clock.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* *
  29. * This structure is to store the src bit, div bit and prediv bit
  30. * positions of the peripheral clocks of the src and div registers
  31. */
  32. struct clk_bit_info {
  33. int8_t src_bit;
  34. int8_t div_bit;
  35. int8_t prediv_bit;
  36. };
  37. /* src_bit div_bit prediv_bit */
  38. static struct clk_bit_info clk_bit_info[PERIPH_ID_COUNT] = {
  39. {0, 0, -1},
  40. {4, 4, -1},
  41. {8, 8, -1},
  42. {12, 12, -1},
  43. {0, 0, 8},
  44. {4, 16, 24},
  45. {8, 0, 8},
  46. {12, 16, 24},
  47. {-1, -1, -1},
  48. {16, 0, 8},
  49. {20, 16, 24},
  50. {24, 0, 8},
  51. {0, 0, 4},
  52. {4, 12, 16},
  53. {-1, -1, -1},
  54. {-1, -1, -1},
  55. {-1, 24, 0},
  56. {-1, 24, 0},
  57. {-1, 24, 0},
  58. {-1, 24, 0},
  59. {-1, 24, 0},
  60. {-1, 24, 0},
  61. {-1, 24, 0},
  62. {-1, 24, 0},
  63. {24, 0, -1},
  64. {24, 0, -1},
  65. {24, 0, -1},
  66. {24, 0, -1},
  67. {24, 0, -1},
  68. };
  69. /* Epll Clock division values to achive different frequency output */
  70. static struct set_epll_con_val exynos5_epll_div[] = {
  71. { 192000000, 0, 48, 3, 1, 0 },
  72. { 180000000, 0, 45, 3, 1, 0 },
  73. { 73728000, 1, 73, 3, 3, 47710 },
  74. { 67737600, 1, 90, 4, 3, 20762 },
  75. { 49152000, 0, 49, 3, 3, 9961 },
  76. { 45158400, 0, 45, 3, 3, 10381 },
  77. { 180633600, 0, 45, 3, 1, 10381 }
  78. };
  79. /* exynos: return pll clock frequency */
  80. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  81. {
  82. unsigned long m, p, s = 0, mask, fout;
  83. unsigned int freq;
  84. /*
  85. * APLL_CON: MIDV [25:16]
  86. * MPLL_CON: MIDV [25:16]
  87. * EPLL_CON: MIDV [24:16]
  88. * VPLL_CON: MIDV [24:16]
  89. * BPLL_CON: MIDV [25:16]: Exynos5
  90. */
  91. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  92. mask = 0x3ff;
  93. else
  94. mask = 0x1ff;
  95. m = (r >> 16) & mask;
  96. /* PDIV [13:8] */
  97. p = (r >> 8) & 0x3f;
  98. /* SDIV [2:0] */
  99. s = r & 0x7;
  100. freq = CONFIG_SYS_CLK_FREQ;
  101. if (pllreg == EPLL) {
  102. k = k & 0xffff;
  103. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  104. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  105. } else if (pllreg == VPLL) {
  106. k = k & 0xfff;
  107. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  108. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  109. } else {
  110. if (s < 1)
  111. s = 1;
  112. /* FOUT = MDIV * FIN / (PDIV * 2^(SDIV - 1)) */
  113. fout = m * (freq / (p * (1 << (s - 1))));
  114. }
  115. return fout;
  116. }
  117. /* exynos4: return pll clock frequency */
  118. static unsigned long exynos4_get_pll_clk(int pllreg)
  119. {
  120. struct exynos4_clock *clk =
  121. (struct exynos4_clock *)samsung_get_base_clock();
  122. unsigned long r, k = 0;
  123. switch (pllreg) {
  124. case APLL:
  125. r = readl(&clk->apll_con0);
  126. break;
  127. case MPLL:
  128. r = readl(&clk->mpll_con0);
  129. break;
  130. case EPLL:
  131. r = readl(&clk->epll_con0);
  132. k = readl(&clk->epll_con1);
  133. break;
  134. case VPLL:
  135. r = readl(&clk->vpll_con0);
  136. k = readl(&clk->vpll_con1);
  137. break;
  138. default:
  139. printf("Unsupported PLL (%d)\n", pllreg);
  140. return 0;
  141. }
  142. return exynos_get_pll_clk(pllreg, r, k);
  143. }
  144. /* exynos4x12: return pll clock frequency */
  145. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  146. {
  147. struct exynos4x12_clock *clk =
  148. (struct exynos4x12_clock *)samsung_get_base_clock();
  149. unsigned long r, k = 0;
  150. switch (pllreg) {
  151. case APLL:
  152. r = readl(&clk->apll_con0);
  153. break;
  154. case MPLL:
  155. r = readl(&clk->mpll_con0);
  156. break;
  157. case EPLL:
  158. r = readl(&clk->epll_con0);
  159. k = readl(&clk->epll_con1);
  160. break;
  161. case VPLL:
  162. r = readl(&clk->vpll_con0);
  163. k = readl(&clk->vpll_con1);
  164. break;
  165. default:
  166. printf("Unsupported PLL (%d)\n", pllreg);
  167. return 0;
  168. }
  169. return exynos_get_pll_clk(pllreg, r, k);
  170. }
  171. /* exynos5: return pll clock frequency */
  172. static unsigned long exynos5_get_pll_clk(int pllreg)
  173. {
  174. struct exynos5_clock *clk =
  175. (struct exynos5_clock *)samsung_get_base_clock();
  176. unsigned long r, k = 0, fout;
  177. unsigned int pll_div2_sel, fout_sel;
  178. switch (pllreg) {
  179. case APLL:
  180. r = readl(&clk->apll_con0);
  181. break;
  182. case MPLL:
  183. r = readl(&clk->mpll_con0);
  184. break;
  185. case EPLL:
  186. r = readl(&clk->epll_con0);
  187. k = readl(&clk->epll_con1);
  188. break;
  189. case VPLL:
  190. r = readl(&clk->vpll_con0);
  191. k = readl(&clk->vpll_con1);
  192. break;
  193. case BPLL:
  194. r = readl(&clk->bpll_con0);
  195. break;
  196. default:
  197. printf("Unsupported PLL (%d)\n", pllreg);
  198. return 0;
  199. }
  200. fout = exynos_get_pll_clk(pllreg, r, k);
  201. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  202. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  203. if (pllreg == MPLL || pllreg == BPLL) {
  204. pll_div2_sel = readl(&clk->pll_div2_sel);
  205. switch (pllreg) {
  206. case MPLL:
  207. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  208. & MPLL_FOUT_SEL_MASK;
  209. break;
  210. case BPLL:
  211. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  212. & BPLL_FOUT_SEL_MASK;
  213. break;
  214. default:
  215. fout_sel = -1;
  216. break;
  217. }
  218. if (fout_sel == 0)
  219. fout /= 2;
  220. }
  221. return fout;
  222. }
  223. static unsigned long exynos5_get_periph_rate(int peripheral)
  224. {
  225. struct clk_bit_info *bit_info = &clk_bit_info[peripheral];
  226. unsigned long sclk, sub_clk;
  227. unsigned int src, div, sub_div;
  228. struct exynos5_clock *clk =
  229. (struct exynos5_clock *)samsung_get_base_clock();
  230. switch (peripheral) {
  231. case PERIPH_ID_UART0:
  232. case PERIPH_ID_UART1:
  233. case PERIPH_ID_UART2:
  234. case PERIPH_ID_UART3:
  235. src = readl(&clk->src_peric0);
  236. div = readl(&clk->div_peric0);
  237. break;
  238. case PERIPH_ID_PWM0:
  239. case PERIPH_ID_PWM1:
  240. case PERIPH_ID_PWM2:
  241. case PERIPH_ID_PWM3:
  242. case PERIPH_ID_PWM4:
  243. src = readl(&clk->src_peric0);
  244. div = readl(&clk->div_peric3);
  245. break;
  246. case PERIPH_ID_SPI0:
  247. case PERIPH_ID_SPI1:
  248. src = readl(&clk->src_peric1);
  249. div = readl(&clk->div_peric1);
  250. break;
  251. case PERIPH_ID_SPI2:
  252. src = readl(&clk->src_peric1);
  253. div = readl(&clk->div_peric2);
  254. break;
  255. case PERIPH_ID_SPI3:
  256. case PERIPH_ID_SPI4:
  257. src = readl(&clk->sclk_src_isp);
  258. div = readl(&clk->sclk_div_isp);
  259. break;
  260. case PERIPH_ID_SDMMC0:
  261. case PERIPH_ID_SDMMC1:
  262. case PERIPH_ID_SDMMC2:
  263. case PERIPH_ID_SDMMC3:
  264. src = readl(&clk->src_fsys);
  265. div = readl(&clk->div_fsys1);
  266. break;
  267. case PERIPH_ID_I2C0:
  268. case PERIPH_ID_I2C1:
  269. case PERIPH_ID_I2C2:
  270. case PERIPH_ID_I2C3:
  271. case PERIPH_ID_I2C4:
  272. case PERIPH_ID_I2C5:
  273. case PERIPH_ID_I2C6:
  274. case PERIPH_ID_I2C7:
  275. sclk = exynos5_get_pll_clk(MPLL);
  276. sub_div = ((readl(&clk->div_top1) >> bit_info->div_bit)
  277. & 0x7) + 1;
  278. div = ((readl(&clk->div_top0) >> bit_info->prediv_bit)
  279. & 0x7) + 1;
  280. return (sclk / sub_div) / div;
  281. default:
  282. debug("%s: invalid peripheral %d", __func__, peripheral);
  283. return -1;
  284. };
  285. src = (src >> bit_info->src_bit) & 0xf;
  286. switch (src) {
  287. case EXYNOS_SRC_MPLL:
  288. sclk = exynos5_get_pll_clk(MPLL);
  289. break;
  290. case EXYNOS_SRC_EPLL:
  291. sclk = exynos5_get_pll_clk(EPLL);
  292. break;
  293. case EXYNOS_SRC_VPLL:
  294. sclk = exynos5_get_pll_clk(VPLL);
  295. break;
  296. default:
  297. return 0;
  298. }
  299. /* Ratio clock division for this peripheral */
  300. sub_div = (div >> bit_info->div_bit) & 0xf;
  301. sub_clk = sclk / (sub_div + 1);
  302. /* Pre-ratio clock division for SDMMC0 and 2 */
  303. if (peripheral == PERIPH_ID_SDMMC0 || peripheral == PERIPH_ID_SDMMC2) {
  304. div = (div >> bit_info->prediv_bit) & 0xff;
  305. return sub_clk / (div + 1);
  306. }
  307. return sub_clk;
  308. }
  309. unsigned long clock_get_periph_rate(int peripheral)
  310. {
  311. if (cpu_is_exynos5())
  312. return exynos5_get_periph_rate(peripheral);
  313. else
  314. return 0;
  315. }
  316. /* exynos4: return ARM clock frequency */
  317. static unsigned long exynos4_get_arm_clk(void)
  318. {
  319. struct exynos4_clock *clk =
  320. (struct exynos4_clock *)samsung_get_base_clock();
  321. unsigned long div;
  322. unsigned long armclk;
  323. unsigned int core_ratio;
  324. unsigned int core2_ratio;
  325. div = readl(&clk->div_cpu0);
  326. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  327. core_ratio = (div >> 0) & 0x7;
  328. core2_ratio = (div >> 28) & 0x7;
  329. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  330. armclk /= (core2_ratio + 1);
  331. return armclk;
  332. }
  333. /* exynos4x12: return ARM clock frequency */
  334. static unsigned long exynos4x12_get_arm_clk(void)
  335. {
  336. struct exynos4x12_clock *clk =
  337. (struct exynos4x12_clock *)samsung_get_base_clock();
  338. unsigned long div;
  339. unsigned long armclk;
  340. unsigned int core_ratio;
  341. unsigned int core2_ratio;
  342. div = readl(&clk->div_cpu0);
  343. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  344. core_ratio = (div >> 0) & 0x7;
  345. core2_ratio = (div >> 28) & 0x7;
  346. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  347. armclk /= (core2_ratio + 1);
  348. return armclk;
  349. }
  350. /* exynos5: return ARM clock frequency */
  351. static unsigned long exynos5_get_arm_clk(void)
  352. {
  353. struct exynos5_clock *clk =
  354. (struct exynos5_clock *)samsung_get_base_clock();
  355. unsigned long div;
  356. unsigned long armclk;
  357. unsigned int arm_ratio;
  358. unsigned int arm2_ratio;
  359. div = readl(&clk->div_cpu0);
  360. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  361. arm_ratio = (div >> 0) & 0x7;
  362. arm2_ratio = (div >> 28) & 0x7;
  363. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  364. armclk /= (arm2_ratio + 1);
  365. return armclk;
  366. }
  367. /* exynos4: return pwm clock frequency */
  368. static unsigned long exynos4_get_pwm_clk(void)
  369. {
  370. struct exynos4_clock *clk =
  371. (struct exynos4_clock *)samsung_get_base_clock();
  372. unsigned long pclk, sclk;
  373. unsigned int sel;
  374. unsigned int ratio;
  375. if (s5p_get_cpu_rev() == 0) {
  376. /*
  377. * CLK_SRC_PERIL0
  378. * PWM_SEL [27:24]
  379. */
  380. sel = readl(&clk->src_peril0);
  381. sel = (sel >> 24) & 0xf;
  382. if (sel == 0x6)
  383. sclk = get_pll_clk(MPLL);
  384. else if (sel == 0x7)
  385. sclk = get_pll_clk(EPLL);
  386. else if (sel == 0x8)
  387. sclk = get_pll_clk(VPLL);
  388. else
  389. return 0;
  390. /*
  391. * CLK_DIV_PERIL3
  392. * PWM_RATIO [3:0]
  393. */
  394. ratio = readl(&clk->div_peril3);
  395. ratio = ratio & 0xf;
  396. } else if (s5p_get_cpu_rev() == 1) {
  397. sclk = get_pll_clk(MPLL);
  398. ratio = 8;
  399. } else
  400. return 0;
  401. pclk = sclk / (ratio + 1);
  402. return pclk;
  403. }
  404. /* exynos4x12: return pwm clock frequency */
  405. static unsigned long exynos4x12_get_pwm_clk(void)
  406. {
  407. unsigned long pclk, sclk;
  408. unsigned int ratio;
  409. sclk = get_pll_clk(MPLL);
  410. ratio = 8;
  411. pclk = sclk / (ratio + 1);
  412. return pclk;
  413. }
  414. /* exynos5: return pwm clock frequency */
  415. static unsigned long exynos5_get_pwm_clk(void)
  416. {
  417. struct exynos5_clock *clk =
  418. (struct exynos5_clock *)samsung_get_base_clock();
  419. unsigned long pclk, sclk;
  420. unsigned int ratio;
  421. /*
  422. * CLK_DIV_PERIC3
  423. * PWM_RATIO [3:0]
  424. */
  425. ratio = readl(&clk->div_peric3);
  426. ratio = ratio & 0xf;
  427. sclk = get_pll_clk(MPLL);
  428. pclk = sclk / (ratio + 1);
  429. return pclk;
  430. }
  431. /* exynos4: return uart clock frequency */
  432. static unsigned long exynos4_get_uart_clk(int dev_index)
  433. {
  434. struct exynos4_clock *clk =
  435. (struct exynos4_clock *)samsung_get_base_clock();
  436. unsigned long uclk, sclk;
  437. unsigned int sel;
  438. unsigned int ratio;
  439. /*
  440. * CLK_SRC_PERIL0
  441. * UART0_SEL [3:0]
  442. * UART1_SEL [7:4]
  443. * UART2_SEL [8:11]
  444. * UART3_SEL [12:15]
  445. * UART4_SEL [16:19]
  446. * UART5_SEL [23:20]
  447. */
  448. sel = readl(&clk->src_peril0);
  449. sel = (sel >> (dev_index << 2)) & 0xf;
  450. if (sel == 0x6)
  451. sclk = get_pll_clk(MPLL);
  452. else if (sel == 0x7)
  453. sclk = get_pll_clk(EPLL);
  454. else if (sel == 0x8)
  455. sclk = get_pll_clk(VPLL);
  456. else
  457. return 0;
  458. /*
  459. * CLK_DIV_PERIL0
  460. * UART0_RATIO [3:0]
  461. * UART1_RATIO [7:4]
  462. * UART2_RATIO [8:11]
  463. * UART3_RATIO [12:15]
  464. * UART4_RATIO [16:19]
  465. * UART5_RATIO [23:20]
  466. */
  467. ratio = readl(&clk->div_peril0);
  468. ratio = (ratio >> (dev_index << 2)) & 0xf;
  469. uclk = sclk / (ratio + 1);
  470. return uclk;
  471. }
  472. /* exynos4x12: return uart clock frequency */
  473. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  474. {
  475. struct exynos4x12_clock *clk =
  476. (struct exynos4x12_clock *)samsung_get_base_clock();
  477. unsigned long uclk, sclk;
  478. unsigned int sel;
  479. unsigned int ratio;
  480. /*
  481. * CLK_SRC_PERIL0
  482. * UART0_SEL [3:0]
  483. * UART1_SEL [7:4]
  484. * UART2_SEL [8:11]
  485. * UART3_SEL [12:15]
  486. * UART4_SEL [16:19]
  487. */
  488. sel = readl(&clk->src_peril0);
  489. sel = (sel >> (dev_index << 2)) & 0xf;
  490. if (sel == 0x6)
  491. sclk = get_pll_clk(MPLL);
  492. else if (sel == 0x7)
  493. sclk = get_pll_clk(EPLL);
  494. else if (sel == 0x8)
  495. sclk = get_pll_clk(VPLL);
  496. else
  497. return 0;
  498. /*
  499. * CLK_DIV_PERIL0
  500. * UART0_RATIO [3:0]
  501. * UART1_RATIO [7:4]
  502. * UART2_RATIO [8:11]
  503. * UART3_RATIO [12:15]
  504. * UART4_RATIO [16:19]
  505. */
  506. ratio = readl(&clk->div_peril0);
  507. ratio = (ratio >> (dev_index << 2)) & 0xf;
  508. uclk = sclk / (ratio + 1);
  509. return uclk;
  510. }
  511. /* exynos5: return uart clock frequency */
  512. static unsigned long exynos5_get_uart_clk(int dev_index)
  513. {
  514. struct exynos5_clock *clk =
  515. (struct exynos5_clock *)samsung_get_base_clock();
  516. unsigned long uclk, sclk;
  517. unsigned int sel;
  518. unsigned int ratio;
  519. /*
  520. * CLK_SRC_PERIC0
  521. * UART0_SEL [3:0]
  522. * UART1_SEL [7:4]
  523. * UART2_SEL [8:11]
  524. * UART3_SEL [12:15]
  525. * UART4_SEL [16:19]
  526. * UART5_SEL [23:20]
  527. */
  528. sel = readl(&clk->src_peric0);
  529. sel = (sel >> (dev_index << 2)) & 0xf;
  530. if (sel == 0x6)
  531. sclk = get_pll_clk(MPLL);
  532. else if (sel == 0x7)
  533. sclk = get_pll_clk(EPLL);
  534. else if (sel == 0x8)
  535. sclk = get_pll_clk(VPLL);
  536. else
  537. return 0;
  538. /*
  539. * CLK_DIV_PERIC0
  540. * UART0_RATIO [3:0]
  541. * UART1_RATIO [7:4]
  542. * UART2_RATIO [8:11]
  543. * UART3_RATIO [12:15]
  544. * UART4_RATIO [16:19]
  545. * UART5_RATIO [23:20]
  546. */
  547. ratio = readl(&clk->div_peric0);
  548. ratio = (ratio >> (dev_index << 2)) & 0xf;
  549. uclk = sclk / (ratio + 1);
  550. return uclk;
  551. }
  552. static unsigned long exynos4_get_mmc_clk(int dev_index)
  553. {
  554. struct exynos4_clock *clk =
  555. (struct exynos4_clock *)samsung_get_base_clock();
  556. unsigned long uclk, sclk;
  557. unsigned int sel, ratio, pre_ratio;
  558. int shift;
  559. sel = readl(&clk->src_fsys);
  560. sel = (sel >> (dev_index << 2)) & 0xf;
  561. if (sel == 0x6)
  562. sclk = get_pll_clk(MPLL);
  563. else if (sel == 0x7)
  564. sclk = get_pll_clk(EPLL);
  565. else if (sel == 0x8)
  566. sclk = get_pll_clk(VPLL);
  567. else
  568. return 0;
  569. switch (dev_index) {
  570. case 0:
  571. case 1:
  572. ratio = readl(&clk->div_fsys1);
  573. pre_ratio = readl(&clk->div_fsys1);
  574. break;
  575. case 2:
  576. case 3:
  577. ratio = readl(&clk->div_fsys2);
  578. pre_ratio = readl(&clk->div_fsys2);
  579. break;
  580. case 4:
  581. ratio = readl(&clk->div_fsys3);
  582. pre_ratio = readl(&clk->div_fsys3);
  583. break;
  584. default:
  585. return 0;
  586. }
  587. if (dev_index == 1 || dev_index == 3)
  588. shift = 16;
  589. ratio = (ratio >> shift) & 0xf;
  590. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  591. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  592. return uclk;
  593. }
  594. static unsigned long exynos5_get_mmc_clk(int dev_index)
  595. {
  596. struct exynos5_clock *clk =
  597. (struct exynos5_clock *)samsung_get_base_clock();
  598. unsigned long uclk, sclk;
  599. unsigned int sel, ratio, pre_ratio;
  600. int shift;
  601. sel = readl(&clk->src_fsys);
  602. sel = (sel >> (dev_index << 2)) & 0xf;
  603. if (sel == 0x6)
  604. sclk = get_pll_clk(MPLL);
  605. else if (sel == 0x7)
  606. sclk = get_pll_clk(EPLL);
  607. else if (sel == 0x8)
  608. sclk = get_pll_clk(VPLL);
  609. else
  610. return 0;
  611. switch (dev_index) {
  612. case 0:
  613. case 1:
  614. ratio = readl(&clk->div_fsys1);
  615. pre_ratio = readl(&clk->div_fsys1);
  616. break;
  617. case 2:
  618. case 3:
  619. ratio = readl(&clk->div_fsys2);
  620. pre_ratio = readl(&clk->div_fsys2);
  621. break;
  622. default:
  623. return 0;
  624. }
  625. if (dev_index == 1 || dev_index == 3)
  626. shift = 16;
  627. ratio = (ratio >> shift) & 0xf;
  628. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  629. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  630. return uclk;
  631. }
  632. /* exynos4: set the mmc clock */
  633. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  634. {
  635. struct exynos4_clock *clk =
  636. (struct exynos4_clock *)samsung_get_base_clock();
  637. unsigned int addr;
  638. unsigned int val;
  639. /*
  640. * CLK_DIV_FSYS1
  641. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  642. * CLK_DIV_FSYS2
  643. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  644. * CLK_DIV_FSYS3
  645. * MMC4_PRE_RATIO [15:8]
  646. */
  647. if (dev_index < 2) {
  648. addr = (unsigned int)&clk->div_fsys1;
  649. } else if (dev_index == 4) {
  650. addr = (unsigned int)&clk->div_fsys3;
  651. dev_index -= 4;
  652. } else {
  653. addr = (unsigned int)&clk->div_fsys2;
  654. dev_index -= 2;
  655. }
  656. val = readl(addr);
  657. val &= ~(0xff << ((dev_index << 4) + 8));
  658. val |= (div & 0xff) << ((dev_index << 4) + 8);
  659. writel(val, addr);
  660. }
  661. /* exynos4x12: set the mmc clock */
  662. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  663. {
  664. struct exynos4x12_clock *clk =
  665. (struct exynos4x12_clock *)samsung_get_base_clock();
  666. unsigned int addr;
  667. unsigned int val;
  668. /*
  669. * CLK_DIV_FSYS1
  670. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  671. * CLK_DIV_FSYS2
  672. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  673. */
  674. if (dev_index < 2) {
  675. addr = (unsigned int)&clk->div_fsys1;
  676. } else {
  677. addr = (unsigned int)&clk->div_fsys2;
  678. dev_index -= 2;
  679. }
  680. val = readl(addr);
  681. val &= ~(0xff << ((dev_index << 4) + 8));
  682. val |= (div & 0xff) << ((dev_index << 4) + 8);
  683. writel(val, addr);
  684. }
  685. /* exynos5: set the mmc clock */
  686. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  687. {
  688. struct exynos5_clock *clk =
  689. (struct exynos5_clock *)samsung_get_base_clock();
  690. unsigned int addr;
  691. unsigned int val;
  692. /*
  693. * CLK_DIV_FSYS1
  694. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  695. * CLK_DIV_FSYS2
  696. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  697. */
  698. if (dev_index < 2) {
  699. addr = (unsigned int)&clk->div_fsys1;
  700. } else {
  701. addr = (unsigned int)&clk->div_fsys2;
  702. dev_index -= 2;
  703. }
  704. val = readl(addr);
  705. val &= ~(0xff << ((dev_index << 4) + 8));
  706. val |= (div & 0xff) << ((dev_index << 4) + 8);
  707. writel(val, addr);
  708. }
  709. /* get_lcd_clk: return lcd clock frequency */
  710. static unsigned long exynos4_get_lcd_clk(void)
  711. {
  712. struct exynos4_clock *clk =
  713. (struct exynos4_clock *)samsung_get_base_clock();
  714. unsigned long pclk, sclk;
  715. unsigned int sel;
  716. unsigned int ratio;
  717. /*
  718. * CLK_SRC_LCD0
  719. * FIMD0_SEL [3:0]
  720. */
  721. sel = readl(&clk->src_lcd0);
  722. sel = sel & 0xf;
  723. /*
  724. * 0x6: SCLK_MPLL
  725. * 0x7: SCLK_EPLL
  726. * 0x8: SCLK_VPLL
  727. */
  728. if (sel == 0x6)
  729. sclk = get_pll_clk(MPLL);
  730. else if (sel == 0x7)
  731. sclk = get_pll_clk(EPLL);
  732. else if (sel == 0x8)
  733. sclk = get_pll_clk(VPLL);
  734. else
  735. return 0;
  736. /*
  737. * CLK_DIV_LCD0
  738. * FIMD0_RATIO [3:0]
  739. */
  740. ratio = readl(&clk->div_lcd0);
  741. ratio = ratio & 0xf;
  742. pclk = sclk / (ratio + 1);
  743. return pclk;
  744. }
  745. /* get_lcd_clk: return lcd clock frequency */
  746. static unsigned long exynos5_get_lcd_clk(void)
  747. {
  748. struct exynos5_clock *clk =
  749. (struct exynos5_clock *)samsung_get_base_clock();
  750. unsigned long pclk, sclk;
  751. unsigned int sel;
  752. unsigned int ratio;
  753. /*
  754. * CLK_SRC_LCD0
  755. * FIMD0_SEL [3:0]
  756. */
  757. sel = readl(&clk->src_disp1_0);
  758. sel = sel & 0xf;
  759. /*
  760. * 0x6: SCLK_MPLL
  761. * 0x7: SCLK_EPLL
  762. * 0x8: SCLK_VPLL
  763. */
  764. if (sel == 0x6)
  765. sclk = get_pll_clk(MPLL);
  766. else if (sel == 0x7)
  767. sclk = get_pll_clk(EPLL);
  768. else if (sel == 0x8)
  769. sclk = get_pll_clk(VPLL);
  770. else
  771. return 0;
  772. /*
  773. * CLK_DIV_LCD0
  774. * FIMD0_RATIO [3:0]
  775. */
  776. ratio = readl(&clk->div_disp1_0);
  777. ratio = ratio & 0xf;
  778. pclk = sclk / (ratio + 1);
  779. return pclk;
  780. }
  781. void exynos4_set_lcd_clk(void)
  782. {
  783. struct exynos4_clock *clk =
  784. (struct exynos4_clock *)samsung_get_base_clock();
  785. unsigned int cfg = 0;
  786. /*
  787. * CLK_GATE_BLOCK
  788. * CLK_CAM [0]
  789. * CLK_TV [1]
  790. * CLK_MFC [2]
  791. * CLK_G3D [3]
  792. * CLK_LCD0 [4]
  793. * CLK_LCD1 [5]
  794. * CLK_GPS [7]
  795. */
  796. cfg = readl(&clk->gate_block);
  797. cfg |= 1 << 4;
  798. writel(cfg, &clk->gate_block);
  799. /*
  800. * CLK_SRC_LCD0
  801. * FIMD0_SEL [3:0]
  802. * MDNIE0_SEL [7:4]
  803. * MDNIE_PWM0_SEL [8:11]
  804. * MIPI0_SEL [12:15]
  805. * set lcd0 src clock 0x6: SCLK_MPLL
  806. */
  807. cfg = readl(&clk->src_lcd0);
  808. cfg &= ~(0xf);
  809. cfg |= 0x6;
  810. writel(cfg, &clk->src_lcd0);
  811. /*
  812. * CLK_GATE_IP_LCD0
  813. * CLK_FIMD0 [0]
  814. * CLK_MIE0 [1]
  815. * CLK_MDNIE0 [2]
  816. * CLK_DSIM0 [3]
  817. * CLK_SMMUFIMD0 [4]
  818. * CLK_PPMULCD0 [5]
  819. * Gating all clocks for FIMD0
  820. */
  821. cfg = readl(&clk->gate_ip_lcd0);
  822. cfg |= 1 << 0;
  823. writel(cfg, &clk->gate_ip_lcd0);
  824. /*
  825. * CLK_DIV_LCD0
  826. * FIMD0_RATIO [3:0]
  827. * MDNIE0_RATIO [7:4]
  828. * MDNIE_PWM0_RATIO [11:8]
  829. * MDNIE_PWM_PRE_RATIO [15:12]
  830. * MIPI0_RATIO [19:16]
  831. * MIPI0_PRE_RATIO [23:20]
  832. * set fimd ratio
  833. */
  834. cfg &= ~(0xf);
  835. cfg |= 0x1;
  836. writel(cfg, &clk->div_lcd0);
  837. }
  838. void exynos5_set_lcd_clk(void)
  839. {
  840. struct exynos5_clock *clk =
  841. (struct exynos5_clock *)samsung_get_base_clock();
  842. unsigned int cfg = 0;
  843. /*
  844. * CLK_GATE_BLOCK
  845. * CLK_CAM [0]
  846. * CLK_TV [1]
  847. * CLK_MFC [2]
  848. * CLK_G3D [3]
  849. * CLK_LCD0 [4]
  850. * CLK_LCD1 [5]
  851. * CLK_GPS [7]
  852. */
  853. cfg = readl(&clk->gate_block);
  854. cfg |= 1 << 4;
  855. writel(cfg, &clk->gate_block);
  856. /*
  857. * CLK_SRC_LCD0
  858. * FIMD0_SEL [3:0]
  859. * MDNIE0_SEL [7:4]
  860. * MDNIE_PWM0_SEL [8:11]
  861. * MIPI0_SEL [12:15]
  862. * set lcd0 src clock 0x6: SCLK_MPLL
  863. */
  864. cfg = readl(&clk->src_disp1_0);
  865. cfg &= ~(0xf);
  866. cfg |= 0x6;
  867. writel(cfg, &clk->src_disp1_0);
  868. /*
  869. * CLK_GATE_IP_LCD0
  870. * CLK_FIMD0 [0]
  871. * CLK_MIE0 [1]
  872. * CLK_MDNIE0 [2]
  873. * CLK_DSIM0 [3]
  874. * CLK_SMMUFIMD0 [4]
  875. * CLK_PPMULCD0 [5]
  876. * Gating all clocks for FIMD0
  877. */
  878. cfg = readl(&clk->gate_ip_disp1);
  879. cfg |= 1 << 0;
  880. writel(cfg, &clk->gate_ip_disp1);
  881. /*
  882. * CLK_DIV_LCD0
  883. * FIMD0_RATIO [3:0]
  884. * MDNIE0_RATIO [7:4]
  885. * MDNIE_PWM0_RATIO [11:8]
  886. * MDNIE_PWM_PRE_RATIO [15:12]
  887. * MIPI0_RATIO [19:16]
  888. * MIPI0_PRE_RATIO [23:20]
  889. * set fimd ratio
  890. */
  891. cfg &= ~(0xf);
  892. cfg |= 0x0;
  893. writel(cfg, &clk->div_disp1_0);
  894. }
  895. void exynos4_set_mipi_clk(void)
  896. {
  897. struct exynos4_clock *clk =
  898. (struct exynos4_clock *)samsung_get_base_clock();
  899. unsigned int cfg = 0;
  900. /*
  901. * CLK_SRC_LCD0
  902. * FIMD0_SEL [3:0]
  903. * MDNIE0_SEL [7:4]
  904. * MDNIE_PWM0_SEL [8:11]
  905. * MIPI0_SEL [12:15]
  906. * set mipi0 src clock 0x6: SCLK_MPLL
  907. */
  908. cfg = readl(&clk->src_lcd0);
  909. cfg &= ~(0xf << 12);
  910. cfg |= (0x6 << 12);
  911. writel(cfg, &clk->src_lcd0);
  912. /*
  913. * CLK_SRC_MASK_LCD0
  914. * FIMD0_MASK [0]
  915. * MDNIE0_MASK [4]
  916. * MDNIE_PWM0_MASK [8]
  917. * MIPI0_MASK [12]
  918. * set src mask mipi0 0x1: Unmask
  919. */
  920. cfg = readl(&clk->src_mask_lcd0);
  921. cfg |= (0x1 << 12);
  922. writel(cfg, &clk->src_mask_lcd0);
  923. /*
  924. * CLK_GATE_IP_LCD0
  925. * CLK_FIMD0 [0]
  926. * CLK_MIE0 [1]
  927. * CLK_MDNIE0 [2]
  928. * CLK_DSIM0 [3]
  929. * CLK_SMMUFIMD0 [4]
  930. * CLK_PPMULCD0 [5]
  931. * Gating all clocks for MIPI0
  932. */
  933. cfg = readl(&clk->gate_ip_lcd0);
  934. cfg |= 1 << 3;
  935. writel(cfg, &clk->gate_ip_lcd0);
  936. /*
  937. * CLK_DIV_LCD0
  938. * FIMD0_RATIO [3:0]
  939. * MDNIE0_RATIO [7:4]
  940. * MDNIE_PWM0_RATIO [11:8]
  941. * MDNIE_PWM_PRE_RATIO [15:12]
  942. * MIPI0_RATIO [19:16]
  943. * MIPI0_PRE_RATIO [23:20]
  944. * set mipi ratio
  945. */
  946. cfg &= ~(0xf << 16);
  947. cfg |= (0x1 << 16);
  948. writel(cfg, &clk->div_lcd0);
  949. }
  950. /*
  951. * I2C
  952. *
  953. * exynos5: obtaining the I2C clock
  954. */
  955. static unsigned long exynos5_get_i2c_clk(void)
  956. {
  957. struct exynos5_clock *clk =
  958. (struct exynos5_clock *)samsung_get_base_clock();
  959. unsigned long aclk_66, aclk_66_pre, sclk;
  960. unsigned int ratio;
  961. sclk = get_pll_clk(MPLL);
  962. ratio = (readl(&clk->div_top1)) >> 24;
  963. ratio &= 0x7;
  964. aclk_66_pre = sclk / (ratio + 1);
  965. ratio = readl(&clk->div_top0);
  966. ratio &= 0x7;
  967. aclk_66 = aclk_66_pre / (ratio + 1);
  968. return aclk_66;
  969. }
  970. int exynos5_set_epll_clk(unsigned long rate)
  971. {
  972. unsigned int epll_con, epll_con_k;
  973. unsigned int i;
  974. unsigned int lockcnt;
  975. unsigned int start;
  976. struct exynos5_clock *clk =
  977. (struct exynos5_clock *)samsung_get_base_clock();
  978. epll_con = readl(&clk->epll_con0);
  979. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  980. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  981. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  982. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  983. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  984. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  985. if (exynos5_epll_div[i].freq_out == rate)
  986. break;
  987. }
  988. if (i == ARRAY_SIZE(exynos5_epll_div))
  989. return -1;
  990. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  991. epll_con |= exynos5_epll_div[i].en_lock_det <<
  992. EPLL_CON0_LOCK_DET_EN_SHIFT;
  993. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  994. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  995. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  996. /*
  997. * Required period ( in cycles) to genarate a stable clock output.
  998. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  999. * frequency input (as per spec)
  1000. */
  1001. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  1002. writel(lockcnt, &clk->epll_lock);
  1003. writel(epll_con, &clk->epll_con0);
  1004. writel(epll_con_k, &clk->epll_con1);
  1005. start = get_timer(0);
  1006. while (!(readl(&clk->epll_con0) &
  1007. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  1008. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  1009. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  1010. return -1;
  1011. }
  1012. }
  1013. return 0;
  1014. }
  1015. void exynos5_set_i2s_clk_source(void)
  1016. {
  1017. struct exynos5_clock *clk =
  1018. (struct exynos5_clock *)samsung_get_base_clock();
  1019. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  1020. (CLK_SRC_SCLK_EPLL));
  1021. }
  1022. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  1023. unsigned int dst_frq)
  1024. {
  1025. struct exynos5_clock *clk =
  1026. (struct exynos5_clock *)samsung_get_base_clock();
  1027. unsigned int div;
  1028. if ((dst_frq == 0) || (src_frq == 0)) {
  1029. debug("%s: Invalid requency input for prescaler\n", __func__);
  1030. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1031. return -1;
  1032. }
  1033. div = (src_frq / dst_frq);
  1034. if (div > AUDIO_1_RATIO_MASK) {
  1035. debug("%s: Frequency ratio is out of range\n", __func__);
  1036. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  1037. return -1;
  1038. }
  1039. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  1040. (div & AUDIO_1_RATIO_MASK));
  1041. return 0;
  1042. }
  1043. /**
  1044. * Linearly searches for the most accurate main and fine stage clock scalars
  1045. * (divisors) for a specified target frequency and scalar bit sizes by checking
  1046. * all multiples of main_scalar_bits values. Will always return scalars up to or
  1047. * slower than target.
  1048. *
  1049. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  1050. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  1051. * @param input_freq Clock frequency to be scaled in Hz
  1052. * @param target_freq Desired clock frequency in Hz
  1053. * @param best_fine_scalar Pointer to store the fine stage divisor
  1054. *
  1055. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  1056. * found
  1057. */
  1058. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  1059. unsigned int fine_scalar_bits, unsigned int input_rate,
  1060. unsigned int target_rate, unsigned int *best_fine_scalar)
  1061. {
  1062. int i;
  1063. int best_main_scalar = -1;
  1064. unsigned int best_error = target_rate;
  1065. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  1066. const unsigned int loops = 1 << main_scaler_bits;
  1067. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  1068. target_rate, cap);
  1069. assert(best_fine_scalar != NULL);
  1070. assert(main_scaler_bits <= fine_scalar_bits);
  1071. *best_fine_scalar = 1;
  1072. if (input_rate == 0 || target_rate == 0)
  1073. return -1;
  1074. if (target_rate >= input_rate)
  1075. return 1;
  1076. for (i = 1; i <= loops; i++) {
  1077. const unsigned int effective_div = max(min(input_rate / i /
  1078. target_rate, cap), 1);
  1079. const unsigned int effective_rate = input_rate / i /
  1080. effective_div;
  1081. const int error = target_rate - effective_rate;
  1082. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  1083. effective_rate, error);
  1084. if (error >= 0 && error <= best_error) {
  1085. best_error = error;
  1086. best_main_scalar = i;
  1087. *best_fine_scalar = effective_div;
  1088. }
  1089. }
  1090. return best_main_scalar;
  1091. }
  1092. static int exynos5_set_spi_clk(enum periph_id periph_id,
  1093. unsigned int rate)
  1094. {
  1095. struct exynos5_clock *clk =
  1096. (struct exynos5_clock *)samsung_get_base_clock();
  1097. int main;
  1098. unsigned int fine;
  1099. unsigned shift, pre_shift;
  1100. unsigned mask = 0xff;
  1101. u32 *reg;
  1102. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  1103. if (main < 0) {
  1104. debug("%s: Cannot set clock rate for periph %d",
  1105. __func__, periph_id);
  1106. return -1;
  1107. }
  1108. main = main - 1;
  1109. fine = fine - 1;
  1110. switch (periph_id) {
  1111. case PERIPH_ID_SPI0:
  1112. reg = &clk->div_peric1;
  1113. shift = 0;
  1114. pre_shift = 8;
  1115. break;
  1116. case PERIPH_ID_SPI1:
  1117. reg = &clk->div_peric1;
  1118. shift = 16;
  1119. pre_shift = 24;
  1120. break;
  1121. case PERIPH_ID_SPI2:
  1122. reg = &clk->div_peric2;
  1123. shift = 0;
  1124. pre_shift = 8;
  1125. break;
  1126. case PERIPH_ID_SPI3:
  1127. reg = &clk->sclk_div_isp;
  1128. shift = 0;
  1129. pre_shift = 4;
  1130. break;
  1131. case PERIPH_ID_SPI4:
  1132. reg = &clk->sclk_div_isp;
  1133. shift = 12;
  1134. pre_shift = 16;
  1135. break;
  1136. default:
  1137. debug("%s: Unsupported peripheral ID %d\n", __func__,
  1138. periph_id);
  1139. return -1;
  1140. }
  1141. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1142. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1143. return 0;
  1144. }
  1145. static unsigned long exynos4_get_i2c_clk(void)
  1146. {
  1147. struct exynos4_clock *clk =
  1148. (struct exynos4_clock *)samsung_get_base_clock();
  1149. unsigned long sclk, aclk_100;
  1150. unsigned int ratio;
  1151. sclk = get_pll_clk(APLL);
  1152. ratio = (readl(&clk->div_top)) >> 4;
  1153. ratio &= 0xf;
  1154. aclk_100 = sclk / (ratio + 1);
  1155. return aclk_100;
  1156. }
  1157. unsigned long get_pll_clk(int pllreg)
  1158. {
  1159. if (cpu_is_exynos5())
  1160. return exynos5_get_pll_clk(pllreg);
  1161. else {
  1162. if (proid_is_exynos4412())
  1163. return exynos4x12_get_pll_clk(pllreg);
  1164. return exynos4_get_pll_clk(pllreg);
  1165. }
  1166. }
  1167. unsigned long get_arm_clk(void)
  1168. {
  1169. if (cpu_is_exynos5())
  1170. return exynos5_get_arm_clk();
  1171. else {
  1172. if (proid_is_exynos4412())
  1173. return exynos4x12_get_arm_clk();
  1174. return exynos4_get_arm_clk();
  1175. }
  1176. }
  1177. unsigned long get_i2c_clk(void)
  1178. {
  1179. if (cpu_is_exynos5()) {
  1180. return exynos5_get_i2c_clk();
  1181. } else if (cpu_is_exynos4()) {
  1182. return exynos4_get_i2c_clk();
  1183. } else {
  1184. debug("I2C clock is not set for this CPU\n");
  1185. return 0;
  1186. }
  1187. }
  1188. unsigned long get_pwm_clk(void)
  1189. {
  1190. if (cpu_is_exynos5())
  1191. return clock_get_periph_rate(PERIPH_ID_PWM0);
  1192. else {
  1193. if (proid_is_exynos4412())
  1194. return exynos4x12_get_pwm_clk();
  1195. return exynos4_get_pwm_clk();
  1196. }
  1197. }
  1198. unsigned long get_uart_clk(int dev_index)
  1199. {
  1200. if (cpu_is_exynos5())
  1201. return exynos5_get_uart_clk(dev_index);
  1202. else {
  1203. if (proid_is_exynos4412())
  1204. return exynos4x12_get_uart_clk(dev_index);
  1205. return exynos4_get_uart_clk(dev_index);
  1206. }
  1207. }
  1208. unsigned long get_mmc_clk(int dev_index)
  1209. {
  1210. if (cpu_is_exynos5())
  1211. return exynos5_get_mmc_clk(dev_index);
  1212. else
  1213. return exynos4_get_mmc_clk(dev_index);
  1214. }
  1215. void set_mmc_clk(int dev_index, unsigned int div)
  1216. {
  1217. if (cpu_is_exynos5())
  1218. exynos5_set_mmc_clk(dev_index, div);
  1219. else {
  1220. if (proid_is_exynos4412())
  1221. exynos4x12_set_mmc_clk(dev_index, div);
  1222. exynos4_set_mmc_clk(dev_index, div);
  1223. }
  1224. }
  1225. unsigned long get_lcd_clk(void)
  1226. {
  1227. if (cpu_is_exynos4())
  1228. return exynos4_get_lcd_clk();
  1229. else
  1230. return exynos5_get_lcd_clk();
  1231. }
  1232. void set_lcd_clk(void)
  1233. {
  1234. if (cpu_is_exynos4())
  1235. exynos4_set_lcd_clk();
  1236. else
  1237. exynos5_set_lcd_clk();
  1238. }
  1239. void set_mipi_clk(void)
  1240. {
  1241. if (cpu_is_exynos4())
  1242. exynos4_set_mipi_clk();
  1243. }
  1244. int set_spi_clk(int periph_id, unsigned int rate)
  1245. {
  1246. if (cpu_is_exynos5())
  1247. return exynos5_set_spi_clk(periph_id, rate);
  1248. else
  1249. return 0;
  1250. }
  1251. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1252. {
  1253. if (cpu_is_exynos5())
  1254. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1255. else
  1256. return 0;
  1257. }
  1258. void set_i2s_clk_source(void)
  1259. {
  1260. if (cpu_is_exynos5())
  1261. exynos5_set_i2s_clk_source();
  1262. }
  1263. int set_epll_clk(unsigned long rate)
  1264. {
  1265. if (cpu_is_exynos5())
  1266. return exynos5_set_epll_clk(rate);
  1267. else
  1268. return 0;
  1269. }