mmc.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * Copyright 2008, Freescale Semiconductor, Inc
  3. * Andy Fleming
  4. *
  5. * Based vaguely on the Linux code
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <config.h>
  26. #include <common.h>
  27. #include <command.h>
  28. #include <mmc.h>
  29. #include <part.h>
  30. #include <malloc.h>
  31. #include <linux/list.h>
  32. #include <mmc.h>
  33. #include <div64.h>
  34. static struct list_head mmc_devices;
  35. static int cur_dev_num = -1;
  36. int __board_mmc_getcd(u8 *cd, struct mmc *mmc) {
  37. return -1;
  38. }
  39. int board_mmc_getcd(u8 *cd, struct mmc *mmc)__attribute__((weak,
  40. alias("__board_mmc_getcd")));
  41. int mmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
  42. {
  43. return mmc->send_cmd(mmc, cmd, data);
  44. }
  45. int mmc_set_blocklen(struct mmc *mmc, int len)
  46. {
  47. struct mmc_cmd cmd;
  48. cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
  49. cmd.resp_type = MMC_RSP_R1;
  50. cmd.cmdarg = len;
  51. cmd.flags = 0;
  52. return mmc_send_cmd(mmc, &cmd, NULL);
  53. }
  54. struct mmc *find_mmc_device(int dev_num)
  55. {
  56. struct mmc *m;
  57. struct list_head *entry;
  58. list_for_each(entry, &mmc_devices) {
  59. m = list_entry(entry, struct mmc, link);
  60. if (m->block_dev.dev == dev_num)
  61. return m;
  62. }
  63. printf("MMC Device %d not found\n", dev_num);
  64. return NULL;
  65. }
  66. static ulong
  67. mmc_write_blocks(struct mmc *mmc, ulong start, lbaint_t blkcnt, const void*src)
  68. {
  69. struct mmc_cmd cmd;
  70. struct mmc_data data;
  71. if ((start + blkcnt) > mmc->block_dev.lba) {
  72. printf("MMC: block number 0x%lx exceeds max(0x%lx)\n",
  73. start + blkcnt, mmc->block_dev.lba);
  74. return 0;
  75. }
  76. if (blkcnt > 1)
  77. cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
  78. else
  79. cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
  80. if (mmc->high_capacity)
  81. cmd.cmdarg = start;
  82. else
  83. cmd.cmdarg = start * mmc->write_bl_len;
  84. cmd.resp_type = MMC_RSP_R1;
  85. cmd.flags = 0;
  86. data.src = src;
  87. data.blocks = blkcnt;
  88. data.blocksize = mmc->write_bl_len;
  89. data.flags = MMC_DATA_WRITE;
  90. if (mmc_send_cmd(mmc, &cmd, &data)) {
  91. printf("mmc write failed\n");
  92. return 0;
  93. }
  94. if (blkcnt > 1) {
  95. cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
  96. cmd.cmdarg = 0;
  97. cmd.resp_type = MMC_RSP_R1b;
  98. cmd.flags = 0;
  99. if (mmc_send_cmd(mmc, &cmd, NULL)) {
  100. printf("mmc fail to send stop cmd\n");
  101. return 0;
  102. }
  103. }
  104. return blkcnt;
  105. }
  106. static ulong
  107. mmc_bwrite(int dev_num, ulong start, lbaint_t blkcnt, const void*src)
  108. {
  109. lbaint_t cur, blocks_todo = blkcnt;
  110. struct mmc *mmc = find_mmc_device(dev_num);
  111. if (!mmc)
  112. return 0;
  113. if (mmc_set_blocklen(mmc, mmc->write_bl_len))
  114. return 0;
  115. do {
  116. /*
  117. * The 65535 constraint comes from some hardware has
  118. * only 16 bit width block number counter
  119. */
  120. cur = (blocks_todo > 65535) ? 65535 : blocks_todo;
  121. if(mmc_write_blocks(mmc, start, cur, src) != cur)
  122. return 0;
  123. blocks_todo -= cur;
  124. start += cur;
  125. src += cur * mmc->write_bl_len;
  126. } while (blocks_todo > 0);
  127. return blkcnt;
  128. }
  129. int mmc_read_block(struct mmc *mmc, void *dst, uint blocknum)
  130. {
  131. struct mmc_cmd cmd;
  132. struct mmc_data data;
  133. cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
  134. if (mmc->high_capacity)
  135. cmd.cmdarg = blocknum;
  136. else
  137. cmd.cmdarg = blocknum * mmc->read_bl_len;
  138. cmd.resp_type = MMC_RSP_R1;
  139. cmd.flags = 0;
  140. data.dest = dst;
  141. data.blocks = 1;
  142. data.blocksize = mmc->read_bl_len;
  143. data.flags = MMC_DATA_READ;
  144. return mmc_send_cmd(mmc, &cmd, &data);
  145. }
  146. int mmc_read(struct mmc *mmc, u64 src, uchar *dst, int size)
  147. {
  148. char *buffer;
  149. int i;
  150. int blklen = mmc->read_bl_len;
  151. int startblock = lldiv(src, mmc->read_bl_len);
  152. int endblock = lldiv(src + size - 1, mmc->read_bl_len);
  153. int err = 0;
  154. /* Make a buffer big enough to hold all the blocks we might read */
  155. buffer = malloc(blklen);
  156. if (!buffer) {
  157. printf("Could not allocate buffer for MMC read!\n");
  158. return -1;
  159. }
  160. /* We always do full block reads from the card */
  161. err = mmc_set_blocklen(mmc, mmc->read_bl_len);
  162. if (err)
  163. goto free_buffer;
  164. for (i = startblock; i <= endblock; i++) {
  165. int segment_size;
  166. int offset;
  167. err = mmc_read_block(mmc, buffer, i);
  168. if (err)
  169. goto free_buffer;
  170. /*
  171. * The first block may not be aligned, so we
  172. * copy from the desired point in the block
  173. */
  174. offset = (src & (blklen - 1));
  175. segment_size = MIN(blklen - offset, size);
  176. memcpy(dst, buffer + offset, segment_size);
  177. dst += segment_size;
  178. src += segment_size;
  179. size -= segment_size;
  180. }
  181. free_buffer:
  182. free(buffer);
  183. return err;
  184. }
  185. static ulong mmc_bread(int dev_num, ulong start, lbaint_t blkcnt, void *dst)
  186. {
  187. int err;
  188. int i;
  189. struct mmc *mmc = find_mmc_device(dev_num);
  190. if (!mmc)
  191. return 0;
  192. if ((start + blkcnt) > mmc->block_dev.lba) {
  193. printf("MMC: block number 0x%lx exceeds max(0x%lx)",
  194. start + blkcnt, mmc->block_dev.lba);
  195. return 0;
  196. }
  197. /* We always do full block reads from the card */
  198. err = mmc_set_blocklen(mmc, mmc->read_bl_len);
  199. if (err) {
  200. return 0;
  201. }
  202. for (i = start; i < start + blkcnt; i++, dst += mmc->read_bl_len) {
  203. err = mmc_read_block(mmc, dst, i);
  204. if (err) {
  205. printf("block read failed: %d\n", err);
  206. return i - start;
  207. }
  208. }
  209. return blkcnt;
  210. }
  211. int mmc_go_idle(struct mmc* mmc)
  212. {
  213. struct mmc_cmd cmd;
  214. int err;
  215. udelay(1000);
  216. cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
  217. cmd.cmdarg = 0;
  218. cmd.resp_type = MMC_RSP_NONE;
  219. cmd.flags = 0;
  220. err = mmc_send_cmd(mmc, &cmd, NULL);
  221. if (err)
  222. return err;
  223. udelay(2000);
  224. return 0;
  225. }
  226. int
  227. sd_send_op_cond(struct mmc *mmc)
  228. {
  229. int timeout = 1000;
  230. int err;
  231. struct mmc_cmd cmd;
  232. do {
  233. cmd.cmdidx = MMC_CMD_APP_CMD;
  234. cmd.resp_type = MMC_RSP_R1;
  235. cmd.cmdarg = 0;
  236. cmd.flags = 0;
  237. err = mmc_send_cmd(mmc, &cmd, NULL);
  238. if (err)
  239. return err;
  240. cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
  241. cmd.resp_type = MMC_RSP_R3;
  242. /*
  243. * Most cards do not answer if some reserved bits
  244. * in the ocr are set. However, Some controller
  245. * can set bit 7 (reserved for low voltages), but
  246. * how to manage low voltages SD card is not yet
  247. * specified.
  248. */
  249. cmd.cmdarg = mmc->voltages & 0xff8000;
  250. if (mmc->version == SD_VERSION_2)
  251. cmd.cmdarg |= OCR_HCS;
  252. err = mmc_send_cmd(mmc, &cmd, NULL);
  253. if (err)
  254. return err;
  255. udelay(1000);
  256. } while ((!(cmd.response[0] & OCR_BUSY)) && timeout--);
  257. if (timeout <= 0)
  258. return UNUSABLE_ERR;
  259. if (mmc->version != SD_VERSION_2)
  260. mmc->version = SD_VERSION_1_0;
  261. mmc->ocr = cmd.response[0];
  262. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  263. mmc->rca = 0;
  264. return 0;
  265. }
  266. int mmc_send_op_cond(struct mmc *mmc)
  267. {
  268. int timeout = 1000;
  269. struct mmc_cmd cmd;
  270. int err;
  271. /* Some cards seem to need this */
  272. mmc_go_idle(mmc);
  273. do {
  274. cmd.cmdidx = MMC_CMD_SEND_OP_COND;
  275. cmd.resp_type = MMC_RSP_R3;
  276. cmd.cmdarg = OCR_HCS | mmc->voltages;
  277. cmd.flags = 0;
  278. err = mmc_send_cmd(mmc, &cmd, NULL);
  279. if (err)
  280. return err;
  281. udelay(1000);
  282. } while (!(cmd.response[0] & OCR_BUSY) && timeout--);
  283. if (timeout <= 0)
  284. return UNUSABLE_ERR;
  285. mmc->version = MMC_VERSION_UNKNOWN;
  286. mmc->ocr = cmd.response[0];
  287. mmc->high_capacity = ((mmc->ocr & OCR_HCS) == OCR_HCS);
  288. mmc->rca = 0;
  289. return 0;
  290. }
  291. int mmc_send_ext_csd(struct mmc *mmc, char *ext_csd)
  292. {
  293. struct mmc_cmd cmd;
  294. struct mmc_data data;
  295. int err;
  296. /* Get the Card Status Register */
  297. cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
  298. cmd.resp_type = MMC_RSP_R1;
  299. cmd.cmdarg = 0;
  300. cmd.flags = 0;
  301. data.dest = ext_csd;
  302. data.blocks = 1;
  303. data.blocksize = 512;
  304. data.flags = MMC_DATA_READ;
  305. err = mmc_send_cmd(mmc, &cmd, &data);
  306. return err;
  307. }
  308. int mmc_switch(struct mmc *mmc, u8 set, u8 index, u8 value)
  309. {
  310. struct mmc_cmd cmd;
  311. cmd.cmdidx = MMC_CMD_SWITCH;
  312. cmd.resp_type = MMC_RSP_R1b;
  313. cmd.cmdarg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
  314. (index << 16) |
  315. (value << 8);
  316. cmd.flags = 0;
  317. return mmc_send_cmd(mmc, &cmd, NULL);
  318. }
  319. int mmc_change_freq(struct mmc *mmc)
  320. {
  321. char ext_csd[512];
  322. char cardtype;
  323. int err;
  324. mmc->card_caps = 0;
  325. /* Only version 4 supports high-speed */
  326. if (mmc->version < MMC_VERSION_4)
  327. return 0;
  328. mmc->card_caps |= MMC_MODE_4BIT;
  329. err = mmc_send_ext_csd(mmc, ext_csd);
  330. if (err)
  331. return err;
  332. if (ext_csd[212] || ext_csd[213] || ext_csd[214] || ext_csd[215])
  333. mmc->high_capacity = 1;
  334. cardtype = ext_csd[196] & 0xf;
  335. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING, 1);
  336. if (err)
  337. return err;
  338. /* Now check to see that it worked */
  339. err = mmc_send_ext_csd(mmc, ext_csd);
  340. if (err)
  341. return err;
  342. /* No high-speed support */
  343. if (!ext_csd[185])
  344. return 0;
  345. /* High Speed is set, there are two types: 52MHz and 26MHz */
  346. if (cardtype & MMC_HS_52MHZ)
  347. mmc->card_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
  348. else
  349. mmc->card_caps |= MMC_MODE_HS;
  350. return 0;
  351. }
  352. int sd_switch(struct mmc *mmc, int mode, int group, u8 value, u8 *resp)
  353. {
  354. struct mmc_cmd cmd;
  355. struct mmc_data data;
  356. /* Switch the frequency */
  357. cmd.cmdidx = SD_CMD_SWITCH_FUNC;
  358. cmd.resp_type = MMC_RSP_R1;
  359. cmd.cmdarg = (mode << 31) | 0xffffff;
  360. cmd.cmdarg &= ~(0xf << (group * 4));
  361. cmd.cmdarg |= value << (group * 4);
  362. cmd.flags = 0;
  363. data.dest = (char *)resp;
  364. data.blocksize = 64;
  365. data.blocks = 1;
  366. data.flags = MMC_DATA_READ;
  367. return mmc_send_cmd(mmc, &cmd, &data);
  368. }
  369. int sd_change_freq(struct mmc *mmc)
  370. {
  371. int err;
  372. struct mmc_cmd cmd;
  373. uint scr[2];
  374. uint switch_status[16];
  375. struct mmc_data data;
  376. int timeout;
  377. mmc->card_caps = 0;
  378. /* Read the SCR to find out if this card supports higher speeds */
  379. cmd.cmdidx = MMC_CMD_APP_CMD;
  380. cmd.resp_type = MMC_RSP_R1;
  381. cmd.cmdarg = mmc->rca << 16;
  382. cmd.flags = 0;
  383. err = mmc_send_cmd(mmc, &cmd, NULL);
  384. if (err)
  385. return err;
  386. cmd.cmdidx = SD_CMD_APP_SEND_SCR;
  387. cmd.resp_type = MMC_RSP_R1;
  388. cmd.cmdarg = 0;
  389. cmd.flags = 0;
  390. timeout = 3;
  391. retry_scr:
  392. data.dest = (char *)&scr;
  393. data.blocksize = 8;
  394. data.blocks = 1;
  395. data.flags = MMC_DATA_READ;
  396. err = mmc_send_cmd(mmc, &cmd, &data);
  397. if (err) {
  398. if (timeout--)
  399. goto retry_scr;
  400. return err;
  401. }
  402. mmc->scr[0] = __be32_to_cpu(scr[0]);
  403. mmc->scr[1] = __be32_to_cpu(scr[1]);
  404. switch ((mmc->scr[0] >> 24) & 0xf) {
  405. case 0:
  406. mmc->version = SD_VERSION_1_0;
  407. break;
  408. case 1:
  409. mmc->version = SD_VERSION_1_10;
  410. break;
  411. case 2:
  412. mmc->version = SD_VERSION_2;
  413. break;
  414. default:
  415. mmc->version = SD_VERSION_1_0;
  416. break;
  417. }
  418. /* Version 1.0 doesn't support switching */
  419. if (mmc->version == SD_VERSION_1_0)
  420. return 0;
  421. timeout = 4;
  422. while (timeout--) {
  423. err = sd_switch(mmc, SD_SWITCH_CHECK, 0, 1,
  424. (u8 *)&switch_status);
  425. if (err)
  426. return err;
  427. /* The high-speed function is busy. Try again */
  428. if (!(__be32_to_cpu(switch_status[7]) & SD_HIGHSPEED_BUSY))
  429. break;
  430. }
  431. if (mmc->scr[0] & SD_DATA_4BIT)
  432. mmc->card_caps |= MMC_MODE_4BIT;
  433. /* If high-speed isn't supported, we return */
  434. if (!(__be32_to_cpu(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
  435. return 0;
  436. err = sd_switch(mmc, SD_SWITCH_SWITCH, 0, 1, (u8 *)&switch_status);
  437. if (err)
  438. return err;
  439. if ((__be32_to_cpu(switch_status[4]) & 0x0f000000) == 0x01000000)
  440. mmc->card_caps |= MMC_MODE_HS;
  441. return 0;
  442. }
  443. /* frequency bases */
  444. /* divided by 10 to be nice to platforms without floating point */
  445. int fbase[] = {
  446. 10000,
  447. 100000,
  448. 1000000,
  449. 10000000,
  450. };
  451. /* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
  452. * to platforms without floating point.
  453. */
  454. int multipliers[] = {
  455. 0, /* reserved */
  456. 10,
  457. 12,
  458. 13,
  459. 15,
  460. 20,
  461. 25,
  462. 30,
  463. 35,
  464. 40,
  465. 45,
  466. 50,
  467. 55,
  468. 60,
  469. 70,
  470. 80,
  471. };
  472. void mmc_set_ios(struct mmc *mmc)
  473. {
  474. mmc->set_ios(mmc);
  475. }
  476. void mmc_set_clock(struct mmc *mmc, uint clock)
  477. {
  478. if (clock > mmc->f_max)
  479. clock = mmc->f_max;
  480. if (clock < mmc->f_min)
  481. clock = mmc->f_min;
  482. mmc->clock = clock;
  483. mmc_set_ios(mmc);
  484. }
  485. void mmc_set_bus_width(struct mmc *mmc, uint width)
  486. {
  487. mmc->bus_width = width;
  488. mmc_set_ios(mmc);
  489. }
  490. int mmc_startup(struct mmc *mmc)
  491. {
  492. int err;
  493. uint mult, freq;
  494. u64 cmult, csize;
  495. struct mmc_cmd cmd;
  496. char ext_csd[512];
  497. /* Put the Card in Identify Mode */
  498. cmd.cmdidx = MMC_CMD_ALL_SEND_CID;
  499. cmd.resp_type = MMC_RSP_R2;
  500. cmd.cmdarg = 0;
  501. cmd.flags = 0;
  502. err = mmc_send_cmd(mmc, &cmd, NULL);
  503. if (err)
  504. return err;
  505. memcpy(mmc->cid, cmd.response, 16);
  506. /*
  507. * For MMC cards, set the Relative Address.
  508. * For SD cards, get the Relatvie Address.
  509. * This also puts the cards into Standby State
  510. */
  511. cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
  512. cmd.cmdarg = mmc->rca << 16;
  513. cmd.resp_type = MMC_RSP_R6;
  514. cmd.flags = 0;
  515. err = mmc_send_cmd(mmc, &cmd, NULL);
  516. if (err)
  517. return err;
  518. if (IS_SD(mmc))
  519. mmc->rca = (cmd.response[0] >> 16) & 0xffff;
  520. /* Get the Card-Specific Data */
  521. cmd.cmdidx = MMC_CMD_SEND_CSD;
  522. cmd.resp_type = MMC_RSP_R2;
  523. cmd.cmdarg = mmc->rca << 16;
  524. cmd.flags = 0;
  525. err = mmc_send_cmd(mmc, &cmd, NULL);
  526. if (err)
  527. return err;
  528. mmc->csd[0] = cmd.response[0];
  529. mmc->csd[1] = cmd.response[1];
  530. mmc->csd[2] = cmd.response[2];
  531. mmc->csd[3] = cmd.response[3];
  532. if (mmc->version == MMC_VERSION_UNKNOWN) {
  533. int version = (cmd.response[0] >> 26) & 0xf;
  534. switch (version) {
  535. case 0:
  536. mmc->version = MMC_VERSION_1_2;
  537. break;
  538. case 1:
  539. mmc->version = MMC_VERSION_1_4;
  540. break;
  541. case 2:
  542. mmc->version = MMC_VERSION_2_2;
  543. break;
  544. case 3:
  545. mmc->version = MMC_VERSION_3;
  546. break;
  547. case 4:
  548. mmc->version = MMC_VERSION_4;
  549. break;
  550. default:
  551. mmc->version = MMC_VERSION_1_2;
  552. break;
  553. }
  554. }
  555. /* divide frequency by 10, since the mults are 10x bigger */
  556. freq = fbase[(cmd.response[0] & 0x7)];
  557. mult = multipliers[((cmd.response[0] >> 3) & 0xf)];
  558. mmc->tran_speed = freq * mult;
  559. mmc->read_bl_len = 1 << ((cmd.response[1] >> 16) & 0xf);
  560. if (IS_SD(mmc))
  561. mmc->write_bl_len = mmc->read_bl_len;
  562. else
  563. mmc->write_bl_len = 1 << ((cmd.response[3] >> 22) & 0xf);
  564. if (mmc->high_capacity) {
  565. csize = (mmc->csd[1] & 0x3f) << 16
  566. | (mmc->csd[2] & 0xffff0000) >> 16;
  567. cmult = 8;
  568. } else {
  569. csize = (mmc->csd[1] & 0x3ff) << 2
  570. | (mmc->csd[2] & 0xc0000000) >> 30;
  571. cmult = (mmc->csd[2] & 0x00038000) >> 15;
  572. }
  573. mmc->capacity = (csize + 1) << (cmult + 2);
  574. mmc->capacity *= mmc->read_bl_len;
  575. if (mmc->read_bl_len > 512)
  576. mmc->read_bl_len = 512;
  577. if (mmc->write_bl_len > 512)
  578. mmc->write_bl_len = 512;
  579. /* Select the card, and put it into Transfer Mode */
  580. cmd.cmdidx = MMC_CMD_SELECT_CARD;
  581. cmd.resp_type = MMC_RSP_R1b;
  582. cmd.cmdarg = mmc->rca << 16;
  583. cmd.flags = 0;
  584. err = mmc_send_cmd(mmc, &cmd, NULL);
  585. if (err)
  586. return err;
  587. if (!IS_SD(mmc) && (mmc->version >= MMC_VERSION_4)) {
  588. /* check ext_csd version and capacity */
  589. err = mmc_send_ext_csd(mmc, ext_csd);
  590. if (!err & (ext_csd[192] >= 2)) {
  591. mmc->capacity = ext_csd[212] << 0 | ext_csd[213] << 8 |
  592. ext_csd[214] << 16 | ext_csd[215] << 24;
  593. mmc->capacity *= 512;
  594. }
  595. }
  596. if (IS_SD(mmc))
  597. err = sd_change_freq(mmc);
  598. else
  599. err = mmc_change_freq(mmc);
  600. if (err)
  601. return err;
  602. /* Restrict card's capabilities by what the host can do */
  603. mmc->card_caps &= mmc->host_caps;
  604. if (IS_SD(mmc)) {
  605. if (mmc->card_caps & MMC_MODE_4BIT) {
  606. cmd.cmdidx = MMC_CMD_APP_CMD;
  607. cmd.resp_type = MMC_RSP_R1;
  608. cmd.cmdarg = mmc->rca << 16;
  609. cmd.flags = 0;
  610. err = mmc_send_cmd(mmc, &cmd, NULL);
  611. if (err)
  612. return err;
  613. cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
  614. cmd.resp_type = MMC_RSP_R1;
  615. cmd.cmdarg = 2;
  616. cmd.flags = 0;
  617. err = mmc_send_cmd(mmc, &cmd, NULL);
  618. if (err)
  619. return err;
  620. mmc_set_bus_width(mmc, 4);
  621. }
  622. if (mmc->card_caps & MMC_MODE_HS)
  623. mmc_set_clock(mmc, 50000000);
  624. else
  625. mmc_set_clock(mmc, 25000000);
  626. } else {
  627. if (mmc->card_caps & MMC_MODE_4BIT) {
  628. /* Set the card to use 4 bit*/
  629. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  630. EXT_CSD_BUS_WIDTH,
  631. EXT_CSD_BUS_WIDTH_4);
  632. if (err)
  633. return err;
  634. mmc_set_bus_width(mmc, 4);
  635. } else if (mmc->card_caps & MMC_MODE_8BIT) {
  636. /* Set the card to use 8 bit*/
  637. err = mmc_switch(mmc, EXT_CSD_CMD_SET_NORMAL,
  638. EXT_CSD_BUS_WIDTH,
  639. EXT_CSD_BUS_WIDTH_8);
  640. if (err)
  641. return err;
  642. mmc_set_bus_width(mmc, 8);
  643. }
  644. if (mmc->card_caps & MMC_MODE_HS) {
  645. if (mmc->card_caps & MMC_MODE_HS_52MHz)
  646. mmc_set_clock(mmc, 52000000);
  647. else
  648. mmc_set_clock(mmc, 26000000);
  649. } else
  650. mmc_set_clock(mmc, 20000000);
  651. }
  652. /* fill in device description */
  653. mmc->block_dev.lun = 0;
  654. mmc->block_dev.type = 0;
  655. mmc->block_dev.blksz = mmc->read_bl_len;
  656. mmc->block_dev.lba = lldiv(mmc->capacity, mmc->read_bl_len);
  657. sprintf(mmc->block_dev.vendor, "Man %06x Snr %08x", mmc->cid[0] >> 8,
  658. (mmc->cid[2] << 8) | (mmc->cid[3] >> 24));
  659. sprintf(mmc->block_dev.product, "%c%c%c%c%c", mmc->cid[0] & 0xff,
  660. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  661. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  662. sprintf(mmc->block_dev.revision, "%d.%d", mmc->cid[2] >> 28,
  663. (mmc->cid[2] >> 24) & 0xf);
  664. init_part(&mmc->block_dev);
  665. return 0;
  666. }
  667. int mmc_send_if_cond(struct mmc *mmc)
  668. {
  669. struct mmc_cmd cmd;
  670. int err;
  671. cmd.cmdidx = SD_CMD_SEND_IF_COND;
  672. /* We set the bit if the host supports voltages between 2.7 and 3.6 V */
  673. cmd.cmdarg = ((mmc->voltages & 0xff8000) != 0) << 8 | 0xaa;
  674. cmd.resp_type = MMC_RSP_R7;
  675. cmd.flags = 0;
  676. err = mmc_send_cmd(mmc, &cmd, NULL);
  677. if (err)
  678. return err;
  679. if ((cmd.response[0] & 0xff) != 0xaa)
  680. return UNUSABLE_ERR;
  681. else
  682. mmc->version = SD_VERSION_2;
  683. return 0;
  684. }
  685. int mmc_register(struct mmc *mmc)
  686. {
  687. /* Setup the universal parts of the block interface just once */
  688. mmc->block_dev.if_type = IF_TYPE_MMC;
  689. mmc->block_dev.dev = cur_dev_num++;
  690. mmc->block_dev.removable = 1;
  691. mmc->block_dev.block_read = mmc_bread;
  692. mmc->block_dev.block_write = mmc_bwrite;
  693. INIT_LIST_HEAD (&mmc->link);
  694. list_add_tail (&mmc->link, &mmc_devices);
  695. return 0;
  696. }
  697. block_dev_desc_t *mmc_get_dev(int dev)
  698. {
  699. struct mmc *mmc = find_mmc_device(dev);
  700. return mmc ? &mmc->block_dev : NULL;
  701. }
  702. int mmc_init(struct mmc *mmc)
  703. {
  704. int err;
  705. err = mmc->init(mmc);
  706. if (err)
  707. return err;
  708. mmc_set_bus_width(mmc, 1);
  709. mmc_set_clock(mmc, 1);
  710. /* Reset the Card */
  711. err = mmc_go_idle(mmc);
  712. if (err)
  713. return err;
  714. /* Test for SD version 2 */
  715. err = mmc_send_if_cond(mmc);
  716. /* Now try to get the SD card's operating condition */
  717. err = sd_send_op_cond(mmc);
  718. /* If the command timed out, we check for an MMC card */
  719. if (err == TIMEOUT) {
  720. err = mmc_send_op_cond(mmc);
  721. if (err) {
  722. printf("Card did not respond to voltage select!\n");
  723. return UNUSABLE_ERR;
  724. }
  725. }
  726. return mmc_startup(mmc);
  727. }
  728. /*
  729. * CPU and board-specific MMC initializations. Aliased function
  730. * signals caller to move on
  731. */
  732. static int __def_mmc_init(bd_t *bis)
  733. {
  734. return -1;
  735. }
  736. int cpu_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  737. int board_mmc_init(bd_t *bis) __attribute__((weak, alias("__def_mmc_init")));
  738. void print_mmc_devices(char separator)
  739. {
  740. struct mmc *m;
  741. struct list_head *entry;
  742. list_for_each(entry, &mmc_devices) {
  743. m = list_entry(entry, struct mmc, link);
  744. printf("%s: %d", m->name, m->block_dev.dev);
  745. if (entry->next != &mmc_devices)
  746. printf("%c ", separator);
  747. }
  748. printf("\n");
  749. }
  750. int mmc_initialize(bd_t *bis)
  751. {
  752. INIT_LIST_HEAD (&mmc_devices);
  753. cur_dev_num = 0;
  754. if (board_mmc_init(bis) < 0)
  755. cpu_mmc_init(bis);
  756. print_mmc_devices(',');
  757. return 0;
  758. }