clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {CONFIG_SYS_MX5_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. unsigned int reg;
  82. reg = readl(&mxc_ccm->cscmr1) &
  83. ~MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK;
  84. reg |= 1 << MXC_CCM_CSCMR1_USBOH3_CLK_SEL_OFFSET;
  85. writel(reg, &mxc_ccm->cscmr1);
  86. reg = readl(&mxc_ccm->cscdr1);
  87. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK;
  88. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK;
  89. reg |= 4 << MXC_CCM_CSCDR1_USBOH3_CLK_PRED_OFFSET;
  90. reg |= 1 << MXC_CCM_CSCDR1_USBOH3_CLK_PODF_OFFSET;
  91. writel(reg, &mxc_ccm->cscdr1);
  92. }
  93. void enable_usboh3_clk(unsigned char enable)
  94. {
  95. unsigned int reg;
  96. reg = readl(&mxc_ccm->CCGR2);
  97. if (enable)
  98. reg |= 1 << MXC_CCM_CCGR2_CG14_OFFSET;
  99. else
  100. reg &= ~(1 << MXC_CCM_CCGR2_CG14_OFFSET);
  101. writel(reg, &mxc_ccm->CCGR2);
  102. }
  103. #ifdef CONFIG_I2C_MXC
  104. /* i2c_num can be from 0 - 2 */
  105. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  106. {
  107. u32 reg;
  108. u32 mask;
  109. if (i2c_num > 2)
  110. return -EINVAL;
  111. mask = MXC_CCM_CCGR_CG_MASK << ((i2c_num + 9) << 1);
  112. reg = __raw_readl(&mxc_ccm->CCGR1);
  113. if (enable)
  114. reg |= mask;
  115. else
  116. reg &= ~mask;
  117. __raw_writel(reg, &mxc_ccm->CCGR1);
  118. return 0;
  119. }
  120. #endif
  121. void set_usb_phy1_clk(void)
  122. {
  123. unsigned int reg;
  124. reg = readl(&mxc_ccm->cscmr1);
  125. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  126. writel(reg, &mxc_ccm->cscmr1);
  127. }
  128. void enable_usb_phy1_clk(unsigned char enable)
  129. {
  130. unsigned int reg;
  131. reg = readl(&mxc_ccm->CCGR4);
  132. if (enable)
  133. reg |= 1 << MXC_CCM_CCGR4_CG5_OFFSET;
  134. else
  135. reg &= ~(1 << MXC_CCM_CCGR4_CG5_OFFSET);
  136. writel(reg, &mxc_ccm->CCGR4);
  137. }
  138. void set_usb_phy2_clk(void)
  139. {
  140. unsigned int reg;
  141. reg = readl(&mxc_ccm->cscmr1);
  142. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  143. writel(reg, &mxc_ccm->cscmr1);
  144. }
  145. void enable_usb_phy2_clk(unsigned char enable)
  146. {
  147. unsigned int reg;
  148. reg = readl(&mxc_ccm->CCGR4);
  149. if (enable)
  150. reg |= 1 << MXC_CCM_CCGR4_CG6_OFFSET;
  151. else
  152. reg &= ~(1 << MXC_CCM_CCGR4_CG6_OFFSET);
  153. writel(reg, &mxc_ccm->CCGR4);
  154. }
  155. /*
  156. * Calculate the frequency of PLLn.
  157. */
  158. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  159. {
  160. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  161. uint64_t refclk, temp;
  162. int32_t mfn_abs;
  163. ctrl = readl(&pll->ctrl);
  164. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  165. mfn = __raw_readl(&pll->hfs_mfn);
  166. mfd = __raw_readl(&pll->hfs_mfd);
  167. op = __raw_readl(&pll->hfs_op);
  168. } else {
  169. mfn = __raw_readl(&pll->mfn);
  170. mfd = __raw_readl(&pll->mfd);
  171. op = __raw_readl(&pll->op);
  172. }
  173. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  174. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  175. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  176. mfi = (op & MXC_DPLLC_OP_MFI_MASK) >> MXC_DPLLC_OP_MFI_OFFSET;
  177. /* 21.2.3 */
  178. if (mfi < 5)
  179. mfi = 5;
  180. /* Sign extend */
  181. if (mfn >= 0x04000000) {
  182. mfn |= 0xfc000000;
  183. mfn_abs = -mfn;
  184. } else
  185. mfn_abs = mfn;
  186. refclk = infreq * 2;
  187. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  188. refclk *= 2;
  189. do_div(refclk, pdf + 1);
  190. temp = refclk * mfn_abs;
  191. do_div(temp, mfd + 1);
  192. ret = refclk * mfi;
  193. if ((int)mfn < 0)
  194. ret -= temp;
  195. else
  196. ret += temp;
  197. return ret;
  198. }
  199. /*
  200. * Get mcu main rate
  201. */
  202. u32 get_mcu_main_clk(void)
  203. {
  204. u32 reg, freq;
  205. reg = (__raw_readl(&mxc_ccm->cacrr) & MXC_CCM_CACRR_ARM_PODF_MASK) >>
  206. MXC_CCM_CACRR_ARM_PODF_OFFSET;
  207. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  208. return freq / (reg + 1);
  209. }
  210. /*
  211. * Get the rate of peripheral's root clock.
  212. */
  213. u32 get_periph_clk(void)
  214. {
  215. u32 reg;
  216. reg = __raw_readl(&mxc_ccm->cbcdr);
  217. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  218. return decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  219. reg = __raw_readl(&mxc_ccm->cbcmr);
  220. switch ((reg & MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
  221. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  222. case 0:
  223. return decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  224. case 1:
  225. return decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  226. default:
  227. return 0;
  228. }
  229. /* NOTREACHED */
  230. }
  231. /*
  232. * Get the rate of ipg clock.
  233. */
  234. static u32 get_ipg_clk(void)
  235. {
  236. uint32_t freq, reg, div;
  237. freq = get_ahb_clk();
  238. reg = __raw_readl(&mxc_ccm->cbcdr);
  239. div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
  240. MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
  241. return freq / div;
  242. }
  243. /*
  244. * Get the rate of ipg_per clock.
  245. */
  246. static u32 get_ipg_per_clk(void)
  247. {
  248. u32 pred1, pred2, podf;
  249. if (__raw_readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  250. return get_ipg_clk();
  251. /* Fixme: not handle what about lpm*/
  252. podf = __raw_readl(&mxc_ccm->cbcdr);
  253. pred1 = (podf & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
  254. MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET;
  255. pred2 = (podf & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
  256. MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET;
  257. podf = (podf & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
  258. MXC_CCM_CBCDR_PERCLK_PODF_OFFSET;
  259. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  260. }
  261. /*
  262. * Get the rate of uart clk.
  263. */
  264. static u32 get_uart_clk(void)
  265. {
  266. unsigned int freq, reg, pred, podf;
  267. reg = __raw_readl(&mxc_ccm->cscmr1);
  268. switch ((reg & MXC_CCM_CSCMR1_UART_CLK_SEL_MASK) >>
  269. MXC_CCM_CSCMR1_UART_CLK_SEL_OFFSET) {
  270. case 0x0:
  271. freq = decode_pll(mxc_plls[PLL1_CLOCK],
  272. CONFIG_SYS_MX5_HCLK);
  273. break;
  274. case 0x1:
  275. freq = decode_pll(mxc_plls[PLL2_CLOCK],
  276. CONFIG_SYS_MX5_HCLK);
  277. break;
  278. case 0x2:
  279. freq = decode_pll(mxc_plls[PLL3_CLOCK],
  280. CONFIG_SYS_MX5_HCLK);
  281. break;
  282. default:
  283. return 66500000;
  284. }
  285. reg = __raw_readl(&mxc_ccm->cscdr1);
  286. pred = (reg & MXC_CCM_CSCDR1_UART_CLK_PRED_MASK) >>
  287. MXC_CCM_CSCDR1_UART_CLK_PRED_OFFSET;
  288. podf = (reg & MXC_CCM_CSCDR1_UART_CLK_PODF_MASK) >>
  289. MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  290. freq /= (pred + 1) * (podf + 1);
  291. return freq;
  292. }
  293. /*
  294. * This function returns the low power audio clock.
  295. */
  296. static u32 get_lp_apm(void)
  297. {
  298. u32 ret_val = 0;
  299. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  300. if (((ccsr >> 9) & 1) == 0)
  301. ret_val = CONFIG_SYS_MX5_HCLK;
  302. else
  303. ret_val = ((32768 * 1024));
  304. return ret_val;
  305. }
  306. /*
  307. * get cspi clock rate.
  308. */
  309. static u32 imx_get_cspiclk(void)
  310. {
  311. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  312. u32 cscmr1 = __raw_readl(&mxc_ccm->cscmr1);
  313. u32 cscdr2 = __raw_readl(&mxc_ccm->cscdr2);
  314. pre_pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PRED_MASK) \
  315. >> MXC_CCM_CSCDR2_CSPI_CLK_PRED_OFFSET;
  316. pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PODF_MASK) \
  317. >> MXC_CCM_CSCDR2_CSPI_CLK_PODF_OFFSET;
  318. clk_sel = (cscmr1 & MXC_CCM_CSCMR1_CSPI_CLK_SEL_MASK) \
  319. >> MXC_CCM_CSCMR1_CSPI_CLK_SEL_OFFSET;
  320. switch (clk_sel) {
  321. case 0:
  322. ret_val = decode_pll(mxc_plls[PLL1_CLOCK],
  323. CONFIG_SYS_MX5_HCLK) /
  324. ((pre_pdf + 1) * (pdf + 1));
  325. break;
  326. case 1:
  327. ret_val = decode_pll(mxc_plls[PLL2_CLOCK],
  328. CONFIG_SYS_MX5_HCLK) /
  329. ((pre_pdf + 1) * (pdf + 1));
  330. break;
  331. case 2:
  332. ret_val = decode_pll(mxc_plls[PLL3_CLOCK],
  333. CONFIG_SYS_MX5_HCLK) /
  334. ((pre_pdf + 1) * (pdf + 1));
  335. break;
  336. default:
  337. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  338. break;
  339. }
  340. return ret_val;
  341. }
  342. static u32 get_axi_a_clk(void)
  343. {
  344. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  345. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_A_PODF_MASK) \
  346. >> MXC_CCM_CBCDR_AXI_A_PODF_OFFSET;
  347. return get_periph_clk() / (pdf + 1);
  348. }
  349. static u32 get_axi_b_clk(void)
  350. {
  351. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  352. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_B_PODF_MASK) \
  353. >> MXC_CCM_CBCDR_AXI_B_PODF_OFFSET;
  354. return get_periph_clk() / (pdf + 1);
  355. }
  356. static u32 get_emi_slow_clk(void)
  357. {
  358. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  359. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  360. u32 pdf = (cbcdr & MXC_CCM_CBCDR_EMI_PODF_MASK) \
  361. >> MXC_CCM_CBCDR_EMI_PODF_OFFSET;
  362. if (emi_clk_sel)
  363. return get_ahb_clk() / (pdf + 1);
  364. return get_periph_clk() / (pdf + 1);
  365. }
  366. static u32 get_ddr_clk(void)
  367. {
  368. u32 ret_val = 0;
  369. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  370. u32 ddr_clk_sel = (cbcmr & MXC_CCM_CBCMR_DDR_CLK_SEL_MASK) \
  371. >> MXC_CCM_CBCMR_DDR_CLK_SEL_OFFSET;
  372. #ifdef CONFIG_MX51
  373. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  374. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  375. u32 ddr_clk_podf = (cbcdr & MXC_CCM_CBCDR_DDR_PODF_MASK) >> \
  376. MXC_CCM_CBCDR_DDR_PODF_OFFSET;
  377. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  378. ret_val /= ddr_clk_podf + 1;
  379. return ret_val;
  380. }
  381. #endif
  382. switch (ddr_clk_sel) {
  383. case 0:
  384. ret_val = get_axi_a_clk();
  385. break;
  386. case 1:
  387. ret_val = get_axi_b_clk();
  388. break;
  389. case 2:
  390. ret_val = get_emi_slow_clk();
  391. break;
  392. case 3:
  393. ret_val = get_ahb_clk();
  394. break;
  395. default:
  396. break;
  397. }
  398. return ret_val;
  399. }
  400. /*
  401. * The API of get mxc clocks.
  402. */
  403. unsigned int mxc_get_clock(enum mxc_clock clk)
  404. {
  405. switch (clk) {
  406. case MXC_ARM_CLK:
  407. return get_mcu_main_clk();
  408. case MXC_AHB_CLK:
  409. return get_ahb_clk();
  410. case MXC_IPG_CLK:
  411. return get_ipg_clk();
  412. case MXC_IPG_PERCLK:
  413. case MXC_I2C_CLK:
  414. return get_ipg_per_clk();
  415. case MXC_UART_CLK:
  416. return get_uart_clk();
  417. case MXC_CSPI_CLK:
  418. return imx_get_cspiclk();
  419. case MXC_FEC_CLK:
  420. return decode_pll(mxc_plls[PLL1_CLOCK],
  421. CONFIG_SYS_MX5_HCLK);
  422. case MXC_SATA_CLK:
  423. return get_ahb_clk();
  424. case MXC_DDR_CLK:
  425. return get_ddr_clk();
  426. default:
  427. break;
  428. }
  429. return -EINVAL;
  430. }
  431. u32 imx_get_uartclk(void)
  432. {
  433. return get_uart_clk();
  434. }
  435. u32 imx_get_fecclk(void)
  436. {
  437. return mxc_get_clock(MXC_IPG_CLK);
  438. }
  439. static int gcd(int m, int n)
  440. {
  441. int t;
  442. while (m > 0) {
  443. if (n > m) {
  444. t = m;
  445. m = n;
  446. n = t;
  447. } /* swap */
  448. m -= n;
  449. }
  450. return n;
  451. }
  452. /*
  453. * This is to calculate various parameters based on reference clock and
  454. * targeted clock based on the equation:
  455. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  456. * This calculation is based on a fixed MFD value for simplicity.
  457. */
  458. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  459. {
  460. u64 pd, mfi = 1, mfn, mfd, t1;
  461. u32 n_target = target;
  462. u32 n_ref = ref, i;
  463. /*
  464. * Make sure targeted freq is in the valid range.
  465. * Otherwise the following calculation might be wrong!!!
  466. */
  467. if (n_target < PLL_FREQ_MIN(ref) ||
  468. n_target > PLL_FREQ_MAX(ref)) {
  469. printf("Targeted peripheral clock should be"
  470. "within [%d - %d]\n",
  471. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  472. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  473. return -EINVAL;
  474. }
  475. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  476. if (fixed_mfd[i].ref_clk_hz == ref) {
  477. mfd = fixed_mfd[i].mfd;
  478. break;
  479. }
  480. }
  481. if (i == ARRAY_SIZE(fixed_mfd))
  482. return -EINVAL;
  483. /* Use n_target and n_ref to avoid overflow */
  484. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  485. t1 = n_target * pd;
  486. do_div(t1, (4 * n_ref));
  487. mfi = t1;
  488. if (mfi > PLL_MFI_MAX)
  489. return -EINVAL;
  490. else if (mfi < 5)
  491. continue;
  492. break;
  493. }
  494. /*
  495. * Now got pd and mfi already
  496. *
  497. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  498. */
  499. t1 = n_target * pd;
  500. do_div(t1, 4);
  501. t1 -= n_ref * mfi;
  502. t1 *= mfd;
  503. do_div(t1, n_ref);
  504. mfn = t1;
  505. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  506. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  507. i = 1;
  508. if (mfn != 0)
  509. i = gcd(mfd, mfn);
  510. pll->pd = (u32)pd;
  511. pll->mfi = (u32)mfi;
  512. do_div(mfn, i);
  513. pll->mfn = (u32)mfn;
  514. do_div(mfd, i);
  515. pll->mfd = (u32)mfd;
  516. return 0;
  517. }
  518. #define calc_div(tgt_clk, src_clk, limit) ({ \
  519. u32 v = 0; \
  520. if (((src_clk) % (tgt_clk)) <= 100) \
  521. v = (src_clk) / (tgt_clk); \
  522. else \
  523. v = ((src_clk) / (tgt_clk)) + 1;\
  524. if (v > limit) \
  525. v = limit; \
  526. (v - 1); \
  527. })
  528. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  529. { \
  530. __raw_writel(0x1232, &pll->ctrl); \
  531. __raw_writel(0x2, &pll->config); \
  532. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  533. &pll->op); \
  534. __raw_writel(fn, &(pll->mfn)); \
  535. __raw_writel((fd) - 1, &pll->mfd); \
  536. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  537. &pll->hfs_op); \
  538. __raw_writel(fn, &pll->hfs_mfn); \
  539. __raw_writel((fd) - 1, &pll->hfs_mfd); \
  540. __raw_writel(0x1232, &pll->ctrl); \
  541. while (!__raw_readl(&pll->ctrl) & 0x1) \
  542. ;\
  543. }
  544. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  545. {
  546. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  547. struct mxc_pll_reg *pll = mxc_plls[index];
  548. switch (index) {
  549. case PLL1_CLOCK:
  550. /* Switch ARM to PLL2 clock */
  551. __raw_writel(ccsr | 0x4, &mxc_ccm->ccsr);
  552. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  553. pll_param->mfi, pll_param->mfn,
  554. pll_param->mfd);
  555. /* Switch back */
  556. __raw_writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  557. break;
  558. case PLL2_CLOCK:
  559. /* Switch to pll2 bypass clock */
  560. __raw_writel(ccsr | 0x2, &mxc_ccm->ccsr);
  561. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  562. pll_param->mfi, pll_param->mfn,
  563. pll_param->mfd);
  564. /* Switch back */
  565. __raw_writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  566. break;
  567. case PLL3_CLOCK:
  568. /* Switch to pll3 bypass clock */
  569. __raw_writel(ccsr | 0x1, &mxc_ccm->ccsr);
  570. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  571. pll_param->mfi, pll_param->mfn,
  572. pll_param->mfd);
  573. /* Switch back */
  574. __raw_writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  575. break;
  576. case PLL4_CLOCK:
  577. /* Switch to pll4 bypass clock */
  578. __raw_writel(ccsr | 0x20, &mxc_ccm->ccsr);
  579. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  580. pll_param->mfi, pll_param->mfn,
  581. pll_param->mfd);
  582. /* Switch back */
  583. __raw_writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  584. break;
  585. default:
  586. return -EINVAL;
  587. }
  588. return 0;
  589. }
  590. /* Config CPU clock */
  591. static int config_core_clk(u32 ref, u32 freq)
  592. {
  593. int ret = 0;
  594. struct pll_param pll_param;
  595. memset(&pll_param, 0, sizeof(struct pll_param));
  596. /* The case that periph uses PLL1 is not considered here */
  597. ret = calc_pll_params(ref, freq, &pll_param);
  598. if (ret != 0) {
  599. printf("Error:Can't find pll parameters: %d\n", ret);
  600. return ret;
  601. }
  602. return config_pll_clk(PLL1_CLOCK, &pll_param);
  603. }
  604. static int config_nfc_clk(u32 nfc_clk)
  605. {
  606. u32 reg;
  607. u32 parent_rate = get_emi_slow_clk();
  608. u32 div = parent_rate / nfc_clk;
  609. if (nfc_clk <= 0)
  610. return -EINVAL;
  611. if (div == 0)
  612. div++;
  613. if (parent_rate / div > NFC_CLK_MAX)
  614. div++;
  615. reg = __raw_readl(&mxc_ccm->cbcdr);
  616. reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
  617. reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
  618. __raw_writel(reg, &mxc_ccm->cbcdr);
  619. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  620. ;
  621. return 0;
  622. }
  623. /* Config main_bus_clock for periphs */
  624. static int config_periph_clk(u32 ref, u32 freq)
  625. {
  626. int ret = 0;
  627. struct pll_param pll_param;
  628. memset(&pll_param, 0, sizeof(struct pll_param));
  629. if (__raw_readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  630. ret = calc_pll_params(ref, freq, &pll_param);
  631. if (ret != 0) {
  632. printf("Error:Can't find pll parameters: %d\n",
  633. ret);
  634. return ret;
  635. }
  636. switch ((__raw_readl(&mxc_ccm->cbcmr) & \
  637. MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >> \
  638. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  639. case 0:
  640. return config_pll_clk(PLL1_CLOCK, &pll_param);
  641. break;
  642. case 1:
  643. return config_pll_clk(PLL3_CLOCK, &pll_param);
  644. break;
  645. default:
  646. return -EINVAL;
  647. }
  648. }
  649. return 0;
  650. }
  651. static int config_ddr_clk(u32 emi_clk)
  652. {
  653. u32 clk_src;
  654. s32 shift = 0, clk_sel, div = 1;
  655. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  656. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  657. if (emi_clk > MAX_DDR_CLK) {
  658. printf("Warning:DDR clock should not exceed %d MHz\n",
  659. MAX_DDR_CLK / SZ_DEC_1M);
  660. emi_clk = MAX_DDR_CLK;
  661. }
  662. clk_src = get_periph_clk();
  663. /* Find DDR clock input */
  664. clk_sel = (cbcmr >> 10) & 0x3;
  665. switch (clk_sel) {
  666. case 0:
  667. shift = 16;
  668. break;
  669. case 1:
  670. shift = 19;
  671. break;
  672. case 2:
  673. shift = 22;
  674. break;
  675. case 3:
  676. shift = 10;
  677. break;
  678. default:
  679. return -EINVAL;
  680. }
  681. if ((clk_src % emi_clk) < 10000000)
  682. div = clk_src / emi_clk;
  683. else
  684. div = (clk_src / emi_clk) + 1;
  685. if (div > 8)
  686. div = 8;
  687. cbcdr = cbcdr & ~(0x7 << shift);
  688. cbcdr |= ((div - 1) << shift);
  689. __raw_writel(cbcdr, &mxc_ccm->cbcdr);
  690. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  691. ;
  692. __raw_writel(0x0, &mxc_ccm->ccdr);
  693. return 0;
  694. }
  695. /*
  696. * This function assumes the expected core clock has to be changed by
  697. * modifying the PLL. This is NOT true always but for most of the times,
  698. * it is. So it assumes the PLL output freq is the same as the expected
  699. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  700. * In the latter case, it will try to increase the presc value until
  701. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  702. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  703. * on the targeted PLL and reference input clock to the PLL. Lastly,
  704. * it sets the register based on these values along with the dividers.
  705. * Note 1) There is no value checking for the passed-in divider values
  706. * so the caller has to make sure those values are sensible.
  707. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  708. * exceed NFC_CLK_MAX.
  709. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  710. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  711. * 4) This function should not have allowed diag_printf() calls since
  712. * the serial driver has been stoped. But leave then here to allow
  713. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  714. */
  715. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  716. {
  717. freq *= SZ_DEC_1M;
  718. switch (clk) {
  719. case MXC_ARM_CLK:
  720. if (config_core_clk(ref, freq))
  721. return -EINVAL;
  722. break;
  723. case MXC_PERIPH_CLK:
  724. if (config_periph_clk(ref, freq))
  725. return -EINVAL;
  726. break;
  727. case MXC_DDR_CLK:
  728. if (config_ddr_clk(freq))
  729. return -EINVAL;
  730. break;
  731. case MXC_NFC_CLK:
  732. if (config_nfc_clk(freq))
  733. return -EINVAL;
  734. break;
  735. default:
  736. printf("Warning:Unsupported or invalid clock type\n");
  737. }
  738. return 0;
  739. }
  740. #ifdef CONFIG_MX53
  741. /*
  742. * The clock for the external interface can be set to use internal clock
  743. * if fuse bank 4, row 3, bit 2 is set.
  744. * This is an undocumented feature and it was confirmed by Freescale's support:
  745. * Fuses (but not pins) may be used to configure SATA clocks.
  746. * Particularly the i.MX53 Fuse_Map contains the next information
  747. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  748. * '00' - 100MHz (External)
  749. * '01' - 50MHz (External)
  750. * '10' - 120MHz, internal (USB PHY)
  751. * '11' - Reserved
  752. */
  753. void mxc_set_sata_internal_clock(void)
  754. {
  755. u32 *tmp_base =
  756. (u32 *)(IIM_BASE_ADDR + 0x180c);
  757. set_usb_phy1_clk();
  758. writel((readl(tmp_base) & (~0x6)) | 0x4, tmp_base);
  759. }
  760. #endif
  761. /*
  762. * Dump some core clockes.
  763. */
  764. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  765. {
  766. u32 freq;
  767. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  768. printf("PLL1 %8d MHz\n", freq / 1000000);
  769. freq = decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  770. printf("PLL2 %8d MHz\n", freq / 1000000);
  771. freq = decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  772. printf("PLL3 %8d MHz\n", freq / 1000000);
  773. #ifdef CONFIG_MX53
  774. freq = decode_pll(mxc_plls[PLL4_CLOCK], CONFIG_SYS_MX5_HCLK);
  775. printf("PLL4 %8d MHz\n", freq / 1000000);
  776. #endif
  777. printf("\n");
  778. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  779. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  780. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  781. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  782. return 0;
  783. }
  784. /***************************************************/
  785. U_BOOT_CMD(
  786. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  787. "display clocks",
  788. ""
  789. );