lc_common_dimm_params.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468
  1. /*
  2. * Copyright 2008 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * Version 2 as published by the Free Software Foundation.
  7. */
  8. #include <common.h>
  9. #include <asm/fsl_ddr_sdram.h>
  10. #include "ddr.h"
  11. unsigned int
  12. compute_cas_latency_ddr3(const dimm_params_t *dimm_params,
  13. common_timing_params_t *outpdimm,
  14. unsigned int number_of_dimms)
  15. {
  16. unsigned int i;
  17. unsigned int tAAmin_ps = 0;
  18. unsigned int tCKmin_X_ps = 0;
  19. unsigned int common_caslat;
  20. unsigned int caslat_actual;
  21. unsigned int retry = 16;
  22. unsigned int tmp;
  23. const unsigned int mclk_ps = get_memory_clk_period_ps();
  24. /* compute the common CAS latency supported between slots */
  25. tmp = dimm_params[0].caslat_X;
  26. for (i = 1; i < number_of_dimms; i++)
  27. tmp &= dimm_params[i].caslat_X;
  28. common_caslat = tmp;
  29. /* compute the max tAAmin tCKmin between slots */
  30. for (i = 0; i < number_of_dimms; i++) {
  31. tAAmin_ps = max(tAAmin_ps, dimm_params[i].tAA_ps);
  32. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  33. }
  34. /* validate if the memory clk is in the range of dimms */
  35. if (mclk_ps < tCKmin_X_ps) {
  36. printf("The DIMM max tCKmin is %d ps,"
  37. "doesn't support the MCLK cycle %d ps\n",
  38. tCKmin_X_ps, mclk_ps);
  39. return 1;
  40. }
  41. /* determine the acutal cas latency */
  42. caslat_actual = (tAAmin_ps + mclk_ps - 1) / mclk_ps;
  43. /* check if the dimms support the CAS latency */
  44. while (!(common_caslat & (1 << caslat_actual)) && retry > 0) {
  45. caslat_actual++;
  46. retry--;
  47. }
  48. /* once the caculation of caslat_actual is completed
  49. * we must verify that this CAS latency value does not
  50. * exceed tAAmax, which is 20 ns for all DDR3 speed grades
  51. */
  52. if (caslat_actual * mclk_ps > 20000) {
  53. printf("The choosen cas latency %d is too large\n",
  54. caslat_actual);
  55. return 1;
  56. }
  57. outpdimm->lowest_common_SPD_caslat = caslat_actual;
  58. return 0;
  59. }
  60. /*
  61. * compute_lowest_common_dimm_parameters()
  62. *
  63. * Determine the worst-case DIMM timing parameters from the set of DIMMs
  64. * whose parameters have been computed into the array pointed to
  65. * by dimm_params.
  66. */
  67. unsigned int
  68. compute_lowest_common_dimm_parameters(const dimm_params_t *dimm_params,
  69. common_timing_params_t *outpdimm,
  70. unsigned int number_of_dimms)
  71. {
  72. unsigned int i;
  73. unsigned int tCKmin_X_ps = 0;
  74. unsigned int tCKmax_ps = 0xFFFFFFFF;
  75. unsigned int tCKmax_max_ps = 0;
  76. unsigned int tRCD_ps = 0;
  77. unsigned int tRP_ps = 0;
  78. unsigned int tRAS_ps = 0;
  79. unsigned int tWR_ps = 0;
  80. unsigned int tWTR_ps = 0;
  81. unsigned int tRFC_ps = 0;
  82. unsigned int tRRD_ps = 0;
  83. unsigned int tRC_ps = 0;
  84. unsigned int refresh_rate_ps = 0;
  85. unsigned int tIS_ps = 0;
  86. unsigned int tIH_ps = 0;
  87. unsigned int tDS_ps = 0;
  88. unsigned int tDH_ps = 0;
  89. unsigned int tRTP_ps = 0;
  90. unsigned int tDQSQ_max_ps = 0;
  91. unsigned int tQHS_ps = 0;
  92. unsigned int temp1, temp2;
  93. unsigned int additive_latency = 0;
  94. #if !defined(CONFIG_FSL_DDR3)
  95. const unsigned int mclk_ps = get_memory_clk_period_ps();
  96. unsigned int lowest_good_caslat;
  97. unsigned int not_ok;
  98. debug("using mclk_ps = %u\n", mclk_ps);
  99. #endif
  100. temp1 = 0;
  101. for (i = 0; i < number_of_dimms; i++) {
  102. /*
  103. * If there are no ranks on this DIMM,
  104. * it probably doesn't exist, so skip it.
  105. */
  106. if (dimm_params[i].n_ranks == 0) {
  107. temp1++;
  108. continue;
  109. }
  110. /*
  111. * Find minimum tCKmax_ps to find fastest slow speed,
  112. * i.e., this is the slowest the whole system can go.
  113. */
  114. tCKmax_ps = min(tCKmax_ps, dimm_params[i].tCKmax_ps);
  115. /* Either find maximum value to determine slowest
  116. * speed, delay, time, period, etc */
  117. tCKmin_X_ps = max(tCKmin_X_ps, dimm_params[i].tCKmin_X_ps);
  118. tCKmax_max_ps = max(tCKmax_max_ps, dimm_params[i].tCKmax_ps);
  119. tRCD_ps = max(tRCD_ps, dimm_params[i].tRCD_ps);
  120. tRP_ps = max(tRP_ps, dimm_params[i].tRP_ps);
  121. tRAS_ps = max(tRAS_ps, dimm_params[i].tRAS_ps);
  122. tWR_ps = max(tWR_ps, dimm_params[i].tWR_ps);
  123. tWTR_ps = max(tWTR_ps, dimm_params[i].tWTR_ps);
  124. tRFC_ps = max(tRFC_ps, dimm_params[i].tRFC_ps);
  125. tRRD_ps = max(tRRD_ps, dimm_params[i].tRRD_ps);
  126. tRC_ps = max(tRC_ps, dimm_params[i].tRC_ps);
  127. tIS_ps = max(tIS_ps, dimm_params[i].tIS_ps);
  128. tIH_ps = max(tIH_ps, dimm_params[i].tIH_ps);
  129. tDS_ps = max(tDS_ps, dimm_params[i].tDS_ps);
  130. tDH_ps = max(tDH_ps, dimm_params[i].tDH_ps);
  131. tRTP_ps = max(tRTP_ps, dimm_params[i].tRTP_ps);
  132. tQHS_ps = max(tQHS_ps, dimm_params[i].tQHS_ps);
  133. refresh_rate_ps = max(refresh_rate_ps,
  134. dimm_params[i].refresh_rate_ps);
  135. /*
  136. * Find maximum tDQSQ_max_ps to find slowest.
  137. *
  138. * FIXME: is finding the slowest value the correct
  139. * strategy for this parameter?
  140. */
  141. tDQSQ_max_ps = max(tDQSQ_max_ps, dimm_params[i].tDQSQ_max_ps);
  142. }
  143. outpdimm->ndimms_present = number_of_dimms - temp1;
  144. if (temp1 == number_of_dimms) {
  145. debug("no dimms this memory controller\n");
  146. return 0;
  147. }
  148. outpdimm->tCKmin_X_ps = tCKmin_X_ps;
  149. outpdimm->tCKmax_ps = tCKmax_ps;
  150. outpdimm->tCKmax_max_ps = tCKmax_max_ps;
  151. outpdimm->tRCD_ps = tRCD_ps;
  152. outpdimm->tRP_ps = tRP_ps;
  153. outpdimm->tRAS_ps = tRAS_ps;
  154. outpdimm->tWR_ps = tWR_ps;
  155. outpdimm->tWTR_ps = tWTR_ps;
  156. outpdimm->tRFC_ps = tRFC_ps;
  157. outpdimm->tRRD_ps = tRRD_ps;
  158. outpdimm->tRC_ps = tRC_ps;
  159. outpdimm->refresh_rate_ps = refresh_rate_ps;
  160. outpdimm->tIS_ps = tIS_ps;
  161. outpdimm->tIH_ps = tIH_ps;
  162. outpdimm->tDS_ps = tDS_ps;
  163. outpdimm->tDH_ps = tDH_ps;
  164. outpdimm->tRTP_ps = tRTP_ps;
  165. outpdimm->tDQSQ_max_ps = tDQSQ_max_ps;
  166. outpdimm->tQHS_ps = tQHS_ps;
  167. /* Determine common burst length for all DIMMs. */
  168. temp1 = 0xff;
  169. for (i = 0; i < number_of_dimms; i++) {
  170. if (dimm_params[i].n_ranks) {
  171. temp1 &= dimm_params[i].burst_lengths_bitmask;
  172. }
  173. }
  174. outpdimm->all_DIMMs_burst_lengths_bitmask = temp1;
  175. /* Determine if all DIMMs registered buffered. */
  176. temp1 = temp2 = 0;
  177. for (i = 0; i < number_of_dimms; i++) {
  178. if (dimm_params[i].n_ranks) {
  179. if (dimm_params[i].registered_dimm)
  180. temp1 = 1;
  181. if (!dimm_params[i].registered_dimm)
  182. temp2 = 1;
  183. }
  184. }
  185. outpdimm->all_DIMMs_registered = 0;
  186. if (temp1 && !temp2) {
  187. outpdimm->all_DIMMs_registered = 1;
  188. }
  189. outpdimm->all_DIMMs_unbuffered = 0;
  190. if (!temp1 && temp2) {
  191. outpdimm->all_DIMMs_unbuffered = 1;
  192. }
  193. /* CHECKME: */
  194. if (!outpdimm->all_DIMMs_registered
  195. && !outpdimm->all_DIMMs_unbuffered) {
  196. printf("ERROR: Mix of registered buffered and unbuffered "
  197. "DIMMs detected!\n");
  198. }
  199. #if defined(CONFIG_FSL_DDR3)
  200. if (compute_cas_latency_ddr3(dimm_params, outpdimm, number_of_dimms))
  201. return 1;
  202. #else
  203. /*
  204. * Compute a CAS latency suitable for all DIMMs
  205. *
  206. * Strategy for SPD-defined latencies: compute only
  207. * CAS latency defined by all DIMMs.
  208. */
  209. /*
  210. * Step 1: find CAS latency common to all DIMMs using bitwise
  211. * operation.
  212. */
  213. temp1 = 0xFF;
  214. for (i = 0; i < number_of_dimms; i++) {
  215. if (dimm_params[i].n_ranks) {
  216. temp2 = 0;
  217. temp2 |= 1 << dimm_params[i].caslat_X;
  218. temp2 |= 1 << dimm_params[i].caslat_X_minus_1;
  219. temp2 |= 1 << dimm_params[i].caslat_X_minus_2;
  220. /*
  221. * FIXME: If there was no entry for X-2 (X-1) in
  222. * the SPD, then caslat_X_minus_2
  223. * (caslat_X_minus_1) contains either 255 or
  224. * 0xFFFFFFFF because that's what the glorious
  225. * __ilog2 function returns for an input of 0.
  226. * On 32-bit PowerPC, left shift counts with bit
  227. * 26 set (that the value of 255 or 0xFFFFFFFF
  228. * will have), cause the destination register to
  229. * be 0. That is why this works.
  230. */
  231. temp1 &= temp2;
  232. }
  233. }
  234. /*
  235. * Step 2: check each common CAS latency against tCK of each
  236. * DIMM's SPD.
  237. */
  238. lowest_good_caslat = 0;
  239. temp2 = 0;
  240. while (temp1) {
  241. not_ok = 0;
  242. temp2 = __ilog2(temp1);
  243. debug("checking common caslat = %u\n", temp2);
  244. /* Check if this CAS latency will work on all DIMMs at tCK. */
  245. for (i = 0; i < number_of_dimms; i++) {
  246. if (!dimm_params[i].n_ranks) {
  247. continue;
  248. }
  249. if (dimm_params[i].caslat_X == temp2) {
  250. if (mclk_ps >= dimm_params[i].tCKmin_X_ps) {
  251. debug("CL = %u ok on DIMM %u at tCK=%u"
  252. " ps with its tCKmin_X_ps of %u\n",
  253. temp2, i, mclk_ps,
  254. dimm_params[i].tCKmin_X_ps);
  255. continue;
  256. } else {
  257. not_ok++;
  258. }
  259. }
  260. if (dimm_params[i].caslat_X_minus_1 == temp2) {
  261. unsigned int tCKmin_X_minus_1_ps
  262. = dimm_params[i].tCKmin_X_minus_1_ps;
  263. if (mclk_ps >= tCKmin_X_minus_1_ps) {
  264. debug("CL = %u ok on DIMM %u at "
  265. "tCK=%u ps with its "
  266. "tCKmin_X_minus_1_ps of %u\n",
  267. temp2, i, mclk_ps,
  268. tCKmin_X_minus_1_ps);
  269. continue;
  270. } else {
  271. not_ok++;
  272. }
  273. }
  274. if (dimm_params[i].caslat_X_minus_2 == temp2) {
  275. unsigned int tCKmin_X_minus_2_ps
  276. = dimm_params[i].tCKmin_X_minus_2_ps;
  277. if (mclk_ps >= tCKmin_X_minus_2_ps) {
  278. debug("CL = %u ok on DIMM %u at "
  279. "tCK=%u ps with its "
  280. "tCKmin_X_minus_2_ps of %u\n",
  281. temp2, i, mclk_ps,
  282. tCKmin_X_minus_2_ps);
  283. continue;
  284. } else {
  285. not_ok++;
  286. }
  287. }
  288. }
  289. if (!not_ok) {
  290. lowest_good_caslat = temp2;
  291. }
  292. temp1 &= ~(1 << temp2);
  293. }
  294. debug("lowest common SPD-defined CAS latency = %u\n",
  295. lowest_good_caslat);
  296. outpdimm->lowest_common_SPD_caslat = lowest_good_caslat;
  297. /*
  298. * Compute a common 'de-rated' CAS latency.
  299. *
  300. * The strategy here is to find the *highest* dereated cas latency
  301. * with the assumption that all of the DIMMs will support a dereated
  302. * CAS latency higher than or equal to their lowest dereated value.
  303. */
  304. temp1 = 0;
  305. for (i = 0; i < number_of_dimms; i++) {
  306. temp1 = max(temp1, dimm_params[i].caslat_lowest_derated);
  307. }
  308. outpdimm->highest_common_derated_caslat = temp1;
  309. debug("highest common dereated CAS latency = %u\n", temp1);
  310. #endif /* #if defined(CONFIG_FSL_DDR3) */
  311. /* Determine if all DIMMs ECC capable. */
  312. temp1 = 1;
  313. for (i = 0; i < number_of_dimms; i++) {
  314. if (dimm_params[i].n_ranks && dimm_params[i].edc_config != 2) {
  315. temp1 = 0;
  316. break;
  317. }
  318. }
  319. if (temp1) {
  320. debug("all DIMMs ECC capable\n");
  321. } else {
  322. debug("Warning: not all DIMMs ECC capable, cant enable ECC\n");
  323. }
  324. outpdimm->all_DIMMs_ECC_capable = temp1;
  325. #ifndef CONFIG_FSL_DDR3
  326. /* FIXME: move to somewhere else to validate. */
  327. if (mclk_ps > tCKmax_max_ps) {
  328. printf("Warning: some of the installed DIMMs "
  329. "can not operate this slowly.\n");
  330. return 1;
  331. }
  332. #endif
  333. /*
  334. * Compute additive latency.
  335. *
  336. * For DDR1, additive latency should be 0.
  337. *
  338. * For DDR2, with ODT enabled, use "a value" less than ACTTORW,
  339. * which comes from Trcd, and also note that:
  340. * add_lat + caslat must be >= 4
  341. *
  342. * For DDR3, we use the AL=0
  343. *
  344. * When to use additive latency for DDR2:
  345. *
  346. * I. Because you are using CL=3 and need to do ODT on writes and
  347. * want functionality.
  348. * 1. Are you going to use ODT? (Does your board not have
  349. * additional termination circuitry for DQ, DQS, DQS_,
  350. * DM, RDQS, RDQS_ for x4/x8 configs?)
  351. * 2. If so, is your lowest supported CL going to be 3?
  352. * 3. If so, then you must set AL=1 because
  353. *
  354. * WL >= 3 for ODT on writes
  355. * RL = AL + CL
  356. * WL = RL - 1
  357. * ->
  358. * WL = AL + CL - 1
  359. * AL + CL - 1 >= 3
  360. * AL + CL >= 4
  361. * QED
  362. *
  363. * RL >= 3 for ODT on reads
  364. * RL = AL + CL
  365. *
  366. * Since CL aren't usually less than 2, AL=0 is a minimum,
  367. * so the WL-derived AL should be the -- FIXME?
  368. *
  369. * II. Because you are using auto-precharge globally and want to
  370. * use additive latency (posted CAS) to get more bandwidth.
  371. * 1. Are you going to use auto-precharge mode globally?
  372. *
  373. * Use addtivie latency and compute AL to be 1 cycle less than
  374. * tRCD, i.e. the READ or WRITE command is in the cycle
  375. * immediately following the ACTIVATE command..
  376. *
  377. * III. Because you feel like it or want to do some sort of
  378. * degraded-performance experiment.
  379. * 1. Do you just want to use additive latency because you feel
  380. * like it?
  381. *
  382. * Validation: AL is less than tRCD, and within the other
  383. * read-to-precharge constraints.
  384. */
  385. additive_latency = 0;
  386. #if defined(CONFIG_FSL_DDR2)
  387. if (lowest_good_caslat < 4) {
  388. additive_latency = picos_to_mclk(tRCD_ps) - lowest_good_caslat;
  389. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  390. additive_latency = picos_to_mclk(tRCD_ps);
  391. debug("setting additive_latency to %u because it was "
  392. " greater than tRCD_ps\n", additive_latency);
  393. }
  394. }
  395. #elif defined(CONFIG_FSL_DDR3)
  396. /*
  397. * The system will not use the global auto-precharge mode.
  398. * However, it uses the page mode, so we set AL=0
  399. */
  400. additive_latency = 0;
  401. #endif
  402. /*
  403. * Validate additive latency
  404. * FIXME: move to somewhere else to validate
  405. *
  406. * AL <= tRCD(min)
  407. */
  408. if (mclk_to_picos(additive_latency) > tRCD_ps) {
  409. printf("Error: invalid additive latency exceeds tRCD(min).\n");
  410. return 1;
  411. }
  412. /*
  413. * RL = CL + AL; RL >= 3 for ODT_RD_CFG to be enabled
  414. * WL = RL - 1; WL >= 3 for ODT_WL_CFG to be enabled
  415. * ADD_LAT (the register) must be set to a value less
  416. * than ACTTORW if WL = 1, then AL must be set to 1
  417. * RD_TO_PRE (the register) must be set to a minimum
  418. * tRTP + AL if AL is nonzero
  419. */
  420. /*
  421. * Additive latency will be applied only if the memctl option to
  422. * use it.
  423. */
  424. outpdimm->additive_latency = additive_latency;
  425. return 0;
  426. }