------------------------------------------------------
  483. * Wait for SDRAM_CFG0_DC_EN to complete.
  484. *-----------------------------------------------------------------*/
  485. do {
  486. mfsdram(SDRAM_MCSTAT, val);
  487. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  488. /* get installed memory size */
  489. dram_size = sdram_memsize();
  490. /* and program tlb entries for this size (dynamic) */
  491. /*
  492. * Program TLB entries with caches enabled, for best performace
  493. * while auto-calibrating and ECC generation
  494. */
  495. program_tlb(0, 0, dram_size, 0);
  496. /*------------------------------------------------------------------
  497. * DQS calibration.
  498. *-----------------------------------------------------------------*/
  499. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  500. #ifdef CONFIG_DDR_ECC
  501. /*------------------------------------------------------------------
  502. * If ecc is enabled, initialize the parity bits.
  503. *-----------------------------------------------------------------*/
  504. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  505. #endif
  506. /*
  507. * Now after initialization (auto-calibration and ECC generation)
  508. * remove the TLB entries with caches enabled and program again with
  509. * desired cache functionality
  510. */
  511. remove_tlb(0, dram_size);
  512. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  513. ppc440sp_sdram_register_dump();
  514. /*
  515. * Clear potential errors resulting from auto-calibration.
  516. * If not done, then we could get an interrupt later on when
  517. * exceptions are enabled.
  518. */
  519. set_mcsr(get_mcsr());
  520. return dram_size;
  521. }
  522. static void get_spd_info(unsigned long *dimm_populated,
  523. unsigned char *iic0_dimm_addr,
  524. unsigned long num_dimm_banks)
  525. {
  526. unsigned long dimm_num;
  527. unsigned long dimm_found;
  528. unsigned char num_of_bytes;
  529. unsigned char total_size;
  530. dimm_found = FALSE;
  531. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  532. num_of_bytes = 0;
  533. total_size = 0;
  534. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  535. debug("\nspd_read(0x%x) returned %d\n",
  536. iic0_dimm_addr[dimm_num], num_of_bytes);
  537. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  538. debug("spd_read(0x%x) returned %d\n",
  539. iic0_dimm_addr[dimm_num], total_size);
  540. if ((num_of_bytes != 0) && (total_size != 0)) {
  541. dimm_populated[dimm_num] = TRUE;
  542. dimm_found = TRUE;
  543. debug("DIMM slot %lu: populated\n", dimm_num);
  544. } else {
  545. dimm_populated[dimm_num] = FALSE;
  546. debug("DIMM slot %lu: Not populated\n", dimm_num);
  547. }
  548. }
  549. if (dimm_found == FALSE) {
  550. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  551. spd_ddr_init_hang ();
  552. }
  553. }
  554. void board_add_ram_info(int use_default)
  555. {
  556. PPC4xx_SYS_INFO board_cfg;
  557. u32 val;
  558. if (is_ecc_enabled())
  559. puts(" (ECC");
  560. else
  561. puts(" (ECC not");
  562. get_sys_info(&board_cfg);
  563. mfsdr(SDR0_DDR0, val);
  564. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  565. printf(" enabled, %d MHz", (val * 2) / 1000000);
  566. mfsdram(SDRAM_MMODE, val);
  567. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  568. printf(", CL%d)", val);
  569. }
  570. /*------------------------------------------------------------------
  571. * For the memory DIMMs installed, this routine verifies that they
  572. * really are DDR specific DIMMs.
  573. *-----------------------------------------------------------------*/
  574. static void check_mem_type(unsigned long *dimm_populated,
  575. unsigned char *iic0_dimm_addr,
  576. unsigned long num_dimm_banks)
  577. {
  578. unsigned long dimm_num;
  579. unsigned long dimm_type;
  580. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  581. if (dimm_populated[dimm_num] == TRUE) {
  582. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  583. switch (dimm_type) {
  584. case 1:
  585. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  586. "slot %d.\n", (unsigned int)dimm_num);
  587. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  588. printf("Replace the DIMM module with a supported DIMM.\n\n");
  589. spd_ddr_init_hang ();
  590. break;
  591. case 2:
  592. printf("ERROR: EDO DIMM detected in slot %d.\n",
  593. (unsigned int)dimm_num);
  594. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  595. printf("Replace the DIMM module with a supported DIMM.\n\n");
  596. spd_ddr_init_hang ();
  597. break;
  598. case 3:
  599. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  600. (unsigned int)dimm_num);
  601. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  602. printf("Replace the DIMM module with a supported DIMM.\n\n");
  603. spd_ddr_init_hang ();
  604. break;
  605. case 4:
  606. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  607. (unsigned int)dimm_num);
  608. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  609. printf("Replace the DIMM module with a supported DIMM.\n\n");
  610. spd_ddr_init_hang ();
  611. break;
  612. case 5:
  613. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  614. (unsigned int)dimm_num);
  615. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  616. printf("Replace the DIMM module with a supported DIMM.\n\n");
  617. spd_ddr_init_hang ();
  618. break;
  619. case 6:
  620. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  621. (unsigned int)dimm_num);
  622. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  623. printf("Replace the DIMM module with a supported DIMM.\n\n");
  624. spd_ddr_init_hang ();
  625. break;
  626. case 7:
  627. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  628. dimm_populated[dimm_num] = SDRAM_DDR1;
  629. break;
  630. case 8:
  631. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  632. dimm_populated[dimm_num] = SDRAM_DDR2;
  633. break;
  634. default:
  635. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  636. (unsigned int)dimm_num);
  637. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  638. printf("Replace the DIMM module with a supported DIMM.\n\n");
  639. spd_ddr_init_hang ();
  640. break;
  641. }
  642. }
  643. }
  644. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  645. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  646. && (dimm_populated[dimm_num] != SDRAM_NONE)
  647. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  648. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  649. spd_ddr_init_hang ();
  650. }
  651. }
  652. }
  653. /*------------------------------------------------------------------
  654. * For the memory DIMMs installed, this routine verifies that
  655. * frequency previously calculated is supported.
  656. *-----------------------------------------------------------------*/
  657. static void check_frequency(unsigned long *dimm_populated,
  658. unsigned char *iic0_dimm_addr,
  659. unsigned long num_dimm_banks)
  660. {
  661. unsigned long dimm_num;
  662. unsigned long tcyc_reg;
  663. unsigned long cycle_time;
  664. unsigned long calc_cycle_time;
  665. unsigned long sdram_freq;
  666. unsigned long sdr_ddrpll;
  667. PPC4xx_SYS_INFO board_cfg;
  668. /*------------------------------------------------------------------
  669. * Get the board configuration info.
  670. *-----------------------------------------------------------------*/
  671. get_sys_info(&board_cfg);
  672. mfsdr(SDR0_DDR0, sdr_ddrpll);
  673. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  674. /*
  675. * calc_cycle_time is calculated from DDR frequency set by board/chip
  676. * and is expressed in multiple of 10 picoseconds
  677. * to match the way DIMM cycle time is calculated below.
  678. */
  679. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  680. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  681. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  682. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  683. /*
  684. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  685. * the higher order nibble (bits 4-7) designates the cycle time
  686. * to a granularity of 1ns;
  687. * the value presented by the lower order nibble (bits 0-3)
  688. * has a granularity of .1ns and is added to the value designated
  689. * by the higher nibble. In addition, four lines of the lower order
  690. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  691. */
  692. /* Convert from hex to decimal */
  693. if ((tcyc_reg & 0x0F) == 0x0D)
  694. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  695. else if ((tcyc_reg & 0x0F) == 0x0C)
  696. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  697. else if ((tcyc_reg & 0x0F) == 0x0B)
  698. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  699. else if ((tcyc_reg & 0x0F) == 0x0A)
  700. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  701. else
  702. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  703. ((tcyc_reg & 0x0F)*10);
  704. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  705. if (cycle_time > (calc_cycle_time + 10)) {
  706. /*
  707. * the provided sdram cycle_time is too small
  708. * for the available DIMM cycle_time.
  709. * The additionnal 100ps is here to accept a small incertainty.
  710. */
  711. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  712. "slot %d \n while calculated cycle time is %d ps.\n",
  713. (unsigned int)(cycle_time*10),
  714. (unsigned int)dimm_num,
  715. (unsigned int)(calc_cycle_time*10));
  716. printf("Replace the DIMM, or change DDR frequency via "
  717. "strapping bits.\n\n");
  718. spd_ddr_init_hang ();
  719. }
  720. }
  721. }
  722. }
  723. /*------------------------------------------------------------------
  724. * For the memory DIMMs installed, this routine verifies two
  725. * ranks/banks maximum are availables.
  726. *-----------------------------------------------------------------*/
  727. static void check_rank_number(unsigned long *dimm_populated,
  728. unsigned char *iic0_dimm_addr,
  729. unsigned long num_dimm_banks)
  730. {
  731. unsigned long dimm_num;
  732. unsigned long dimm_rank;
  733. unsigned long total_rank = 0;
  734. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  735. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  736. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  737. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  738. dimm_rank = (dimm_rank & 0x0F) +1;
  739. else
  740. dimm_rank = dimm_rank & 0x0F;
  741. if (dimm_rank > MAXRANKS) {
  742. printf("ERROR: DRAM DIMM detected with %d ranks in "
  743. "slot %d is not supported.\n", dimm_rank, dimm_num);
  744. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  745. printf("Replace the DIMM module with a supported DIMM.\n\n");
  746. spd_ddr_init_hang ();
  747. } else
  748. total_rank += dimm_rank;
  749. }
  750. if (total_rank > MAXRANKS) {
  751. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  752. "for all slots.\n", (unsigned int)total_rank);
  753. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  754. printf("Remove one of the DIMM modules.\n\n");
  755. spd_ddr_init_hang ();
  756. }
  757. }
  758. }
  759. /*------------------------------------------------------------------
  760. * only support 2.5V modules.
  761. * This routine verifies this.
  762. *-----------------------------------------------------------------*/
  763. static void check_voltage_type(unsigned long *dimm_populated,
  764. unsigned char *iic0_dimm_addr,
  765. unsigned long num_dimm_banks)
  766. {
  767. unsigned long dimm_num;
  768. unsigned long voltage_type;
  769. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  770. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  771. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  772. switch (voltage_type) {
  773. case 0x00:
  774. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  775. printf("This DIMM is 5.0 Volt/TTL.\n");
  776. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  777. (unsigned int)dimm_num);
  778. spd_ddr_init_hang ();
  779. break;
  780. case 0x01:
  781. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  782. printf("This DIMM is LVTTL.\n");
  783. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  784. (unsigned int)dimm_num);
  785. spd_ddr_init_hang ();
  786. break;
  787. case 0x02:
  788. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  789. printf("This DIMM is 1.5 Volt.\n");
  790. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  791. (unsigned int)dimm_num);
  792. spd_ddr_init_hang ();
  793. break;
  794. case 0x03:
  795. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  796. printf("This DIMM is 3.3 Volt/TTL.\n");
  797. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  798. (unsigned int)dimm_num);
  799. spd_ddr_init_hang ();
  800. break;
  801. case 0x04:
  802. /* 2.5 Voltage only for DDR1 */
  803. break;
  804. case 0x05:
  805. /* 1.8 Voltage only for DDR2 */
  806. break;
  807. default:
  808. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  809. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  810. (unsigned int)dimm_num);
  811. spd_ddr_init_hang ();
  812. break;
  813. }
  814. }
  815. }
  816. }
  817. /*-----------------------------------------------------------------------------+
  818. * program_copt1.
  819. *-----------------------------------------------------------------------------*/
  820. static void program_copt1(unsigned long *dimm_populated,
  821. unsigned char *iic0_dimm_addr,
  822. unsigned long num_dimm_banks)
  823. {
  824. unsigned long dimm_num;
  825. unsigned long mcopt1;
  826. unsigned long ecc_enabled;
  827. unsigned long ecc = 0;
  828. unsigned long data_width = 0;
  829. unsigned long dimm_32bit;
  830. unsigned long dimm_64bit;
  831. unsigned long registered = 0;
  832. unsigned long attribute = 0;
  833. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  834. unsigned long bankcount;
  835. unsigned long ddrtype;
  836. unsigned long val;
  837. #ifdef CONFIG_DDR_ECC
  838. ecc_enabled = TRUE;
  839. #else
  840. ecc_enabled = FALSE;
  841. #endif
  842. dimm_32bit = FALSE;
  843. dimm_64bit = FALSE;
  844. buf0 = FALSE;
  845. buf1 = FALSE;
  846. /*------------------------------------------------------------------
  847. * Set memory controller options reg 1, SDRAM_MCOPT1.
  848. *-----------------------------------------------------------------*/
  849. mfsdram(SDRAM_MCOPT1, val);
  850. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  851. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  852. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  853. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  854. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  855. SDRAM_MCOPT1_DREF_MASK);
  856. mcopt1 |= SDRAM_MCOPT1_QDEP;
  857. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  858. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  859. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  860. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  861. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  862. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  863. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  864. /* test ecc support */
  865. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  866. if (ecc != 0x02) /* ecc not supported */
  867. ecc_enabled = FALSE;
  868. /* test bank count */
  869. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  870. if (bankcount == 0x04) /* bank count = 4 */
  871. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  872. else /* bank count = 8 */
  873. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  874. /* test DDR type */
  875. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  876. /* test for buffered/unbuffered, registered, differential clocks */
  877. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  878. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  879. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  880. if (dimm_num == 0) {
  881. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  882. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  883. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  884. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  885. if (registered == 1) { /* DDR2 always buffered */
  886. /* TODO: what about above comments ? */
  887. mcopt1 |= SDRAM_MCOPT1_RDEN;
  888. buf0 = TRUE;
  889. } else {
  890. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  891. if ((attribute & 0x02) == 0x00) {
  892. /* buffered not supported */
  893. buf0 = FALSE;
  894. } else {
  895. mcopt1 |= SDRAM_MCOPT1_RDEN;
  896. buf0 = TRUE;
  897. }
  898. }
  899. }
  900. else if (dimm_num == 1) {
  901. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  902. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  903. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  904. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  905. if (registered == 1) {
  906. /* DDR2 always buffered */
  907. mcopt1 |= SDRAM_MCOPT1_RDEN;
  908. buf1 = TRUE;
  909. } else {
  910. if ((attribute & 0x02) == 0x00) {
  911. /* buffered not supported */
  912. buf1 = FALSE;
  913. } else {
  914. mcopt1 |= SDRAM_MCOPT1_RDEN;
  915. buf1 = TRUE;
  916. }
  917. }
  918. }
  919. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  920. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  921. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  922. switch (data_width) {
  923. case 72:
  924. case 64:
  925. dimm_64bit = TRUE;
  926. break;
  927. case 40:
  928. case 32:
  929. dimm_32bit = TRUE;
  930. break;
  931. default:
  932. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  933. data_width);
  934. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  935. break;
  936. }
  937. }
  938. }
  939. /* verify matching properties */
  940. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  941. if (buf0 != buf1) {
  942. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  943. spd_ddr_init_hang ();
  944. }
  945. }
  946. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  947. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  948. spd_ddr_init_hang ();
  949. }
  950. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  951. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  952. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  953. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  954. } else {
  955. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  956. spd_ddr_init_hang ();
  957. }
  958. if (ecc_enabled == TRUE)
  959. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  960. else
  961. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  962. mtsdram(SDRAM_MCOPT1, mcopt1);
  963. }
  964. /*-----------------------------------------------------------------------------+
  965. * program_codt.
  966. *-----------------------------------------------------------------------------*/
  967. static void program_codt(unsigned long *dimm_populated,
  968. unsigned char *iic0_dimm_addr,
  969. unsigned long num_dimm_banks)
  970. {
  971. unsigned long codt;
  972. unsigned long modt0 = 0;
  973. unsigned long modt1 = 0;
  974. unsigned long modt2 = 0;
  975. unsigned long modt3 = 0;
  976. unsigned char dimm_num;
  977. unsigned char dimm_rank;
  978. unsigned char total_rank = 0;
  979. unsigned char total_dimm = 0;
  980. unsigned char dimm_type = 0;
  981. unsigned char firstSlot = 0;
  982. /*------------------------------------------------------------------
  983. * Set the SDRAM Controller On Die Termination Register
  984. *-----------------------------------------------------------------*/
  985. mfsdram(SDRAM_CODT, codt);
  986. codt |= (SDRAM_CODT_IO_NMODE
  987. & (~SDRAM_CODT_DQS_SINGLE_END
  988. & ~SDRAM_CODT_CKSE_SINGLE_END
  989. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  990. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  991. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  992. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  993. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  994. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  995. dimm_rank = (dimm_rank & 0x0F) + 1;
  996. dimm_type = SDRAM_DDR2;
  997. } else {
  998. dimm_rank = dimm_rank & 0x0F;
  999. dimm_type = SDRAM_DDR1;
  1000. }
  1001. total_rank += dimm_rank;
  1002. total_dimm++;
  1003. if ((dimm_num == 0) && (total_dimm == 1))
  1004. firstSlot = TRUE;
  1005. else
  1006. firstSlot = FALSE;
  1007. }
  1008. }
  1009. if (dimm_type == SDRAM_DDR2) {
  1010. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1011. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1012. if (total_rank == 1) {
  1013. codt |= CALC_ODT_R(0);
  1014. modt0 = CALC_ODT_W(0);
  1015. modt1 = 0x00000000;
  1016. modt2 = 0x00000000;
  1017. modt3 = 0x00000000;
  1018. }
  1019. if (total_rank == 2) {
  1020. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1021. modt0 = CALC_ODT_W(0);
  1022. modt1 = CALC_ODT_W(0);
  1023. modt2 = 0x00000000;
  1024. modt3 = 0x00000000;
  1025. }
  1026. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1027. if (total_rank == 1) {
  1028. codt |= CALC_ODT_R(2);
  1029. modt0 = 0x00000000;
  1030. modt1 = 0x00000000;
  1031. modt2 = CALC_ODT_W(2);
  1032. modt3 = 0x00000000;
  1033. }
  1034. if (total_rank == 2) {
  1035. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1036. modt0 = 0x00000000;
  1037. modt1 = 0x00000000;
  1038. modt2 = CALC_ODT_W(2);
  1039. modt3 = CALC_ODT_W(2);
  1040. }
  1041. }
  1042. if (total_dimm == 2) {
  1043. if (total_rank == 2) {
  1044. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1045. modt0 = CALC_ODT_RW(2);
  1046. modt1 = 0x00000000;
  1047. modt2 = CALC_ODT_RW(0);
  1048. modt3 = 0x00000000;
  1049. }
  1050. if (total_rank == 4) {
  1051. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1052. CALC_ODT_R(2) | CALC_ODT_R(3);
  1053. modt0 = CALC_ODT_RW(2);
  1054. modt1 = 0x00000000;
  1055. modt2 = CALC_ODT_RW(0);
  1056. modt3 = 0x00000000;
  1057. }
  1058. }
  1059. } else {
  1060. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1061. modt0 = 0x00000000;
  1062. modt1 = 0x00000000;
  1063. modt2 = 0x00000000;
  1064. modt3 = 0x00000000;
  1065. if (total_dimm == 1) {
  1066. if (total_rank == 1)
  1067. codt |= 0x00800000;
  1068. if (total_rank == 2)
  1069. codt |= 0x02800000;
  1070. }
  1071. if (total_dimm == 2) {
  1072. if (total_rank == 2)
  1073. codt |= 0x08800000;
  1074. if (total_rank == 4)
  1075. codt |= 0x2a800000;
  1076. }
  1077. }
  1078. debug("nb of dimm %d\n", total_dimm);
  1079. debug("nb of rank %d\n", total_rank);
  1080. if (total_dimm == 1)
  1081. debug("dimm in slot %d\n", firstSlot);
  1082. mtsdram(SDRAM_CODT, codt);
  1083. mtsdram(SDRAM_MODT0, modt0);
  1084. mtsdram(SDRAM_MODT1, modt1);
  1085. mtsdram(SDRAM_MODT2, modt2);
  1086. mtsdram(SDRAM_MODT3, modt3);
  1087. }
  1088. /*-----------------------------------------------------------------------------+
  1089. * program_initplr.
  1090. *-----------------------------------------------------------------------------*/
  1091. static void program_initplr(unsigned long *dimm_populated,
  1092. unsigned char *iic0_dimm_addr,
  1093. unsigned long num_dimm_banks,
  1094. ddr_cas_id_t selected_cas,
  1095. int write_recovery)
  1096. {
  1097. u32 cas = 0;
  1098. u32 odt = 0;
  1099. u32 ods = 0;
  1100. u32 mr;
  1101. u32 wr;
  1102. u32 emr;
  1103. u32 emr2;
  1104. u32 emr3;
  1105. int dimm_num;
  1106. int total_dimm = 0;
  1107. /******************************************************
  1108. ** Assumption: if more than one DIMM, all DIMMs are the same
  1109. ** as already checked in check_memory_type
  1110. ******************************************************/
  1111. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1112. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1113. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1114. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1115. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1116. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1117. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1118. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1119. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1120. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1121. switch (selected_cas) {
  1122. case DDR_CAS_3:
  1123. cas = 3 << 4;
  1124. break;
  1125. case DDR_CAS_4:
  1126. cas = 4 << 4;
  1127. break;
  1128. case DDR_CAS_5:
  1129. cas = 5 << 4;
  1130. break;
  1131. default:
  1132. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1133. spd_ddr_init_hang ();
  1134. break;
  1135. }
  1136. #if 0
  1137. /*
  1138. * ToDo - Still a problem with the write recovery:
  1139. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1140. * in the INITPLR reg to the value calculated in program_mode()
  1141. * results in not correctly working DDR2 memory (crash after
  1142. * relocation).
  1143. *
  1144. * So for now, set the write recovery to 3. This seems to work
  1145. * on the Corair module too.
  1146. *
  1147. * 2007-03-01, sr
  1148. */
  1149. switch (write_recovery) {
  1150. case 3:
  1151. wr = WRITE_RECOV_3;
  1152. break;
  1153. case 4:
  1154. wr = WRITE_RECOV_4;
  1155. break;
  1156. case 5:
  1157. wr = WRITE_RECOV_5;
  1158. break;
  1159. case 6:
  1160. wr = WRITE_RECOV_6;
  1161. break;
  1162. default:
  1163. printf("ERROR: write recovery not support (%d)", write_recovery);
  1164. spd_ddr_init_hang ();
  1165. break;
  1166. }
  1167. #else
  1168. wr = WRITE_RECOV_3; /* test-only, see description above */
  1169. #endif
  1170. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1171. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1172. total_dimm++;
  1173. if (total_dimm == 1) {
  1174. odt = ODT_150_OHM;
  1175. ods = ODS_FULL;
  1176. } else if (total_dimm == 2) {
  1177. odt = ODT_75_OHM;
  1178. ods = ODS_REDUCED;
  1179. } else {
  1180. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1181. spd_ddr_init_hang ();
  1182. }
  1183. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1184. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1185. emr2 = CMD_EMR | SELECT_EMR2;
  1186. emr3 = CMD_EMR | SELECT_EMR3;
  1187. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1188. udelay(1000);
  1189. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1190. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1191. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1192. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1193. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1194. udelay(1000);
  1195. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1196. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1197. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1198. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1199. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1200. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1201. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1202. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1203. } else {
  1204. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1205. spd_ddr_init_hang ();
  1206. }
  1207. }
  1208. /*------------------------------------------------------------------
  1209. * This routine programs the SDRAM_MMODE register.
  1210. * the selected_cas is an output parameter, that will be passed
  1211. * by caller to call the above program_initplr( )
  1212. *-----------------------------------------------------------------*/
  1213. static void program_mode(unsigned long *dimm_populated,
  1214. unsigned char *iic0_dimm_addr,
  1215. unsigned long num_dimm_banks,
  1216. ddr_cas_id_t *selected_cas,
  1217. int *write_recovery)
  1218. {
  1219. unsigned long dimm_num;
  1220. unsigned long sdram_ddr1;
  1221. unsigned long t_wr_ns;
  1222. unsigned long t_wr_clk;
  1223. unsigned long cas_bit;
  1224. unsigned long cas_index;
  1225. unsigned long sdram_freq;
  1226. unsigned long ddr_check;
  1227. unsigned long mmode;
  1228. unsigned long tcyc_reg;
  1229. unsigned long cycle_2_0_clk;
  1230. unsigned long cycle_2_5_clk;
  1231. unsigned long cycle_3_0_clk;
  1232. unsigned long cycle_4_0_clk;
  1233. unsigned long cycle_5_0_clk;
  1234. unsigned long max_2_0_tcyc_ns_x_100;
  1235. unsigned long max_2_5_tcyc_ns_x_100;
  1236. unsigned long max_3_0_tcyc_ns_x_100;
  1237. unsigned long max_4_0_tcyc_ns_x_100;
  1238. unsigned long max_5_0_tcyc_ns_x_100;
  1239. unsigned long cycle_time_ns_x_100[3];
  1240. PPC4xx_SYS_INFO board_cfg;
  1241. unsigned char cas_2_0_available;
  1242. unsigned char cas_2_5_available;
  1243. unsigned char cas_3_0_available;
  1244. unsigned char cas_4_0_available;
  1245. unsigned char cas_5_0_available;
  1246. unsigned long sdr_ddrpll;
  1247. /*------------------------------------------------------------------
  1248. * Get the board configuration info.
  1249. *-----------------------------------------------------------------*/
  1250. get_sys_info(&board_cfg);
  1251. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1252. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1253. debug("sdram_freq=%d\n", sdram_freq);
  1254. /*------------------------------------------------------------------
  1255. * Handle the timing. We need to find the worst case timing of all
  1256. * the dimm modules installed.
  1257. *-----------------------------------------------------------------*/
  1258. t_wr_ns = 0;
  1259. cas_2_0_available = TRUE;
  1260. cas_2_5_available = TRUE;
  1261. cas_3_0_available = TRUE;
  1262. cas_4_0_available = TRUE;
  1263. cas_5_0_available = TRUE;
  1264. max_2_0_tcyc_ns_x_100 = 10;
  1265. max_2_5_tcyc_ns_x_100 = 10;
  1266. max_3_0_tcyc_ns_x_100 = 10;
  1267. max_4_0_tcyc_ns_x_100 = 10;
  1268. max_5_0_tcyc_ns_x_100 = 10;
  1269. sdram_ddr1 = TRUE;
  1270. /* loop through all the DIMM slots on the board */
  1271. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1272. /* If a dimm is installed in a particular slot ... */
  1273. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1274. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1275. sdram_ddr1 = TRUE;
  1276. else
  1277. sdram_ddr1 = FALSE;
  1278. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1279. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1280. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1281. /* For a particular DIMM, grab the three CAS values it supports */
  1282. for (cas_index = 0; cas_index < 3; cas_index++) {
  1283. switch (cas_index) {
  1284. case 0:
  1285. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1286. break;
  1287. case 1:
  1288. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1289. break;
  1290. default:
  1291. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1292. break;
  1293. }
  1294. if ((tcyc_reg & 0x0F) >= 10) {
  1295. if ((tcyc_reg & 0x0F) == 0x0D) {
  1296. /* Convert from hex to decimal */
  1297. cycle_time_ns_x_100[cas_index] =
  1298. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1299. } else {
  1300. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1301. "in slot %d\n", (unsigned int)dimm_num);
  1302. spd_ddr_init_hang ();
  1303. }
  1304. } else {
  1305. /* Convert from hex to decimal */
  1306. cycle_time_ns_x_100[cas_index] =
  1307. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1308. ((tcyc_reg & 0x0F)*10);
  1309. }
  1310. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1311. cycle_time_ns_x_100[cas_index]);
  1312. }
  1313. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1314. /* supported for a particular DIMM. */
  1315. cas_index = 0;
  1316. if (sdram_ddr1) {
  1317. /*
  1318. * DDR devices use the following bitmask for CAS latency:
  1319. * Bit 7 6 5 4 3 2 1 0
  1320. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1321. */
  1322. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1323. (cycle_time_ns_x_100[cas_index] != 0)) {
  1324. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1325. cycle_time_ns_x_100[cas_index]);
  1326. cas_index++;
  1327. } else {
  1328. if (cas_index != 0)
  1329. cas_index++;
  1330. cas_4_0_available = FALSE;
  1331. }
  1332. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1333. (cycle_time_ns_x_100[cas_index] != 0)) {
  1334. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1335. cycle_time_ns_x_100[cas_index]);
  1336. cas_index++;
  1337. } else {
  1338. if (cas_index != 0)
  1339. cas_index++;
  1340. cas_3_0_available = FALSE;
  1341. }
  1342. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1343. (cycle_time_ns_x_100[cas_index] != 0)) {
  1344. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1345. cycle_time_ns_x_100[cas_index]);
  1346. cas_index++;
  1347. } else {
  1348. if (cas_index != 0)
  1349. cas_index++;
  1350. cas_2_5_available = FALSE;
  1351. }
  1352. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1353. (cycle_time_ns_x_100[cas_index] != 0)) {
  1354. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1355. cycle_time_ns_x_100[cas_index]);
  1356. cas_index++;
  1357. } else {
  1358. if (cas_index != 0)
  1359. cas_index++;
  1360. cas_2_0_available = FALSE;
  1361. }
  1362. } else {
  1363. /*
  1364. * DDR2 devices use the following bitmask for CAS latency:
  1365. * Bit 7 6 5 4 3 2 1 0
  1366. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1367. */
  1368. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1369. (cycle_time_ns_x_100[cas_index] != 0)) {
  1370. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1371. cycle_time_ns_x_100[cas_index]);
  1372. cas_index++;
  1373. } else {
  1374. if (cas_index != 0)
  1375. cas_index++;
  1376. cas_5_0_available = FALSE;
  1377. }
  1378. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1379. (cycle_time_ns_x_100[cas_index] != 0)) {
  1380. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1381. cycle_time_ns_x_100[cas_index]);
  1382. cas_index++;
  1383. } else {
  1384. if (cas_index != 0)
  1385. cas_index++;
  1386. cas_4_0_available = FALSE;
  1387. }
  1388. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1389. (cycle_time_ns_x_100[cas_index] != 0)) {
  1390. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1391. cycle_time_ns_x_100[cas_index]);
  1392. cas_index++;
  1393. } else {
  1394. if (cas_index != 0)
  1395. cas_index++;
  1396. cas_3_0_available = FALSE;
  1397. }
  1398. }
  1399. }
  1400. }
  1401. /*------------------------------------------------------------------
  1402. * Set the SDRAM mode, SDRAM_MMODE
  1403. *-----------------------------------------------------------------*/
  1404. mfsdram(SDRAM_MMODE, mmode);
  1405. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1406. /* add 10 here because of rounding problems */
  1407. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1408. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1409. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1410. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1411. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1412. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1413. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1414. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1415. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1416. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1417. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1418. *selected_cas = DDR_CAS_2;
  1419. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1420. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1421. *selected_cas = DDR_CAS_2_5;
  1422. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1423. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1424. *selected_cas = DDR_CAS_3;
  1425. } else {
  1426. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1427. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1428. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1429. spd_ddr_init_hang ();
  1430. }
  1431. } else { /* DDR2 */
  1432. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1433. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1434. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1435. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1436. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1437. *selected_cas = DDR_CAS_3;
  1438. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1439. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1440. *selected_cas = DDR_CAS_4;
  1441. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1442. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1443. *selected_cas = DDR_CAS_5;
  1444. } else {
  1445. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1446. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1447. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1448. printf("cas3=%d cas4=%d cas5=%d\n",
  1449. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1450. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1451. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1452. spd_ddr_init_hang ();
  1453. }
  1454. }
  1455. if (sdram_ddr1 == TRUE)
  1456. mmode |= SDRAM_MMODE_WR_DDR1;
  1457. else {
  1458. /* loop through all the DIMM slots on the board */
  1459. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1460. /* If a dimm is installed in a particular slot ... */
  1461. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1462. t_wr_ns = max(t_wr_ns,
  1463. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1464. }
  1465. /*
  1466. * convert from nanoseconds to ddr clocks
  1467. * round up if necessary
  1468. */
  1469. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1470. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1471. if (sdram_freq != ddr_check)
  1472. t_wr_clk++;
  1473. switch (t_wr_clk) {
  1474. case 0:
  1475. case 1:
  1476. case 2:
  1477. case 3:
  1478. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1479. break;
  1480. case 4:
  1481. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1482. break;
  1483. case 5:
  1484. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1485. break;
  1486. default:
  1487. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1488. break;
  1489. }
  1490. *write_recovery = t_wr_clk;
  1491. }
  1492. debug("CAS latency = %d\n", *selected_cas);
  1493. debug("Write recovery = %d\n", *write_recovery);
  1494. mtsdram(SDRAM_MMODE, mmode);
  1495. }
  1496. /*-----------------------------------------------------------------------------+
  1497. * program_rtr.
  1498. *-----------------------------------------------------------------------------*/
  1499. static void program_rtr(unsigned long *dimm_populated,
  1500. unsigned char *iic0_dimm_addr,
  1501. unsigned long num_dimm_banks)
  1502. {
  1503. PPC4xx_SYS_INFO board_cfg;
  1504. unsigned long max_refresh_rate;
  1505. unsigned long dimm_num;
  1506. unsigned long refresh_rate_type;
  1507. unsigned long refresh_rate;
  1508. unsigned long rint;
  1509. unsigned long sdram_freq;
  1510. unsigned long sdr_ddrpll;
  1511. unsigned long val;
  1512. /*------------------------------------------------------------------
  1513. * Get the board configuration info.
  1514. *-----------------------------------------------------------------*/
  1515. get_sys_info(&board_cfg);
  1516. /*------------------------------------------------------------------
  1517. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1518. *-----------------------------------------------------------------*/
  1519. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1520. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1521. max_refresh_rate = 0;
  1522. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1523. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1524. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1525. refresh_rate_type &= 0x7F;
  1526. switch (refresh_rate_type) {
  1527. case 0:
  1528. refresh_rate = 15625;
  1529. break;
  1530. case 1:
  1531. refresh_rate = 3906;
  1532. break;
  1533. case 2:
  1534. refresh_rate = 7812;
  1535. break;
  1536. case 3:
  1537. refresh_rate = 31250;
  1538. break;
  1539. case 4:
  1540. refresh_rate = 62500;
  1541. break;
  1542. case 5:
  1543. refresh_rate = 125000;
  1544. break;
  1545. default:
  1546. refresh_rate = 0;
  1547. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1548. (unsigned int)dimm_num);
  1549. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1550. spd_ddr_init_hang ();
  1551. break;
  1552. }
  1553. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1554. }
  1555. }
  1556. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1557. mfsdram(SDRAM_RTR, val);
  1558. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1559. (SDRAM_RTR_RINT_ENCODE(rint)));
  1560. }
  1561. /*------------------------------------------------------------------
  1562. * This routine programs the SDRAM_TRx registers.
  1563. *-----------------------------------------------------------------*/
  1564. static void program_tr(unsigned long *dimm_populated,
  1565. unsigned char *iic0_dimm_addr,
  1566. unsigned long num_dimm_banks)
  1567. {
  1568. unsigned long dimm_num;
  1569. unsigned long sdram_ddr1;
  1570. unsigned long t_rp_ns;
  1571. unsigned long t_rcd_ns;
  1572. unsigned long t_rrd_ns;
  1573. unsigned long t_ras_ns;
  1574. unsigned long t_rc_ns;
  1575. unsigned long t_rfc_ns;
  1576. unsigned long t_wpc_ns;
  1577. unsigned long t_wtr_ns;
  1578. unsigned long t_rpc_ns;
  1579. unsigned long t_rp_clk;
  1580. unsigned long t_rcd_clk;
  1581. unsigned long t_rrd_clk;
  1582. unsigned long t_ras_clk;
  1583. unsigned long t_rc_clk;
  1584. unsigned long t_rfc_clk;
  1585. unsigned long t_wpc_clk;
  1586. unsigned long t_wtr_clk;
  1587. unsigned long t_rpc_clk;
  1588. unsigned long sdtr1, sdtr2, sdtr3;
  1589. unsigned long ddr_check;
  1590. unsigned long sdram_freq;
  1591. unsigned long sdr_ddrpll;
  1592. PPC4xx_SYS_INFO board_cfg;
  1593. /*------------------------------------------------------------------
  1594. * Get the board configuration info.
  1595. *-----------------------------------------------------------------*/
  1596. get_sys_info(&board_cfg);
  1597. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1598. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1599. /*------------------------------------------------------------------
  1600. * Handle the timing. We need to find the worst case timing of all
  1601. * the dimm modules installed.
  1602. *-----------------------------------------------------------------*/
  1603. t_rp_ns = 0;
  1604. t_rrd_ns = 0;
  1605. t_rcd_ns = 0;
  1606. t_ras_ns = 0;
  1607. t_rc_ns = 0;
  1608. t_rfc_ns = 0;
  1609. t_wpc_ns = 0;
  1610. t_wtr_ns = 0;
  1611. t_rpc_ns = 0;
  1612. sdram_ddr1 = TRUE;
  1613. /* loop through all the DIMM slots on the board */
  1614. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1615. /* If a dimm is installed in a particular slot ... */
  1616. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1617. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1618. sdram_ddr1 = TRUE;
  1619. else
  1620. sdram_ddr1 = FALSE;
  1621. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1622. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1623. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1624. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1625. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1626. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1627. }
  1628. }
  1629. /*------------------------------------------------------------------
  1630. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1631. *-----------------------------------------------------------------*/
  1632. mfsdram(SDRAM_SDTR1, sdtr1);
  1633. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1634. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1635. /* default values */
  1636. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1637. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1638. /* normal operations */
  1639. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1640. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1641. mtsdram(SDRAM_SDTR1, sdtr1);
  1642. /*------------------------------------------------------------------
  1643. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1644. *-----------------------------------------------------------------*/
  1645. mfsdram(SDRAM_SDTR2, sdtr2);
  1646. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1647. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1648. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1649. SDRAM_SDTR2_RRD_MASK);
  1650. /*
  1651. * convert t_rcd from nanoseconds to ddr clocks
  1652. * round up if necessary
  1653. */
  1654. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1655. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1656. if (sdram_freq != ddr_check)
  1657. t_rcd_clk++;
  1658. switch (t_rcd_clk) {
  1659. case 0:
  1660. case 1:
  1661. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1662. break;
  1663. case 2:
  1664. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1665. break;
  1666. case 3:
  1667. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1668. break;
  1669. case 4:
  1670. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1671. break;
  1672. default:
  1673. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1674. break;
  1675. }
  1676. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1677. if (sdram_freq < 200000000) {
  1678. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1679. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1680. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1681. } else {
  1682. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1683. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1684. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1685. }
  1686. } else { /* DDR2 */
  1687. /* loop through all the DIMM slots on the board */
  1688. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1689. /* If a dimm is installed in a particular slot ... */
  1690. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1691. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1692. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1693. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1694. }
  1695. }
  1696. /*
  1697. * convert from nanoseconds to ddr clocks
  1698. * round up if necessary
  1699. */
  1700. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1701. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1702. if (sdram_freq != ddr_check)
  1703. t_wpc_clk++;
  1704. switch (t_wpc_clk) {
  1705. case 0:
  1706. case 1:
  1707. case 2:
  1708. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1709. break;
  1710. case 3:
  1711. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1712. break;
  1713. case 4:
  1714. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1715. break;
  1716. case 5:
  1717. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1718. break;
  1719. default:
  1720. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1721. break;
  1722. }
  1723. /*
  1724. * convert from nanoseconds to ddr clocks
  1725. * round up if necessary
  1726. */
  1727. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1728. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1729. if (sdram_freq != ddr_check)
  1730. t_wtr_clk++;
  1731. switch (t_wtr_clk) {
  1732. case 0:
  1733. case 1:
  1734. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1735. break;
  1736. case 2:
  1737. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1738. break;
  1739. case 3:
  1740. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1741. break;
  1742. default:
  1743. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1744. break;
  1745. }
  1746. /*
  1747. * convert from nanoseconds to ddr clocks
  1748. * round up if necessary
  1749. */
  1750. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1751. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1752. if (sdram_freq != ddr_check)
  1753. t_rpc_clk++;
  1754. switch (t_rpc_clk) {
  1755. case 0:
  1756. case 1:
  1757. case 2:
  1758. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1759. break;
  1760. case 3:
  1761. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1762. break;
  1763. default:
  1764. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1765. break;
  1766. }
  1767. }
  1768. /* default value */
  1769. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1770. /*
  1771. * convert t_rrd from nanoseconds to ddr clocks
  1772. * round up if necessary
  1773. */
  1774. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1775. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1776. if (sdram_freq != ddr_check)
  1777. t_rrd_clk++;
  1778. if (t_rrd_clk == 3)
  1779. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1780. else
  1781. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1782. /*
  1783. * convert t_rp from nanoseconds to ddr clocks
  1784. * round up if necessary
  1785. */
  1786. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1787. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1788. if (sdram_freq != ddr_check)
  1789. t_rp_clk++;
  1790. switch (t_rp_clk) {
  1791. case 0:
  1792. case 1:
  1793. case 2:
  1794. case 3:
  1795. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1796. break;
  1797. case 4:
  1798. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1799. break;
  1800. case 5:
  1801. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1802. break;
  1803. case 6:
  1804. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1805. break;
  1806. default:
  1807. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1808. break;
  1809. }
  1810. mtsdram(SDRAM_SDTR2, sdtr2);
  1811. /*------------------------------------------------------------------
  1812. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1813. *-----------------------------------------------------------------*/
  1814. mfsdram(SDRAM_SDTR3, sdtr3);
  1815. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1816. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1817. /*
  1818. * convert t_ras from nanoseconds to ddr clocks
  1819. * round up if necessary
  1820. */
  1821. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1822. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1823. if (sdram_freq != ddr_check)
  1824. t_ras_clk++;
  1825. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1826. /*
  1827. * convert t_rc from nanoseconds to ddr clocks
  1828. * round up if necessary
  1829. */
  1830. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1831. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1832. if (sdram_freq != ddr_check)
  1833. t_rc_clk++;
  1834. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1835. /* default xcs value */
  1836. sdtr3 |= SDRAM_SDTR3_XCS;
  1837. /*
  1838. * convert t_rfc from nanoseconds to ddr clocks
  1839. * round up if necessary
  1840. */
  1841. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1842. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1843. if (sdram_freq != ddr_check)
  1844. t_rfc_clk++;
  1845. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1846. mtsdram(SDRAM_SDTR3, sdtr3);
  1847. }
  1848. /*-----------------------------------------------------------------------------+
  1849. * program_bxcf.
  1850. *-----------------------------------------------------------------------------*/
  1851. static void program_bxcf(unsigned long *dimm_populated,
  1852. unsigned char *iic0_dimm_addr,
  1853. unsigned long num_dimm_banks)
  1854. {
  1855. unsigned long dimm_num;
  1856. unsigned long num_col_addr;
  1857. unsigned long num_ranks;
  1858. unsigned long num_banks;
  1859. unsigned long mode;
  1860. unsigned long ind_rank;
  1861. unsigned long ind;
  1862. unsigned long ind_bank;
  1863. unsigned long bank_0_populated;
  1864. /*------------------------------------------------------------------
  1865. * Set the BxCF regs. First, wipe out the bank config registers.
  1866. *-----------------------------------------------------------------*/
  1867. mtsdram(SDRAM_MB0CF, 0x00000000);
  1868. mtsdram(SDRAM_MB1CF, 0x00000000);
  1869. mtsdram(SDRAM_MB2CF, 0x00000000);
  1870. mtsdram(SDRAM_MB3CF, 0x00000000);
  1871. mode = SDRAM_BXCF_M_BE_ENABLE;
  1872. bank_0_populated = 0;
  1873. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1874. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1875. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1876. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1877. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1878. num_ranks = (num_ranks & 0x0F) +1;
  1879. else
  1880. num_ranks = num_ranks & 0x0F;
  1881. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1882. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1883. if (num_banks == 4)
  1884. ind = 0;
  1885. else
  1886. ind = 5 << 8;
  1887. switch (num_col_addr) {
  1888. case 0x08:
  1889. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1890. break;
  1891. case 0x09:
  1892. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1893. break;
  1894. case 0x0A:
  1895. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1896. break;
  1897. case 0x0B:
  1898. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1899. break;
  1900. case 0x0C:
  1901. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1902. break;
  1903. default:
  1904. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1905. (unsigned int)dimm_num);
  1906. printf("ERROR: Unsupported value for number of "
  1907. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1908. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1909. spd_ddr_init_hang ();
  1910. }
  1911. }
  1912. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1913. bank_0_populated = 1;
  1914. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1915. mtsdram(SDRAM_MB0CF +
  1916. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1917. mode);
  1918. }
  1919. }
  1920. }
  1921. }
  1922. /*------------------------------------------------------------------
  1923. * program memory queue.
  1924. *-----------------------------------------------------------------*/
  1925. static void program_memory_queue(unsigned long *dimm_populated,
  1926. unsigned char *iic0_dimm_addr,
  1927. unsigned long num_dimm_banks)
  1928. {
  1929. unsigned long dimm_num;
  1930. unsigned long rank_base_addr;
  1931. unsigned long rank_reg;
  1932. unsigned long rank_size_bytes;
  1933. unsigned long rank_size_id;
  1934. unsigned long num_ranks;
  1935. unsigned long baseadd_size;
  1936. unsigned long i;
  1937. unsigned long bank_0_populated = 0;
  1938. unsigned long total_size = 0;
  1939. /*------------------------------------------------------------------
  1940. * Reset the rank_base_address.
  1941. *-----------------------------------------------------------------*/
  1942. rank_reg = SDRAM_R0BAS;
  1943. rank_base_addr = 0x00000000;
  1944. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1945. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1946. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1947. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1948. num_ranks = (num_ranks & 0x0F) + 1;
  1949. else
  1950. num_ranks = num_ranks & 0x0F;
  1951. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1952. /*------------------------------------------------------------------
  1953. * Set the sizes
  1954. *-----------------------------------------------------------------*/
  1955. baseadd_size = 0;
  1956. switch (rank_size_id) {
  1957. case 0x01:
  1958. baseadd_size |= SDRAM_RXBAS_SDSZ_1024;
  1959. total_size = 1024;
  1960. break;
  1961. case 0x02:
  1962. baseadd_size |= SDRAM_RXBAS_SDSZ_2048;
  1963. total_size = 2048;
  1964. break;
  1965. case 0x04:
  1966. baseadd_size |= SDRAM_RXBAS_SDSZ_4096;
  1967. total_size = 4096;
  1968. break;
  1969. case 0x08:
  1970. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1971. total_size = 32;
  1972. break;
  1973. case 0x10:
  1974. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1975. total_size = 64;
  1976. break;
  1977. case 0x20:
  1978. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1979. total_size = 128;
  1980. break;
  1981. case 0x40:
  1982. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1983. total_size = 256;
  1984. break;
  1985. case 0x80:
  1986. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1987. total_size = 512;
  1988. break;
  1989. default:
  1990. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1991. (unsigned int)dimm_num);
  1992. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1993. (unsigned int)rank_size_id);
  1994. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1995. spd_ddr_init_hang ();
  1996. }
  1997. rank_size_bytes = total_size << 20;
  1998. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1999. bank_0_populated = 1;
  2000. for (i = 0; i < num_ranks; i++) {
  2001. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  2002. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  2003. baseadd_size));
  2004. rank_base_addr += rank_size_bytes;
  2005. }
  2006. }
  2007. }
  2008. #if defined(CONFIG_460EX) || defined(CONFIG_460GT)
  2009. /*
  2010. * Enable high bandwidth access on 460EX/GT.
  2011. * This should/could probably be done on other
  2012. * PPC's too, like 440SPe.
  2013. * This is currently not used, but with this setup
  2014. * it is possible to use it later on in e.g. the Linux
  2015. * EMAC driver for performance gain.
  2016. */
  2017. mtdcr(SDRAM_PLBADDULL, 0x00000000); /* MQ0_BAUL */
  2018. mtdcr(SDRAM_PLBADDUHB, 0x00000008); /* MQ0_BAUH */
  2019. #endif
  2020. }
  2021. /*-----------------------------------------------------------------------------+
  2022. * is_ecc_enabled.
  2023. *-----------------------------------------------------------------------------*/
  2024. static unsigned long is_ecc_enabled(void)
  2025. {
  2026. unsigned long dimm_num;
  2027. unsigned long ecc;
  2028. unsigned long val;
  2029. ecc = 0;
  2030. /* loop through all the DIMM slots on the board */
  2031. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2032. mfsdram(SDRAM_MCOPT1, val);
  2033. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2034. }
  2035. return ecc;
  2036. }
  2037. static void blank_string(int size)
  2038. {
  2039. int i;
  2040. for (i=0; i<size; i++)
  2041. putc('\b');
  2042. for (i=0; i<size; i++)
  2043. putc(' ');
  2044. for (i=0; i<size; i++)
  2045. putc('\b');
  2046. }
  2047. #ifdef CONFIG_DDR_ECC
  2048. /*-----------------------------------------------------------------------------+
  2049. * program_ecc.
  2050. *-----------------------------------------------------------------------------*/
  2051. static void program_ecc(unsigned long *dimm_populated,
  2052. unsigned char *iic0_dimm_addr,
  2053. unsigned long num_dimm_banks,
  2054. unsigned long tlb_word2_i_value)
  2055. {
  2056. unsigned long mcopt1;
  2057. unsigned long mcopt2;
  2058. unsigned long mcstat;
  2059. unsigned long dimm_num;
  2060. unsigned long ecc;
  2061. ecc = 0;
  2062. /* loop through all the DIMM slots on the board */
  2063. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2064. /* If a dimm is installed in a particular slot ... */
  2065. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2066. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2067. }
  2068. if (ecc == 0)
  2069. return;
  2070. mfsdram(SDRAM_MCOPT1, mcopt1);
  2071. mfsdram(SDRAM_MCOPT2, mcopt2);
  2072. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2073. /* DDR controller must be enabled and not in self-refresh. */
  2074. mfsdram(SDRAM_MCSTAT, mcstat);
  2075. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2076. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2077. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2078. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2079. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2080. }
  2081. }
  2082. return;
  2083. }
  2084. static void wait_ddr_idle(void)
  2085. {
  2086. u32 val;
  2087. do {
  2088. mfsdram(SDRAM_MCSTAT, val);
  2089. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2090. }
  2091. /*-----------------------------------------------------------------------------+
  2092. * program_ecc_addr.
  2093. *-----------------------------------------------------------------------------*/
  2094. static void program_ecc_addr(unsigned long start_address,
  2095. unsigned long num_bytes,
  2096. unsigned long tlb_word2_i_value)
  2097. {
  2098. unsigned long current_address;
  2099. unsigned long end_address;
  2100. unsigned long address_increment;
  2101. unsigned long mcopt1;
  2102. char str[] = "ECC generation -";
  2103. char slash[] = "\\|/-\\|/-";
  2104. int loop = 0;
  2105. int loopi = 0;
  2106. current_address = start_address;
  2107. mfsdram(SDRAM_MCOPT1, mcopt1);
  2108. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2109. mtsdram(SDRAM_MCOPT1,
  2110. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2111. sync();
  2112. eieio();
  2113. wait_ddr_idle();
  2114. puts(str);
  2115. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2116. /* ECC bit set method for non-cached memory */
  2117. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2118. address_increment = 4;
  2119. else
  2120. address_increment = 8;
  2121. end_address = current_address + num_bytes;
  2122. while (current_address < end_address) {
  2123. *((unsigned long *)current_address) = 0x00000000;
  2124. current_address += address_increment;
  2125. if ((loop++ % (2 << 20)) == 0) {
  2126. putc('\b');
  2127. putc(slash[loopi++ % 8]);
  2128. }
  2129. }
  2130. } else {
  2131. /* ECC bit set method for cached memory */
  2132. dcbz_area(start_address, num_bytes);
  2133. /* Write modified dcache lines back to memory */
  2134. clean_dcache_range(start_address, start_address + num_bytes);
  2135. }
  2136. blank_string(strlen(str));
  2137. sync();
  2138. eieio();
  2139. wait_ddr_idle();
  2140. /* clear ECC error repoting registers */
  2141. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2142. mtdcr(0x4c, 0xffffffff);
  2143. mtsdram(SDRAM_MCOPT1,
  2144. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2145. sync();
  2146. eieio();
  2147. wait_ddr_idle();
  2148. }
  2149. }
  2150. #endif
  2151. /*-----------------------------------------------------------------------------+
  2152. * program_DQS_calibration.
  2153. *-----------------------------------------------------------------------------*/
  2154. static void program_DQS_calibration(unsigned long *dimm_populated,
  2155. unsigned char *iic0_dimm_addr,
  2156. unsigned long num_dimm_banks)
  2157. {
  2158. unsigned long val;
  2159. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2160. mtsdram(SDRAM_RQDC, 0x80000037);
  2161. mtsdram(SDRAM_RDCC, 0x40000000);
  2162. mtsdram(SDRAM_RFDC, 0x000001DF);
  2163. test();
  2164. #else
  2165. /*------------------------------------------------------------------
  2166. * Program RDCC register
  2167. * Read sample cycle auto-update enable
  2168. *-----------------------------------------------------------------*/
  2169. mfsdram(SDRAM_RDCC, val);
  2170. mtsdram(SDRAM_RDCC,
  2171. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2172. | SDRAM_RDCC_RSAE_ENABLE);
  2173. /*------------------------------------------------------------------
  2174. * Program RQDC register
  2175. * Internal DQS delay mechanism enable
  2176. *-----------------------------------------------------------------*/
  2177. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2178. /*------------------------------------------------------------------
  2179. * Program RFDC register
  2180. * Set Feedback Fractional Oversample
  2181. * Auto-detect read sample cycle enable
  2182. *-----------------------------------------------------------------*/
  2183. mfsdram(SDRAM_RFDC, val);
  2184. mtsdram(SDRAM_RFDC,
  2185. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2186. SDRAM_RFDC_RFFD_MASK))
  2187. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2188. SDRAM_RFDC_RFFD_ENCODE(0)));
  2189. DQS_calibration_process();
  2190. #endif
  2191. }
  2192. static int short_mem_test(void)
  2193. {
  2194. u32 *membase;
  2195. u32 bxcr_num;
  2196. u32 bxcf;
  2197. int i;
  2198. int j;
  2199. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2200. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2201. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2202. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2203. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2204. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2205. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2206. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2207. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2208. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2209. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2210. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2211. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2212. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2213. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2214. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2215. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2216. int l;
  2217. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2218. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2219. /* Banks enabled */
  2220. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2221. /* Bank is enabled */
  2222. /*------------------------------------------------------------------
  2223. * Run the short memory test.
  2224. *-----------------------------------------------------------------*/
  2225. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2226. for (i = 0; i < NUMMEMTESTS; i++) {
  2227. for (j = 0; j < NUMMEMWORDS; j++) {
  2228. membase[j] = test[i][j];
  2229. ppcDcbf((u32)&(membase[j]));
  2230. }
  2231. sync();
  2232. for (l=0; l<NUMLOOPS; l++) {
  2233. for (j = 0; j < NUMMEMWORDS; j++) {
  2234. if (membase[j] != test[i][j]) {
  2235. ppcDcbf((u32)&(membase[j]));
  2236. return 0;
  2237. }
  2238. ppcDcbf((u32)&(membase[j]));
  2239. }
  2240. sync();
  2241. }
  2242. }
  2243. } /* if bank enabled */
  2244. } /* for bxcf_num */
  2245. return 1;
  2246. }
  2247. #ifndef HARD_CODED_DQS
  2248. /*-----------------------------------------------------------------------------+
  2249. * DQS_calibration_process.
  2250. *-----------------------------------------------------------------------------*/
  2251. static void DQS_calibration_process(void)
  2252. {
  2253. unsigned long rfdc_reg;
  2254. unsigned long rffd;
  2255. unsigned long val;
  2256. long rffd_average;
  2257. long max_start;
  2258. long min_end;
  2259. unsigned long begin_rqfd[MAXRANKS];
  2260. unsigned long begin_rffd[MAXRANKS];
  2261. unsigned long end_rqfd[MAXRANKS];
  2262. unsigned long end_rffd[MAXRANKS];
  2263. char window_found;
  2264. unsigned long dlycal;
  2265. unsigned long dly_val;
  2266. unsigned long max_pass_length;
  2267. unsigned long current_pass_length;
  2268. unsigned long current_fail_length;
  2269. unsigned long current_start;
  2270. long max_end;
  2271. unsigned char fail_found;
  2272. unsigned char pass_found;
  2273. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2274. u32 rqdc_reg;
  2275. u32 rqfd;
  2276. u32 rqfd_start;
  2277. u32 rqfd_average;
  2278. int loopi = 0;
  2279. char str[] = "Auto calibration -";
  2280. char slash[] = "\\|/-\\|/-";
  2281. /*------------------------------------------------------------------
  2282. * Test to determine the best read clock delay tuning bits.
  2283. *
  2284. * Before the DDR controller can be used, the read clock delay needs to be
  2285. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2286. * This value cannot be hardcoded into the program because it changes
  2287. * depending on the board's setup and environment.
  2288. * To do this, all delay values are tested to see if they
  2289. * work or not. By doing this, you get groups of fails with groups of
  2290. * passing values. The idea is to find the start and end of a passing
  2291. * window and take the center of it to use as the read clock delay.
  2292. *
  2293. * A failure has to be seen first so that when we hit a pass, we know
  2294. * that it is truely the start of the window. If we get passing values
  2295. * to start off with, we don't know if we are at the start of the window.
  2296. *
  2297. * The code assumes that a failure will always be found.
  2298. * If a failure is not found, there is no easy way to get the middle
  2299. * of the passing window. I guess we can pretty much pick any value
  2300. * but some values will be better than others. Since the lowest speed
  2301. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2302. * from experimentation it is safe to say you will always have a failure.
  2303. *-----------------------------------------------------------------*/
  2304. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2305. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2306. puts(str);
  2307. calibration_loop:
  2308. mfsdram(SDRAM_RQDC, rqdc_reg);
  2309. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2310. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2311. #else /* CONFIG_DDR_RQDC_FIXED */
  2312. /*
  2313. * On Katmai the complete auto-calibration somehow doesn't seem to
  2314. * produce the best results, meaning optimal values for RQFD/RFFD.
  2315. * This was discovered by GDA using a high bandwidth scope,
  2316. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2317. * so now on Katmai "only" RFFD is auto-calibrated.
  2318. */
  2319. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2320. #endif /* CONFIG_DDR_RQDC_FIXED */
  2321. max_start = 0;
  2322. min_end = 0;
  2323. begin_rqfd[0] = 0;
  2324. begin_rffd[0] = 0;
  2325. begin_rqfd[1] = 0;
  2326. begin_rffd[1] = 0;
  2327. end_rqfd[0] = 0;
  2328. end_rffd[0] = 0;
  2329. end_rqfd[1] = 0;
  2330. end_rffd[1] = 0;
  2331. window_found = FALSE;
  2332. max_pass_length = 0;
  2333. max_start = 0;
  2334. max_end = 0;
  2335. current_pass_length = 0;
  2336. current_fail_length = 0;
  2337. current_start = 0;
  2338. window_found = FALSE;
  2339. fail_found = FALSE;
  2340. pass_found = FALSE;
  2341. /*
  2342. * get the delay line calibration register value
  2343. */
  2344. mfsdram(SDRAM_DLCR, dlycal);
  2345. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2346. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2347. mfsdram(SDRAM_RFDC, rfdc_reg);
  2348. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2349. /*------------------------------------------------------------------
  2350. * Set the timing reg for the test.
  2351. *-----------------------------------------------------------------*/
  2352. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2353. /*------------------------------------------------------------------
  2354. * See if the rffd value passed.
  2355. *-----------------------------------------------------------------*/
  2356. if (short_mem_test()) {
  2357. if (fail_found == TRUE) {
  2358. pass_found = TRUE;
  2359. if (current_pass_length == 0)
  2360. current_start = rffd;
  2361. current_fail_length = 0;
  2362. current_pass_length++;
  2363. if (current_pass_length > max_pass_length) {
  2364. max_pass_length = current_pass_length;
  2365. max_start = current_start;
  2366. max_end = rffd;
  2367. }
  2368. }
  2369. } else {
  2370. current_pass_length = 0;
  2371. current_fail_length++;
  2372. if (current_fail_length >= (dly_val >> 2)) {
  2373. if (fail_found == FALSE) {
  2374. fail_found = TRUE;
  2375. } else if (pass_found == TRUE) {
  2376. window_found = TRUE;
  2377. break;
  2378. }
  2379. }
  2380. }
  2381. } /* for rffd */
  2382. /*------------------------------------------------------------------
  2383. * Set the average RFFD value
  2384. *-----------------------------------------------------------------*/
  2385. rffd_average = ((max_start + max_end) >> 1);
  2386. if (rffd_average < 0)
  2387. rffd_average = 0;
  2388. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2389. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2390. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2391. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2392. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2393. max_pass_length = 0;
  2394. max_start = 0;
  2395. max_end = 0;
  2396. current_pass_length = 0;
  2397. current_fail_length = 0;
  2398. current_start = 0;
  2399. window_found = FALSE;
  2400. fail_found = FALSE;
  2401. pass_found = FALSE;
  2402. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2403. mfsdram(SDRAM_RQDC, rqdc_reg);
  2404. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2405. /*------------------------------------------------------------------
  2406. * Set the timing reg for the test.
  2407. *-----------------------------------------------------------------*/
  2408. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2409. /*------------------------------------------------------------------
  2410. * See if the rffd value passed.
  2411. *-----------------------------------------------------------------*/
  2412. if (short_mem_test()) {
  2413. if (fail_found == TRUE) {
  2414. pass_found = TRUE;
  2415. if (current_pass_length == 0)
  2416. current_start = rqfd;
  2417. current_fail_length = 0;
  2418. current_pass_length++;
  2419. if (current_pass_length > max_pass_length) {
  2420. max_pass_length = current_pass_length;
  2421. max_start = current_start;
  2422. max_end = rqfd;
  2423. }
  2424. }
  2425. } else {
  2426. current_pass_length = 0;
  2427. current_fail_length++;
  2428. if (fail_found == FALSE) {
  2429. fail_found = TRUE;
  2430. } else if (pass_found == TRUE) {
  2431. window_found = TRUE;
  2432. break;
  2433. }
  2434. }
  2435. }
  2436. rqfd_average = ((max_start + max_end) >> 1);
  2437. /*------------------------------------------------------------------
  2438. * Make sure we found the valid read passing window. Halt if not
  2439. *-----------------------------------------------------------------*/
  2440. if (window_found == FALSE) {
  2441. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2442. putc('\b');
  2443. putc(slash[loopi++ % 8]);
  2444. /* try again from with a different RQFD start value */
  2445. rqfd_start++;
  2446. goto calibration_loop;
  2447. }
  2448. printf("\nERROR: Cannot determine a common read delay for the "
  2449. "DIMM(s) installed.\n");
  2450. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2451. ppc440sp_sdram_register_dump();
  2452. spd_ddr_init_hang ();
  2453. }
  2454. if (rqfd_average < 0)
  2455. rqfd_average = 0;
  2456. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2457. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2458. mtsdram(SDRAM_RQDC,
  2459. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2460. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2461. blank_string(strlen(str));
  2462. #endif /* CONFIG_DDR_RQDC_FIXED */
  2463. /*
  2464. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2465. * PowerPC440SP/SPe DDR2 application note:
  2466. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2467. */
  2468. mfsdram(SDRAM_RTSR, val);
  2469. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2470. mfsdram(SDRAM_RDCC, val);
  2471. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2472. val += 0x40000000;
  2473. mtsdram(SDRAM_RDCC, val);
  2474. }
  2475. }
  2476. mfsdram(SDRAM_DLCR, val);
  2477. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2478. mfsdram(SDRAM_RQDC, val);
  2479. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2480. mfsdram(SDRAM_RFDC, val);
  2481. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2482. mfsdram(SDRAM_RDCC, val);
  2483. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2484. }
  2485. #else /* calibration test with hardvalues */
  2486. /*-----------------------------------------------------------------------------+
  2487. * DQS_calibration_process.
  2488. *-----------------------------------------------------------------------------*/
  2489. static void test(void)
  2490. {
  2491. unsigned long dimm_num;
  2492. unsigned long ecc_temp;
  2493. unsigned long i, j;
  2494. unsigned long *membase;
  2495. unsigned long bxcf[MAXRANKS];
  2496. unsigned long val;
  2497. char window_found;
  2498. char begin_found[MAXDIMMS];
  2499. char end_found[MAXDIMMS];
  2500. char search_end[MAXDIMMS];
  2501. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2502. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2503. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2504. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2505. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2506. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2507. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2508. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2509. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2510. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2511. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2512. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2513. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2514. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2515. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2516. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2517. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2518. /*------------------------------------------------------------------
  2519. * Test to determine the best read clock delay tuning bits.
  2520. *
  2521. * Before the DDR controller can be used, the read clock delay needs to be
  2522. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2523. * This value cannot be hardcoded into the program because it changes
  2524. * depending on the board's setup and environment.
  2525. * To do this, all delay values are tested to see if they
  2526. * work or not. By doing this, you get groups of fails with groups of
  2527. * passing values. The idea is to find the start and end of a passing
  2528. * window and take the center of it to use as the read clock delay.
  2529. *
  2530. * A failure has to be seen first so that when we hit a pass, we know
  2531. * that it is truely the start of the window. If we get passing values
  2532. * to start off with, we don't know if we are at the start of the window.
  2533. *
  2534. * The code assumes that a failure will always be found.
  2535. * If a failure is not found, there is no easy way to get the middle
  2536. * of the passing window. I guess we can pretty much pick any value
  2537. * but some values will be better than others. Since the lowest speed
  2538. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2539. * from experimentation it is safe to say you will always have a failure.
  2540. *-----------------------------------------------------------------*/
  2541. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2542. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2543. mfsdram(SDRAM_MCOPT1, val);
  2544. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2545. SDRAM_MCOPT1_MCHK_NON);
  2546. window_found = FALSE;
  2547. begin_found[0] = FALSE;
  2548. end_found[0] = FALSE;
  2549. search_end[0] = FALSE;
  2550. begin_found[1] = FALSE;
  2551. end_found[1] = FALSE;
  2552. search_end[1] = FALSE;
  2553. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2554. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2555. /* Banks enabled */
  2556. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2557. /* Bank is enabled */
  2558. membase =
  2559. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2560. /*------------------------------------------------------------------
  2561. * Run the short memory test.
  2562. *-----------------------------------------------------------------*/
  2563. for (i = 0; i < NUMMEMTESTS; i++) {
  2564. for (j = 0; j < NUMMEMWORDS; j++) {
  2565. membase[j] = test[i][j];
  2566. ppcDcbf((u32)&(membase[j]));
  2567. }
  2568. sync();
  2569. for (j = 0; j < NUMMEMWORDS; j++) {
  2570. if (membase[j] != test[i][j]) {
  2571. ppcDcbf((u32)&(membase[j]));
  2572. break;
  2573. }
  2574. ppcDcbf((u32)&(membase[j]));
  2575. }
  2576. sync();
  2577. if (j < NUMMEMWORDS)
  2578. break;
  2579. }
  2580. /*------------------------------------------------------------------
  2581. * See if the rffd value passed.
  2582. *-----------------------------------------------------------------*/
  2583. if (i < NUMMEMTESTS) {
  2584. if ((end_found[dimm_num] == FALSE) &&
  2585. (search_end[dimm_num] == TRUE)) {
  2586. end_found[dimm_num] = TRUE;
  2587. }
  2588. if ((end_found[0] == TRUE) &&
  2589. (end_found[1] == TRUE))
  2590. break;
  2591. } else {
  2592. if (begin_found[dimm_num] == FALSE) {
  2593. begin_found[dimm_num] = TRUE;
  2594. search_end[dimm_num] = TRUE;
  2595. }
  2596. }
  2597. } else {
  2598. begin_found[dimm_num] = TRUE;
  2599. end_found[dimm_num] = TRUE;
  2600. }
  2601. }
  2602. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2603. window_found = TRUE;
  2604. /*------------------------------------------------------------------
  2605. * Make sure we found the valid read passing window. Halt if not
  2606. *-----------------------------------------------------------------*/
  2607. if (window_found == FALSE) {
  2608. printf("ERROR: Cannot determine a common read delay for the "
  2609. "DIMM(s) installed.\n");
  2610. spd_ddr_init_hang ();
  2611. }
  2612. /*------------------------------------------------------------------
  2613. * Restore the ECC variable to what it originally was
  2614. *-----------------------------------------------------------------*/
  2615. mtsdram(SDRAM_MCOPT1,
  2616. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2617. | ecc_temp);
  2618. }
  2619. #endif
  2620. #if defined(DEBUG)
  2621. static void ppc440sp_sdram_register_dump(void)
  2622. {
  2623. unsigned int sdram_reg;
  2624. unsigned int sdram_data;
  2625. unsigned int dcr_data;
  2626. printf("\n Register Dump:\n");
  2627. sdram_reg = SDRAM_MCSTAT;
  2628. mfsdram(sdram_reg, sdram_data);
  2629. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2630. sdram_reg = SDRAM_MCOPT1;
  2631. mfsdram(sdram_reg, sdram_data);
  2632. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2633. sdram_reg = SDRAM_MCOPT2;
  2634. mfsdram(sdram_reg, sdram_data);
  2635. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2636. sdram_reg = SDRAM_MODT0;
  2637. mfsdram(sdram_reg, sdram_data);
  2638. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2639. sdram_reg = SDRAM_MODT1;
  2640. mfsdram(sdram_reg, sdram_data);
  2641. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2642. sdram_reg = SDRAM_MODT2;
  2643. mfsdram(sdram_reg, sdram_data);
  2644. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2645. sdram_reg = SDRAM_MODT3;
  2646. mfsdram(sdram_reg, sdram_data);
  2647. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2648. sdram_reg = SDRAM_CODT;
  2649. mfsdram(sdram_reg, sdram_data);
  2650. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2651. sdram_reg = SDRAM_VVPR;
  2652. mfsdram(sdram_reg, sdram_data);
  2653. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2654. sdram_reg = SDRAM_OPARS;
  2655. mfsdram(sdram_reg, sdram_data);
  2656. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2657. /*
  2658. * OPAR2 is only used as a trigger register.
  2659. * No data is contained in this register, and reading or writing
  2660. * to is can cause bad things to happen (hangs). Just skip it
  2661. * and report NA
  2662. * sdram_reg = SDRAM_OPAR2;
  2663. * mfsdram(sdram_reg, sdram_data);
  2664. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2665. */
  2666. printf(" SDRAM_OPART = N/A ");
  2667. sdram_reg = SDRAM_RTR;
  2668. mfsdram(sdram_reg, sdram_data);
  2669. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2670. sdram_reg = SDRAM_MB0CF;
  2671. mfsdram(sdram_reg, sdram_data);
  2672. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2673. sdram_reg = SDRAM_MB1CF;
  2674. mfsdram(sdram_reg, sdram_data);
  2675. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2676. sdram_reg = SDRAM_MB2CF;
  2677. mfsdram(sdram_reg, sdram_data);
  2678. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2679. sdram_reg = SDRAM_MB3CF;
  2680. mfsdram(sdram_reg, sdram_data);
  2681. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2682. sdram_reg = SDRAM_INITPLR0;
  2683. mfsdram(sdram_reg, sdram_data);
  2684. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2685. sdram_reg = SDRAM_INITPLR1;
  2686. mfsdram(sdram_reg, sdram_data);
  2687. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2688. sdram_reg = SDRAM_INITPLR2;
  2689. mfsdram(sdram_reg, sdram_data);
  2690. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2691. sdram_reg = SDRAM_INITPLR3;
  2692. mfsdram(sdram_reg, sdram_data);
  2693. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2694. sdram_reg = SDRAM_INITPLR4;
  2695. mfsdram(sdram_reg, sdram_data);
  2696. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2697. sdram_reg = SDRAM_INITPLR5;
  2698. mfsdram(sdram_reg, sdram_data);
  2699. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2700. sdram_reg = SDRAM_INITPLR6;
  2701. mfsdram(sdram_reg, sdram_data);
  2702. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2703. sdram_reg = SDRAM_INITPLR7;
  2704. mfsdram(sdram_reg, sdram_data);
  2705. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2706. sdram_reg = SDRAM_INITPLR8;
  2707. mfsdram(sdram_reg, sdram_data);
  2708. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2709. sdram_reg = SDRAM_INITPLR9;
  2710. mfsdram(sdram_reg, sdram_data);
  2711. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2712. sdram_reg = SDRAM_INITPLR10;
  2713. mfsdram(sdram_reg, sdram_data);
  2714. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2715. sdram_reg = SDRAM_INITPLR11;
  2716. mfsdram(sdram_reg, sdram_data);
  2717. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2718. sdram_reg = SDRAM_INITPLR12;
  2719. mfsdram(sdram_reg, sdram_data);
  2720. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2721. sdram_reg = SDRAM_INITPLR13;
  2722. mfsdram(sdram_reg, sdram_data);
  2723. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2724. sdram_reg = SDRAM_INITPLR14;
  2725. mfsdram(sdram_reg, sdram_data);
  2726. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2727. sdram_reg = SDRAM_INITPLR15;
  2728. mfsdram(sdram_reg, sdram_data);
  2729. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2730. sdram_reg = SDRAM_RQDC;
  2731. mfsdram(sdram_reg, sdram_data);
  2732. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2733. sdram_reg = SDRAM_RFDC;
  2734. mfsdram(sdram_reg, sdram_data);
  2735. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2736. sdram_reg = SDRAM_RDCC;
  2737. mfsdram(sdram_reg, sdram_data);
  2738. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2739. sdram_reg = SDRAM_DLCR;
  2740. mfsdram(sdram_reg, sdram_data);
  2741. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2742. sdram_reg = SDRAM_CLKTR;
  2743. mfsdram(sdram_reg, sdram_data);
  2744. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2745. sdram_reg = SDRAM_WRDTR;
  2746. mfsdram(sdram_reg, sdram_data);
  2747. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2748. sdram_reg = SDRAM_SDTR1;
  2749. mfsdram(sdram_reg, sdram_data);
  2750. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2751. sdram_reg = SDRAM_SDTR2;
  2752. mfsdram(sdram_reg, sdram_data);
  2753. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2754. sdram_reg = SDRAM_SDTR3;
  2755. mfsdram(sdram_reg, sdram_data);
  2756. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2757. sdram_reg = SDRAM_MMODE;
  2758. mfsdram(sdram_reg, sdram_data);
  2759. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2760. sdram_reg = SDRAM_MEMODE;
  2761. mfsdram(sdram_reg, sdram_data);
  2762. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2763. sdram_reg = SDRAM_ECCCR;
  2764. mfsdram(sdram_reg, sdram_data);
  2765. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2766. dcr_data = mfdcr(SDRAM_R0BAS);
  2767. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2768. dcr_data = mfdcr(SDRAM_R1BAS);
  2769. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2770. dcr_data = mfdcr(SDRAM_R2BAS);
  2771. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2772. dcr_data = mfdcr(SDRAM_R3BAS);
  2773. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2774. }
  2775. #else
  2776. static void ppc440sp_sdram_register_dump(void)
  2777. {
  2778. }
  2779. #endif
  2780. #endif /* CONFIG_SPD_EEPROM */