ubi-user.h 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12. * the GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. *
  18. * Author: Artem Bityutskiy (Битюцкий Артём)
  19. */
  20. #ifndef __UBI_USER_H__
  21. #define __UBI_USER_H__
  22. /*
  23. * UBI device creation (the same as MTD device attachment)
  24. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  25. *
  26. * MTD devices may be attached using %UBI_IOCATT ioctl command of the UBI
  27. * control device. The caller has to properly fill and pass
  28. * &struct ubi_attach_req object - UBI will attach the MTD device specified in
  29. * the request and return the newly created UBI device number as the ioctl
  30. * return value.
  31. *
  32. * UBI device deletion (the same as MTD device detachment)
  33. * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  34. *
  35. * An UBI device maybe deleted with %UBI_IOCDET ioctl command of the UBI
  36. * control device.
  37. *
  38. * UBI volume creation
  39. * ~~~~~~~~~~~~~~~~~~~
  40. *
  41. * UBI volumes are created via the %UBI_IOCMKVOL IOCTL command of UBI character
  42. * device. A &struct ubi_mkvol_req object has to be properly filled and a
  43. * pointer to it has to be passed to the IOCTL.
  44. *
  45. * UBI volume deletion
  46. * ~~~~~~~~~~~~~~~~~~~
  47. *
  48. * To delete a volume, the %UBI_IOCRMVOL IOCTL command of the UBI character
  49. * device should be used. A pointer to the 32-bit volume ID hast to be passed
  50. * to the IOCTL.
  51. *
  52. * UBI volume re-size
  53. * ~~~~~~~~~~~~~~~~~~
  54. *
  55. * To re-size a volume, the %UBI_IOCRSVOL IOCTL command of the UBI character
  56. * device should be used. A &struct ubi_rsvol_req object has to be properly
  57. * filled and a pointer to it has to be passed to the IOCTL.
  58. *
  59. * UBI volume update
  60. * ~~~~~~~~~~~~~~~~~
  61. *
  62. * Volume update should be done via the %UBI_IOCVOLUP IOCTL command of the
  63. * corresponding UBI volume character device. A pointer to a 64-bit update
  64. * size should be passed to the IOCTL. After this, UBI expects user to write
  65. * this number of bytes to the volume character device. The update is finished
  66. * when the claimed number of bytes is passed. So, the volume update sequence
  67. * is something like:
  68. *
  69. * fd = open("/dev/my_volume");
  70. * ioctl(fd, UBI_IOCVOLUP, &image_size);
  71. * write(fd, buf, image_size);
  72. * close(fd);
  73. *
  74. * Atomic eraseblock change
  75. * ~~~~~~~~~~~~~~~~~~~~~~~~
  76. *
  77. * Atomic eraseblock change operation is done via the %UBI_IOCEBCH IOCTL
  78. * command of the corresponding UBI volume character device. A pointer to
  79. * &struct ubi_leb_change_req has to be passed to the IOCTL. Then the user is
  80. * expected to write the requested amount of bytes. This is similar to the
  81. * "volume update" IOCTL.
  82. */
  83. /*
  84. * When a new UBI volume or UBI device is created, users may either specify the
  85. * volume/device number they want to create or to let UBI automatically assign
  86. * the number using these constants.
  87. */
  88. #define UBI_VOL_NUM_AUTO (-1)
  89. #define UBI_DEV_NUM_AUTO (-1)
  90. /* Maximum volume name length */
  91. #define UBI_MAX_VOLUME_NAME 127
  92. /* IOCTL commands of UBI character devices */
  93. #define UBI_IOC_MAGIC 'o'
  94. /* Create an UBI volume */
  95. #define UBI_IOCMKVOL _IOW(UBI_IOC_MAGIC, 0, struct ubi_mkvol_req)
  96. /* Remove an UBI volume */
  97. #define UBI_IOCRMVOL _IOW(UBI_IOC_MAGIC, 1, int32_t)
  98. /* Re-size an UBI volume */
  99. #define UBI_IOCRSVOL _IOW(UBI_IOC_MAGIC, 2, struct ubi_rsvol_req)
  100. /* IOCTL commands of the UBI control character device */
  101. #define UBI_CTRL_IOC_MAGIC 'o'
  102. /* Attach an MTD device */
  103. #define UBI_IOCATT _IOW(UBI_CTRL_IOC_MAGIC, 64, struct ubi_attach_req)
  104. /* Detach an MTD device */
  105. #define UBI_IOCDET _IOW(UBI_CTRL_IOC_MAGIC, 65, int32_t)
  106. /* IOCTL commands of UBI volume character devices */
  107. #define UBI_VOL_IOC_MAGIC 'O'
  108. /* Start UBI volume update */
  109. #define UBI_IOCVOLUP _IOW(UBI_VOL_IOC_MAGIC, 0, int64_t)
  110. /* An eraseblock erasure command, used for debugging, disabled by default */
  111. #define UBI_IOCEBER _IOW(UBI_VOL_IOC_MAGIC, 1, int32_t)
  112. /* An atomic eraseblock change command */
  113. #define UBI_IOCEBCH _IOW(UBI_VOL_IOC_MAGIC, 2, int32_t)
  114. /* Maximum MTD device name length supported by UBI */
  115. #define MAX_UBI_MTD_NAME_LEN 127
  116. /*
  117. * UBI data type hint constants.
  118. *
  119. * UBI_LONGTERM: long-term data
  120. * UBI_SHORTTERM: short-term data
  121. * UBI_UNKNOWN: data persistence is unknown
  122. *
  123. * These constants are used when data is written to UBI volumes in order to
  124. * help the UBI wear-leveling unit to find more appropriate physical
  125. * eraseblocks.
  126. */
  127. enum {
  128. UBI_LONGTERM = 1,
  129. UBI_SHORTTERM = 2,
  130. UBI_UNKNOWN = 3,
  131. };
  132. /*
  133. * UBI volume type constants.
  134. *
  135. * @UBI_DYNAMIC_VOLUME: dynamic volume
  136. * @UBI_STATIC_VOLUME: static volume
  137. */
  138. enum {
  139. UBI_DYNAMIC_VOLUME = 3,
  140. UBI_STATIC_VOLUME = 4,
  141. };
  142. /**
  143. * struct ubi_attach_req - attach MTD device request.
  144. * @ubi_num: UBI device number to create
  145. * @mtd_num: MTD device number to attach
  146. * @vid_hdr_offset: VID header offset (use defaults if %0)
  147. * @padding: reserved for future, not used, has to be zeroed
  148. *
  149. * This data structure is used to specify MTD device UBI has to attach and the
  150. * parameters it has to use. The number which should be assigned to the new UBI
  151. * device is passed in @ubi_num. UBI may automatically assign the number if
  152. * @UBI_DEV_NUM_AUTO is passed. In this case, the device number is returned in
  153. * @ubi_num.
  154. *
  155. * Most applications should pass %0 in @vid_hdr_offset to make UBI use default
  156. * offset of the VID header within physical eraseblocks. The default offset is
  157. * the next min. I/O unit after the EC header. For example, it will be offset
  158. * 512 in case of a 512 bytes page NAND flash with no sub-page support. Or
  159. * it will be 512 in case of a 2KiB page NAND flash with 4 512-byte sub-pages.
  160. *
  161. * But in rare cases, if this optimizes things, the VID header may be placed to
  162. * a different offset. For example, the boot-loader might do things faster if the
  163. * VID header sits at the end of the first 2KiB NAND page with 4 sub-pages. As
  164. * the boot-loader would not normally need to read EC headers (unless it needs
  165. * UBI in RW mode), it might be faster to calculate ECC. This is weird example,
  166. * but it real-life example. So, in this example, @vid_hdr_offer would be
  167. * 2KiB-64 bytes = 1984. Note, that this position is not even 512-bytes
  168. * aligned, which is OK, as UBI is clever enough to realize this is 4th sub-page
  169. * of the first page and add needed padding.
  170. */
  171. struct ubi_attach_req {
  172. int32_t ubi_num;
  173. int32_t mtd_num;
  174. int32_t vid_hdr_offset;
  175. uint8_t padding[12];
  176. };
  177. /**
  178. * struct ubi_mkvol_req - volume description data structure used in
  179. * volume creation requests.
  180. * @vol_id: volume number
  181. * @alignment: volume alignment
  182. * @bytes: volume size in bytes
  183. * @vol_type: volume type (%UBI_DYNAMIC_VOLUME or %UBI_STATIC_VOLUME)
  184. * @padding1: reserved for future, not used, has to be zeroed
  185. * @name_len: volume name length
  186. * @padding2: reserved for future, not used, has to be zeroed
  187. * @name: volume name
  188. *
  189. * This structure is used by user-space programs when creating new volumes. The
  190. * @used_bytes field is only necessary when creating static volumes.
  191. *
  192. * The @alignment field specifies the required alignment of the volume logical
  193. * eraseblock. This means, that the size of logical eraseblocks will be aligned
  194. * to this number, i.e.,
  195. * (UBI device logical eraseblock size) mod (@alignment) = 0.
  196. *
  197. * To put it differently, the logical eraseblock of this volume may be slightly
  198. * shortened in order to make it properly aligned. The alignment has to be
  199. * multiple of the flash minimal input/output unit, or %1 to utilize the entire
  200. * available space of logical eraseblocks.
  201. *
  202. * The @alignment field may be useful, for example, when one wants to maintain
  203. * a block device on top of an UBI volume. In this case, it is desirable to fit
  204. * an integer number of blocks in logical eraseblocks of this UBI volume. With
  205. * alignment it is possible to update this volume using plane UBI volume image
  206. * BLOBs, without caring about how to properly align them.
  207. */
  208. struct ubi_mkvol_req {
  209. int32_t vol_id;
  210. int32_t alignment;
  211. int64_t bytes;
  212. int8_t vol_type;
  213. int8_t padding1;
  214. int16_t name_len;
  215. int8_t padding2[4];
  216. char name[UBI_MAX_VOLUME_NAME + 1];
  217. } __attribute__ ((packed));
  218. /**
  219. * struct ubi_rsvol_req - a data structure used in volume re-size requests.
  220. * @vol_id: ID of the volume to re-size
  221. * @bytes: new size of the volume in bytes
  222. *
  223. * Re-sizing is possible for both dynamic and static volumes. But while dynamic
  224. * volumes may be re-sized arbitrarily, static volumes cannot be made to be
  225. * smaller then the number of bytes they bear. To arbitrarily shrink a static
  226. * volume, it must be wiped out first (by means of volume update operation with
  227. * zero number of bytes).
  228. */
  229. struct ubi_rsvol_req {
  230. int64_t bytes;
  231. int32_t vol_id;
  232. } __attribute__ ((packed));
  233. /**
  234. * struct ubi_leb_change_req - a data structure used in atomic logical
  235. * eraseblock change requests.
  236. * @lnum: logical eraseblock number to change
  237. * @bytes: how many bytes will be written to the logical eraseblock
  238. * @dtype: data type (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
  239. * @padding: reserved for future, not used, has to be zeroed
  240. */
  241. struct ubi_leb_change_req {
  242. int32_t lnum;
  243. int32_t bytes;
  244. uint8_t dtype;
  245. uint8_t padding[7];
  246. } __attribute__ ((packed));
  247. #endif /* __UBI_USER_H__ */