uec.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. /*
  2. * Copyright (C) 2006 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #include "miiphy.h"
  32. #if defined(CONFIG_QE)
  33. #ifdef CONFIG_UEC_ETH1
  34. static uec_info_t eth1_uec_info = {
  35. .uf_info = {
  36. .ucc_num = CFG_UEC1_UCC_NUM,
  37. .rx_clock = CFG_UEC1_RX_CLK,
  38. .tx_clock = CFG_UEC1_TX_CLK,
  39. .eth_type = CFG_UEC1_ETH_TYPE,
  40. },
  41. #if (CFG_UEC1_ETH_TYPE == FAST_ETH)
  42. .num_threads_tx = UEC_NUM_OF_THREADS_1,
  43. .num_threads_rx = UEC_NUM_OF_THREADS_1,
  44. #else
  45. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  46. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  47. #endif
  48. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  49. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  50. .tx_bd_ring_len = 16,
  51. .rx_bd_ring_len = 16,
  52. .phy_address = CFG_UEC1_PHY_ADDR,
  53. .enet_interface = CFG_UEC1_INTERFACE_MODE,
  54. };
  55. #endif
  56. #ifdef CONFIG_UEC_ETH2
  57. static uec_info_t eth2_uec_info = {
  58. .uf_info = {
  59. .ucc_num = CFG_UEC2_UCC_NUM,
  60. .rx_clock = CFG_UEC2_RX_CLK,
  61. .tx_clock = CFG_UEC2_TX_CLK,
  62. .eth_type = CFG_UEC2_ETH_TYPE,
  63. },
  64. #if (CFG_UEC2_ETH_TYPE == FAST_ETH)
  65. .num_threads_tx = UEC_NUM_OF_THREADS_1,
  66. .num_threads_rx = UEC_NUM_OF_THREADS_1,
  67. #else
  68. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  69. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  70. #endif
  71. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  72. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  73. .tx_bd_ring_len = 16,
  74. .rx_bd_ring_len = 16,
  75. .phy_address = CFG_UEC2_PHY_ADDR,
  76. .enet_interface = CFG_UEC2_INTERFACE_MODE,
  77. };
  78. #endif
  79. #ifdef CONFIG_UEC_ETH3
  80. static uec_info_t eth3_uec_info = {
  81. .uf_info = {
  82. .ucc_num = CFG_UEC3_UCC_NUM,
  83. .rx_clock = CFG_UEC3_RX_CLK,
  84. .tx_clock = CFG_UEC3_TX_CLK,
  85. .eth_type = CFG_UEC3_ETH_TYPE,
  86. },
  87. #if (CFG_UEC3_ETH_TYPE == FAST_ETH)
  88. .num_threads_tx = UEC_NUM_OF_THREADS_1,
  89. .num_threads_rx = UEC_NUM_OF_THREADS_1,
  90. #else
  91. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  92. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  93. #endif
  94. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  95. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  96. .tx_bd_ring_len = 16,
  97. .rx_bd_ring_len = 16,
  98. .phy_address = CFG_UEC3_PHY_ADDR,
  99. .enet_interface = CFG_UEC3_INTERFACE_MODE,
  100. };
  101. #endif
  102. #ifdef CONFIG_UEC_ETH4
  103. static uec_info_t eth4_uec_info = {
  104. .uf_info = {
  105. .ucc_num = CFG_UEC4_UCC_NUM,
  106. .rx_clock = CFG_UEC4_RX_CLK,
  107. .tx_clock = CFG_UEC4_TX_CLK,
  108. .eth_type = CFG_UEC4_ETH_TYPE,
  109. },
  110. #if (CFG_UEC4_ETH_TYPE == FAST_ETH)
  111. .num_threads_tx = UEC_NUM_OF_THREADS_1,
  112. .num_threads_rx = UEC_NUM_OF_THREADS_1,
  113. #else
  114. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  115. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  116. #endif
  117. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  118. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  119. .tx_bd_ring_len = 16,
  120. .rx_bd_ring_len = 16,
  121. .phy_address = CFG_UEC4_PHY_ADDR,
  122. .enet_interface = CFG_UEC4_INTERFACE_MODE,
  123. };
  124. #endif
  125. #define MAXCONTROLLERS (4)
  126. static struct eth_device *devlist[MAXCONTROLLERS];
  127. static int uec_miiphy_read(char *devname, unsigned char addr,
  128. unsigned char reg, unsigned short *value);
  129. static int uec_miiphy_write(char *devname, unsigned char addr,
  130. unsigned char reg, unsigned short value);
  131. u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
  132. void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
  133. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  134. {
  135. uec_t *uec_regs;
  136. u32 maccfg1;
  137. if (!uec) {
  138. printf("%s: uec not initial\n", __FUNCTION__);
  139. return -EINVAL;
  140. }
  141. uec_regs = uec->uec_regs;
  142. maccfg1 = in_be32(&uec_regs->maccfg1);
  143. if (mode & COMM_DIR_TX) {
  144. maccfg1 |= MACCFG1_ENABLE_TX;
  145. out_be32(&uec_regs->maccfg1, maccfg1);
  146. uec->mac_tx_enabled = 1;
  147. }
  148. if (mode & COMM_DIR_RX) {
  149. maccfg1 |= MACCFG1_ENABLE_RX;
  150. out_be32(&uec_regs->maccfg1, maccfg1);
  151. uec->mac_rx_enabled = 1;
  152. }
  153. return 0;
  154. }
  155. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  156. {
  157. uec_t *uec_regs;
  158. u32 maccfg1;
  159. if (!uec) {
  160. printf("%s: uec not initial\n", __FUNCTION__);
  161. return -EINVAL;
  162. }
  163. uec_regs = uec->uec_regs;
  164. maccfg1 = in_be32(&uec_regs->maccfg1);
  165. if (mode & COMM_DIR_TX) {
  166. maccfg1 &= ~MACCFG1_ENABLE_TX;
  167. out_be32(&uec_regs->maccfg1, maccfg1);
  168. uec->mac_tx_enabled = 0;
  169. }
  170. if (mode & COMM_DIR_RX) {
  171. maccfg1 &= ~MACCFG1_ENABLE_RX;
  172. out_be32(&uec_regs->maccfg1, maccfg1);
  173. uec->mac_rx_enabled = 0;
  174. }
  175. return 0;
  176. }
  177. static int uec_graceful_stop_tx(uec_private_t *uec)
  178. {
  179. ucc_fast_t *uf_regs;
  180. u32 cecr_subblock;
  181. u32 ucce;
  182. if (!uec || !uec->uccf) {
  183. printf("%s: No handle passed.\n", __FUNCTION__);
  184. return -EINVAL;
  185. }
  186. uf_regs = uec->uccf->uf_regs;
  187. /* Clear the grace stop event */
  188. out_be32(&uf_regs->ucce, UCCE_GRA);
  189. /* Issue host command */
  190. cecr_subblock =
  191. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  192. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  193. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  194. /* Wait for command to complete */
  195. do {
  196. ucce = in_be32(&uf_regs->ucce);
  197. } while (! (ucce & UCCE_GRA));
  198. uec->grace_stopped_tx = 1;
  199. return 0;
  200. }
  201. static int uec_graceful_stop_rx(uec_private_t *uec)
  202. {
  203. u32 cecr_subblock;
  204. u8 ack;
  205. if (!uec) {
  206. printf("%s: No handle passed.\n", __FUNCTION__);
  207. return -EINVAL;
  208. }
  209. if (!uec->p_rx_glbl_pram) {
  210. printf("%s: No init rx global parameter\n", __FUNCTION__);
  211. return -EINVAL;
  212. }
  213. /* Clear acknowledge bit */
  214. ack = uec->p_rx_glbl_pram->rxgstpack;
  215. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  216. uec->p_rx_glbl_pram->rxgstpack = ack;
  217. /* Keep issuing cmd and checking ack bit until it is asserted */
  218. do {
  219. /* Issue host command */
  220. cecr_subblock =
  221. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  222. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  223. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  224. ack = uec->p_rx_glbl_pram->rxgstpack;
  225. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  226. uec->grace_stopped_rx = 1;
  227. return 0;
  228. }
  229. static int uec_restart_tx(uec_private_t *uec)
  230. {
  231. u32 cecr_subblock;
  232. if (!uec || !uec->uec_info) {
  233. printf("%s: No handle passed.\n", __FUNCTION__);
  234. return -EINVAL;
  235. }
  236. cecr_subblock =
  237. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  238. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  239. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  240. uec->grace_stopped_tx = 0;
  241. return 0;
  242. }
  243. static int uec_restart_rx(uec_private_t *uec)
  244. {
  245. u32 cecr_subblock;
  246. if (!uec || !uec->uec_info) {
  247. printf("%s: No handle passed.\n", __FUNCTION__);
  248. return -EINVAL;
  249. }
  250. cecr_subblock =
  251. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  252. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  253. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  254. uec->grace_stopped_rx = 0;
  255. return 0;
  256. }
  257. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  258. {
  259. ucc_fast_private_t *uccf;
  260. if (!uec || !uec->uccf) {
  261. printf("%s: No handle passed.\n", __FUNCTION__);
  262. return -EINVAL;
  263. }
  264. uccf = uec->uccf;
  265. /* check if the UCC number is in range. */
  266. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  267. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  268. return -EINVAL;
  269. }
  270. /* Enable MAC */
  271. uec_mac_enable(uec, mode);
  272. /* Enable UCC fast */
  273. ucc_fast_enable(uccf, mode);
  274. /* RISC microcode start */
  275. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  276. uec_restart_tx(uec);
  277. }
  278. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  279. uec_restart_rx(uec);
  280. }
  281. return 0;
  282. }
  283. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  284. {
  285. ucc_fast_private_t *uccf;
  286. if (!uec || !uec->uccf) {
  287. printf("%s: No handle passed.\n", __FUNCTION__);
  288. return -EINVAL;
  289. }
  290. uccf = uec->uccf;
  291. /* check if the UCC number is in range. */
  292. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  293. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  294. return -EINVAL;
  295. }
  296. /* Stop any transmissions */
  297. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  298. uec_graceful_stop_tx(uec);
  299. }
  300. /* Stop any receptions */
  301. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  302. uec_graceful_stop_rx(uec);
  303. }
  304. /* Disable the UCC fast */
  305. ucc_fast_disable(uec->uccf, mode);
  306. /* Disable the MAC */
  307. uec_mac_disable(uec, mode);
  308. return 0;
  309. }
  310. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  311. {
  312. uec_t *uec_regs;
  313. u32 maccfg2;
  314. if (!uec) {
  315. printf("%s: uec not initial\n", __FUNCTION__);
  316. return -EINVAL;
  317. }
  318. uec_regs = uec->uec_regs;
  319. if (duplex == DUPLEX_HALF) {
  320. maccfg2 = in_be32(&uec_regs->maccfg2);
  321. maccfg2 &= ~MACCFG2_FDX;
  322. out_be32(&uec_regs->maccfg2, maccfg2);
  323. }
  324. if (duplex == DUPLEX_FULL) {
  325. maccfg2 = in_be32(&uec_regs->maccfg2);
  326. maccfg2 |= MACCFG2_FDX;
  327. out_be32(&uec_regs->maccfg2, maccfg2);
  328. }
  329. return 0;
  330. }
  331. static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
  332. {
  333. enet_interface_e enet_if_mode;
  334. uec_info_t *uec_info;
  335. uec_t *uec_regs;
  336. u32 upsmr;
  337. u32 maccfg2;
  338. if (!uec) {
  339. printf("%s: uec not initial\n", __FUNCTION__);
  340. return -EINVAL;
  341. }
  342. uec_info = uec->uec_info;
  343. uec_regs = uec->uec_regs;
  344. enet_if_mode = if_mode;
  345. maccfg2 = in_be32(&uec_regs->maccfg2);
  346. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  347. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  348. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  349. switch (enet_if_mode) {
  350. case ENET_100_MII:
  351. case ENET_10_MII:
  352. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  353. break;
  354. case ENET_1000_GMII:
  355. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  356. break;
  357. case ENET_1000_TBI:
  358. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  359. upsmr |= UPSMR_TBIM;
  360. break;
  361. case ENET_1000_RTBI:
  362. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  363. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  364. break;
  365. case ENET_1000_RGMII_RXID:
  366. case ENET_1000_RGMII:
  367. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  368. upsmr |= UPSMR_RPM;
  369. break;
  370. case ENET_100_RGMII:
  371. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  372. upsmr |= UPSMR_RPM;
  373. break;
  374. case ENET_10_RGMII:
  375. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  376. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  377. break;
  378. case ENET_100_RMII:
  379. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  380. upsmr |= UPSMR_RMM;
  381. break;
  382. case ENET_10_RMII:
  383. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  384. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  385. break;
  386. default:
  387. return -EINVAL;
  388. break;
  389. }
  390. out_be32(&uec_regs->maccfg2, maccfg2);
  391. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  392. return 0;
  393. }
  394. static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
  395. {
  396. uint timeout = 0x1000;
  397. u32 miimcfg = 0;
  398. miimcfg = in_be32(&uec_mii_regs->miimcfg);
  399. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  400. out_be32(&uec_mii_regs->miimcfg, miimcfg);
  401. /* Wait until the bus is free */
  402. while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  403. if (timeout <= 0) {
  404. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  405. return -ETIMEDOUT;
  406. }
  407. return 0;
  408. }
  409. static int init_phy(struct eth_device *dev)
  410. {
  411. uec_private_t *uec;
  412. uec_mii_t *umii_regs;
  413. struct uec_mii_info *mii_info;
  414. struct phy_info *curphy;
  415. int err;
  416. uec = (uec_private_t *)dev->priv;
  417. umii_regs = uec->uec_mii_regs;
  418. uec->oldlink = 0;
  419. uec->oldspeed = 0;
  420. uec->oldduplex = -1;
  421. mii_info = malloc(sizeof(*mii_info));
  422. if (!mii_info) {
  423. printf("%s: Could not allocate mii_info", dev->name);
  424. return -ENOMEM;
  425. }
  426. memset(mii_info, 0, sizeof(*mii_info));
  427. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  428. mii_info->speed = SPEED_1000;
  429. } else {
  430. mii_info->speed = SPEED_100;
  431. }
  432. mii_info->duplex = DUPLEX_FULL;
  433. mii_info->pause = 0;
  434. mii_info->link = 1;
  435. mii_info->advertising = (ADVERTISED_10baseT_Half |
  436. ADVERTISED_10baseT_Full |
  437. ADVERTISED_100baseT_Half |
  438. ADVERTISED_100baseT_Full |
  439. ADVERTISED_1000baseT_Full);
  440. mii_info->autoneg = 1;
  441. mii_info->mii_id = uec->uec_info->phy_address;
  442. mii_info->dev = dev;
  443. mii_info->mdio_read = &uec_read_phy_reg;
  444. mii_info->mdio_write = &uec_write_phy_reg;
  445. uec->mii_info = mii_info;
  446. qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
  447. if (init_mii_management_configuration(umii_regs)) {
  448. printf("%s: The MII Bus is stuck!", dev->name);
  449. err = -1;
  450. goto bus_fail;
  451. }
  452. /* get info for this PHY */
  453. curphy = uec_get_phy_info(uec->mii_info);
  454. if (!curphy) {
  455. printf("%s: No PHY found", dev->name);
  456. err = -1;
  457. goto no_phy;
  458. }
  459. mii_info->phyinfo = curphy;
  460. /* Run the commands which initialize the PHY */
  461. if (curphy->init) {
  462. err = curphy->init(uec->mii_info);
  463. if (err)
  464. goto phy_init_fail;
  465. }
  466. return 0;
  467. phy_init_fail:
  468. no_phy:
  469. bus_fail:
  470. free(mii_info);
  471. return err;
  472. }
  473. static void adjust_link(struct eth_device *dev)
  474. {
  475. uec_private_t *uec = (uec_private_t *)dev->priv;
  476. uec_t *uec_regs;
  477. struct uec_mii_info *mii_info = uec->mii_info;
  478. extern void change_phy_interface_mode(struct eth_device *dev,
  479. enet_interface_e mode);
  480. uec_regs = uec->uec_regs;
  481. if (mii_info->link) {
  482. /* Now we make sure that we can be in full duplex mode.
  483. * If not, we operate in half-duplex mode. */
  484. if (mii_info->duplex != uec->oldduplex) {
  485. if (!(mii_info->duplex)) {
  486. uec_set_mac_duplex(uec, DUPLEX_HALF);
  487. printf("%s: Half Duplex\n", dev->name);
  488. } else {
  489. uec_set_mac_duplex(uec, DUPLEX_FULL);
  490. printf("%s: Full Duplex\n", dev->name);
  491. }
  492. uec->oldduplex = mii_info->duplex;
  493. }
  494. if (mii_info->speed != uec->oldspeed) {
  495. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  496. switch (mii_info->speed) {
  497. case 1000:
  498. break;
  499. case 100:
  500. printf ("switching to rgmii 100\n");
  501. /* change phy to rgmii 100 */
  502. change_phy_interface_mode(dev,
  503. ENET_100_RGMII);
  504. /* change the MAC interface mode */
  505. uec_set_mac_if_mode(uec,ENET_100_RGMII);
  506. break;
  507. case 10:
  508. printf ("switching to rgmii 10\n");
  509. /* change phy to rgmii 10 */
  510. change_phy_interface_mode(dev,
  511. ENET_10_RGMII);
  512. /* change the MAC interface mode */
  513. uec_set_mac_if_mode(uec,ENET_10_RGMII);
  514. break;
  515. default:
  516. printf("%s: Ack,Speed(%d)is illegal\n",
  517. dev->name, mii_info->speed);
  518. break;
  519. }
  520. }
  521. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  522. uec->oldspeed = mii_info->speed;
  523. }
  524. if (!uec->oldlink) {
  525. printf("%s: Link is up\n", dev->name);
  526. uec->oldlink = 1;
  527. }
  528. } else { /* if (mii_info->link) */
  529. if (uec->oldlink) {
  530. printf("%s: Link is down\n", dev->name);
  531. uec->oldlink = 0;
  532. uec->oldspeed = 0;
  533. uec->oldduplex = -1;
  534. }
  535. }
  536. }
  537. static void phy_change(struct eth_device *dev)
  538. {
  539. uec_private_t *uec = (uec_private_t *)dev->priv;
  540. /* Update the link, speed, duplex */
  541. uec->mii_info->phyinfo->read_status(uec->mii_info);
  542. /* Adjust the interface according to speed */
  543. adjust_link(dev);
  544. }
  545. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  546. {
  547. uec_t *uec_regs;
  548. u32 mac_addr1;
  549. u32 mac_addr2;
  550. if (!uec) {
  551. printf("%s: uec not initial\n", __FUNCTION__);
  552. return -EINVAL;
  553. }
  554. uec_regs = uec->uec_regs;
  555. /* if a station address of 0x12345678ABCD, perform a write to
  556. MACSTNADDR1 of 0xCDAB7856,
  557. MACSTNADDR2 of 0x34120000 */
  558. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  559. (mac_addr[3] << 8) | (mac_addr[2]);
  560. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  561. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  562. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  563. return 0;
  564. }
  565. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  566. int *threads_num_ret)
  567. {
  568. int num_threads_numerica;
  569. switch (threads_num) {
  570. case UEC_NUM_OF_THREADS_1:
  571. num_threads_numerica = 1;
  572. break;
  573. case UEC_NUM_OF_THREADS_2:
  574. num_threads_numerica = 2;
  575. break;
  576. case UEC_NUM_OF_THREADS_4:
  577. num_threads_numerica = 4;
  578. break;
  579. case UEC_NUM_OF_THREADS_6:
  580. num_threads_numerica = 6;
  581. break;
  582. case UEC_NUM_OF_THREADS_8:
  583. num_threads_numerica = 8;
  584. break;
  585. default:
  586. printf("%s: Bad number of threads value.",
  587. __FUNCTION__);
  588. return -EINVAL;
  589. }
  590. *threads_num_ret = num_threads_numerica;
  591. return 0;
  592. }
  593. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  594. {
  595. uec_info_t *uec_info;
  596. u32 end_bd;
  597. u8 bmrx = 0;
  598. int i;
  599. uec_info = uec->uec_info;
  600. /* Alloc global Tx parameter RAM page */
  601. uec->tx_glbl_pram_offset = qe_muram_alloc(
  602. sizeof(uec_tx_global_pram_t),
  603. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  604. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  605. qe_muram_addr(uec->tx_glbl_pram_offset);
  606. /* Zero the global Tx prameter RAM */
  607. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  608. /* Init global Tx parameter RAM */
  609. /* TEMODER, RMON statistics disable, one Tx queue */
  610. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  611. /* SQPTR */
  612. uec->send_q_mem_reg_offset = qe_muram_alloc(
  613. sizeof(uec_send_queue_qd_t),
  614. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  615. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  616. qe_muram_addr(uec->send_q_mem_reg_offset);
  617. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  618. /* Setup the table with TxBDs ring */
  619. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  620. * SIZEOFBD;
  621. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  622. (u32)(uec->p_tx_bd_ring));
  623. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  624. end_bd);
  625. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  626. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  627. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  628. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  629. /* TSTATE, global snooping, big endian, the CSB bus selected */
  630. bmrx = BMR_INIT_VALUE;
  631. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  632. /* IPH_Offset */
  633. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  634. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  635. }
  636. /* VTAG table */
  637. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  638. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  639. }
  640. /* TQPTR */
  641. uec->thread_dat_tx_offset = qe_muram_alloc(
  642. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  643. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  644. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  645. qe_muram_addr(uec->thread_dat_tx_offset);
  646. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  647. }
  648. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  649. {
  650. u8 bmrx = 0;
  651. int i;
  652. uec_82xx_address_filtering_pram_t *p_af_pram;
  653. /* Allocate global Rx parameter RAM page */
  654. uec->rx_glbl_pram_offset = qe_muram_alloc(
  655. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  656. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  657. qe_muram_addr(uec->rx_glbl_pram_offset);
  658. /* Zero Global Rx parameter RAM */
  659. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  660. /* Init global Rx parameter RAM */
  661. /* REMODER, Extended feature mode disable, VLAN disable,
  662. LossLess flow control disable, Receive firmware statisic disable,
  663. Extended address parsing mode disable, One Rx queues,
  664. Dynamic maximum/minimum frame length disable, IP checksum check
  665. disable, IP address alignment disable
  666. */
  667. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  668. /* RQPTR */
  669. uec->thread_dat_rx_offset = qe_muram_alloc(
  670. num_threads_rx * sizeof(uec_thread_data_rx_t),
  671. UEC_THREAD_DATA_ALIGNMENT);
  672. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  673. qe_muram_addr(uec->thread_dat_rx_offset);
  674. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  675. /* Type_or_Len */
  676. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  677. /* RxRMON base pointer, we don't need it */
  678. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  679. /* IntCoalescingPTR, we don't need it, no interrupt */
  680. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  681. /* RSTATE, global snooping, big endian, the CSB bus selected */
  682. bmrx = BMR_INIT_VALUE;
  683. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  684. /* MRBLR */
  685. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  686. /* RBDQPTR */
  687. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  688. sizeof(uec_rx_bd_queues_entry_t) + \
  689. sizeof(uec_rx_prefetched_bds_t),
  690. UEC_RX_BD_QUEUES_ALIGNMENT);
  691. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  692. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  693. /* Zero it */
  694. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  695. sizeof(uec_rx_prefetched_bds_t));
  696. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  697. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  698. (u32)uec->p_rx_bd_ring);
  699. /* MFLR */
  700. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  701. /* MINFLR */
  702. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  703. /* MAXD1 */
  704. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  705. /* MAXD2 */
  706. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  707. /* ECAM_PTR */
  708. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  709. /* L2QT */
  710. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  711. /* L3QT */
  712. for (i = 0; i < 8; i++) {
  713. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  714. }
  715. /* VLAN_TYPE */
  716. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  717. /* TCI */
  718. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  719. /* Clear PQ2 style address filtering hash table */
  720. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  721. uec->p_rx_glbl_pram->addressfiltering;
  722. p_af_pram->iaddr_h = 0;
  723. p_af_pram->iaddr_l = 0;
  724. p_af_pram->gaddr_h = 0;
  725. p_af_pram->gaddr_l = 0;
  726. }
  727. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  728. int thread_tx, int thread_rx)
  729. {
  730. uec_init_cmd_pram_t *p_init_enet_param;
  731. u32 init_enet_param_offset;
  732. uec_info_t *uec_info;
  733. int i;
  734. int snum;
  735. u32 init_enet_offset;
  736. u32 entry_val;
  737. u32 command;
  738. u32 cecr_subblock;
  739. uec_info = uec->uec_info;
  740. /* Allocate init enet command parameter */
  741. uec->init_enet_param_offset = qe_muram_alloc(
  742. sizeof(uec_init_cmd_pram_t), 4);
  743. init_enet_param_offset = uec->init_enet_param_offset;
  744. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  745. qe_muram_addr(uec->init_enet_param_offset);
  746. /* Zero init enet command struct */
  747. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  748. /* Init the command struct */
  749. p_init_enet_param = uec->p_init_enet_param;
  750. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  751. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  752. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  753. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  754. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  755. p_init_enet_param->largestexternallookupkeysize = 0;
  756. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  757. << ENET_INIT_PARAM_RGF_SHIFT;
  758. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  759. << ENET_INIT_PARAM_TGF_SHIFT;
  760. /* Init Rx global parameter pointer */
  761. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  762. (u32)uec_info->riscRx;
  763. /* Init Rx threads */
  764. for (i = 0; i < (thread_rx + 1); i++) {
  765. if ((snum = qe_get_snum()) < 0) {
  766. printf("%s can not get snum\n", __FUNCTION__);
  767. return -ENOMEM;
  768. }
  769. if (i==0) {
  770. init_enet_offset = 0;
  771. } else {
  772. init_enet_offset = qe_muram_alloc(
  773. sizeof(uec_thread_rx_pram_t),
  774. UEC_THREAD_RX_PRAM_ALIGNMENT);
  775. }
  776. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  777. init_enet_offset | (u32)uec_info->riscRx;
  778. p_init_enet_param->rxthread[i] = entry_val;
  779. }
  780. /* Init Tx global parameter pointer */
  781. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  782. (u32)uec_info->riscTx;
  783. /* Init Tx threads */
  784. for (i = 0; i < thread_tx; i++) {
  785. if ((snum = qe_get_snum()) < 0) {
  786. printf("%s can not get snum\n", __FUNCTION__);
  787. return -ENOMEM;
  788. }
  789. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  790. UEC_THREAD_TX_PRAM_ALIGNMENT);
  791. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  792. init_enet_offset | (u32)uec_info->riscTx;
  793. p_init_enet_param->txthread[i] = entry_val;
  794. }
  795. __asm__ __volatile__("sync");
  796. /* Issue QE command */
  797. command = QE_INIT_TX_RX;
  798. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  799. uec->uec_info->uf_info.ucc_num);
  800. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  801. init_enet_param_offset);
  802. return 0;
  803. }
  804. static int uec_startup(uec_private_t *uec)
  805. {
  806. uec_info_t *uec_info;
  807. ucc_fast_info_t *uf_info;
  808. ucc_fast_private_t *uccf;
  809. ucc_fast_t *uf_regs;
  810. uec_t *uec_regs;
  811. int num_threads_tx;
  812. int num_threads_rx;
  813. u32 utbipar;
  814. enet_interface_e enet_interface;
  815. u32 length;
  816. u32 align;
  817. qe_bd_t *bd;
  818. u8 *buf;
  819. int i;
  820. if (!uec || !uec->uec_info) {
  821. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  822. return -EINVAL;
  823. }
  824. uec_info = uec->uec_info;
  825. uf_info = &(uec_info->uf_info);
  826. /* Check if Rx BD ring len is illegal */
  827. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  828. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  829. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  830. __FUNCTION__);
  831. return -EINVAL;
  832. }
  833. /* Check if Tx BD ring len is illegal */
  834. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  835. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  836. __FUNCTION__);
  837. return -EINVAL;
  838. }
  839. /* Check if MRBLR is illegal */
  840. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  841. printf("%s: max rx buffer length must be mutliple of 128.\n",
  842. __FUNCTION__);
  843. return -EINVAL;
  844. }
  845. /* Both Rx and Tx are stopped */
  846. uec->grace_stopped_rx = 1;
  847. uec->grace_stopped_tx = 1;
  848. /* Init UCC fast */
  849. if (ucc_fast_init(uf_info, &uccf)) {
  850. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  851. return -ENOMEM;
  852. }
  853. /* Save uccf */
  854. uec->uccf = uccf;
  855. /* Convert the Tx threads number */
  856. if (uec_convert_threads_num(uec_info->num_threads_tx,
  857. &num_threads_tx)) {
  858. return -EINVAL;
  859. }
  860. /* Convert the Rx threads number */
  861. if (uec_convert_threads_num(uec_info->num_threads_rx,
  862. &num_threads_rx)) {
  863. return -EINVAL;
  864. }
  865. uf_regs = uccf->uf_regs;
  866. /* UEC register is following UCC fast registers */
  867. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  868. /* Save the UEC register pointer to UEC private struct */
  869. uec->uec_regs = uec_regs;
  870. /* Init UPSMR, enable hardware statistics (UCC) */
  871. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  872. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  873. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  874. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  875. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  876. /* Setup MAC interface mode */
  877. uec_set_mac_if_mode(uec, uec_info->enet_interface);
  878. /* Setup MII management base */
  879. #ifndef CONFIG_eTSEC_MDIO_BUS
  880. uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
  881. #else
  882. uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
  883. #endif
  884. /* Setup MII master clock source */
  885. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  886. /* Setup UTBIPAR */
  887. utbipar = in_be32(&uec_regs->utbipar);
  888. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  889. enet_interface = uec->uec_info->enet_interface;
  890. if (enet_interface == ENET_1000_TBI ||
  891. enet_interface == ENET_1000_RTBI) {
  892. utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num)
  893. << UTBIPAR_PHY_ADDRESS_SHIFT;
  894. } else {
  895. utbipar |= (0x10 + uec_info->uf_info.ucc_num)
  896. << UTBIPAR_PHY_ADDRESS_SHIFT;
  897. }
  898. out_be32(&uec_regs->utbipar, utbipar);
  899. /* Allocate Tx BDs */
  900. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  901. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  902. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  903. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  904. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  905. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  906. }
  907. align = UEC_TX_BD_RING_ALIGNMENT;
  908. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  909. if (uec->tx_bd_ring_offset != 0) {
  910. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  911. & ~(align - 1));
  912. }
  913. /* Zero all of Tx BDs */
  914. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  915. /* Allocate Rx BDs */
  916. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  917. align = UEC_RX_BD_RING_ALIGNMENT;
  918. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  919. if (uec->rx_bd_ring_offset != 0) {
  920. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  921. & ~(align - 1));
  922. }
  923. /* Zero all of Rx BDs */
  924. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  925. /* Allocate Rx buffer */
  926. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  927. align = UEC_RX_DATA_BUF_ALIGNMENT;
  928. uec->rx_buf_offset = (u32)malloc(length + align);
  929. if (uec->rx_buf_offset != 0) {
  930. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  931. & ~(align - 1));
  932. }
  933. /* Zero all of the Rx buffer */
  934. memset((void *)(uec->rx_buf_offset), 0, length + align);
  935. /* Init TxBD ring */
  936. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  937. uec->txBd = bd;
  938. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  939. BD_DATA_CLEAR(bd);
  940. BD_STATUS_SET(bd, 0);
  941. BD_LENGTH_SET(bd, 0);
  942. bd ++;
  943. }
  944. BD_STATUS_SET((--bd), TxBD_WRAP);
  945. /* Init RxBD ring */
  946. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  947. uec->rxBd = bd;
  948. buf = uec->p_rx_buf;
  949. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  950. BD_DATA_SET(bd, buf);
  951. BD_LENGTH_SET(bd, 0);
  952. BD_STATUS_SET(bd, RxBD_EMPTY);
  953. buf += MAX_RXBUF_LEN;
  954. bd ++;
  955. }
  956. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  957. /* Init global Tx parameter RAM */
  958. uec_init_tx_parameter(uec, num_threads_tx);
  959. /* Init global Rx parameter RAM */
  960. uec_init_rx_parameter(uec, num_threads_rx);
  961. /* Init ethernet Tx and Rx parameter command */
  962. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  963. num_threads_rx)) {
  964. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  965. return -ENOMEM;
  966. }
  967. return 0;
  968. }
  969. static int uec_init(struct eth_device* dev, bd_t *bd)
  970. {
  971. uec_private_t *uec;
  972. int err, i;
  973. struct phy_info *curphy;
  974. uec = (uec_private_t *)dev->priv;
  975. if (uec->the_first_run == 0) {
  976. err = init_phy(dev);
  977. if (err) {
  978. printf("%s: Cannot initialize PHY, aborting.\n",
  979. dev->name);
  980. return err;
  981. }
  982. curphy = uec->mii_info->phyinfo;
  983. if (curphy->config_aneg) {
  984. err = curphy->config_aneg(uec->mii_info);
  985. if (err) {
  986. printf("%s: Can't negotiate PHY\n", dev->name);
  987. return err;
  988. }
  989. }
  990. /* Give PHYs up to 5 sec to report a link */
  991. i = 50;
  992. do {
  993. err = curphy->read_status(uec->mii_info);
  994. udelay(100000);
  995. } while (((i-- > 0) && !uec->mii_info->link) || err);
  996. if (err || i <= 0)
  997. printf("warning: %s: timeout on PHY link\n", dev->name);
  998. uec->the_first_run = 1;
  999. }
  1000. /* Set up the MAC address */
  1001. if (dev->enetaddr[0] & 0x01) {
  1002. printf("%s: MacAddress is multcast address\n",
  1003. __FUNCTION__);
  1004. return -1;
  1005. }
  1006. uec_set_mac_address(uec, dev->enetaddr);
  1007. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  1008. if (err) {
  1009. printf("%s: cannot enable UEC device\n", dev->name);
  1010. return -1;
  1011. }
  1012. phy_change(dev);
  1013. return (uec->mii_info->link ? 0 : -1);
  1014. }
  1015. static void uec_halt(struct eth_device* dev)
  1016. {
  1017. uec_private_t *uec = (uec_private_t *)dev->priv;
  1018. uec_stop(uec, COMM_DIR_RX_AND_TX);
  1019. }
  1020. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  1021. {
  1022. uec_private_t *uec;
  1023. ucc_fast_private_t *uccf;
  1024. volatile qe_bd_t *bd;
  1025. u16 status;
  1026. int i;
  1027. int result = 0;
  1028. uec = (uec_private_t *)dev->priv;
  1029. uccf = uec->uccf;
  1030. bd = uec->txBd;
  1031. /* Find an empty TxBD */
  1032. for (i = 0; bd->status & TxBD_READY; i++) {
  1033. if (i > 0x100000) {
  1034. printf("%s: tx buffer not ready\n", dev->name);
  1035. return result;
  1036. }
  1037. }
  1038. /* Init TxBD */
  1039. BD_DATA_SET(bd, buf);
  1040. BD_LENGTH_SET(bd, len);
  1041. status = bd->status;
  1042. status &= BD_WRAP;
  1043. status |= (TxBD_READY | TxBD_LAST);
  1044. BD_STATUS_SET(bd, status);
  1045. /* Tell UCC to transmit the buffer */
  1046. ucc_fast_transmit_on_demand(uccf);
  1047. /* Wait for buffer to be transmitted */
  1048. for (i = 0; bd->status & TxBD_READY; i++) {
  1049. if (i > 0x100000) {
  1050. printf("%s: tx error\n", dev->name);
  1051. return result;
  1052. }
  1053. }
  1054. /* Ok, the buffer be transimitted */
  1055. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  1056. uec->txBd = bd;
  1057. result = 1;
  1058. return result;
  1059. }
  1060. static int uec_recv(struct eth_device* dev)
  1061. {
  1062. uec_private_t *uec = dev->priv;
  1063. volatile qe_bd_t *bd;
  1064. u16 status;
  1065. u16 len;
  1066. u8 *data;
  1067. bd = uec->rxBd;
  1068. status = bd->status;
  1069. while (!(status & RxBD_EMPTY)) {
  1070. if (!(status & RxBD_ERROR)) {
  1071. data = BD_DATA(bd);
  1072. len = BD_LENGTH(bd);
  1073. NetReceive(data, len);
  1074. } else {
  1075. printf("%s: Rx error\n", dev->name);
  1076. }
  1077. status &= BD_CLEAN;
  1078. BD_LENGTH_SET(bd, 0);
  1079. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  1080. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  1081. status = bd->status;
  1082. }
  1083. uec->rxBd = bd;
  1084. return 1;
  1085. }
  1086. int uec_initialize(int index)
  1087. {
  1088. struct eth_device *dev;
  1089. int i;
  1090. uec_private_t *uec;
  1091. uec_info_t *uec_info;
  1092. int err;
  1093. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1094. if (!dev)
  1095. return 0;
  1096. memset(dev, 0, sizeof(struct eth_device));
  1097. /* Allocate the UEC private struct */
  1098. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1099. if (!uec) {
  1100. return -ENOMEM;
  1101. }
  1102. memset(uec, 0, sizeof(uec_private_t));
  1103. /* Init UEC private struct, they come from board.h */
  1104. uec_info = NULL;
  1105. if (index == 0) {
  1106. #ifdef CONFIG_UEC_ETH1
  1107. uec_info = &eth1_uec_info;
  1108. #endif
  1109. } else if (index == 1) {
  1110. #ifdef CONFIG_UEC_ETH2
  1111. uec_info = &eth2_uec_info;
  1112. #endif
  1113. } else if (index == 2) {
  1114. #ifdef CONFIG_UEC_ETH3
  1115. uec_info = &eth3_uec_info;
  1116. #endif
  1117. } else if (index == 3) {
  1118. #ifdef CONFIG_UEC_ETH4
  1119. uec_info = &eth4_uec_info;
  1120. #endif
  1121. } else {
  1122. printf("%s: index is illegal.\n", __FUNCTION__);
  1123. return -EINVAL;
  1124. }
  1125. devlist[index] = dev;
  1126. uec->uec_info = uec_info;
  1127. sprintf(dev->name, "FSL UEC%d", index);
  1128. dev->iobase = 0;
  1129. dev->priv = (void *)uec;
  1130. dev->init = uec_init;
  1131. dev->halt = uec_halt;
  1132. dev->send = uec_send;
  1133. dev->recv = uec_recv;
  1134. /* Clear the ethnet address */
  1135. for (i = 0; i < 6; i++)
  1136. dev->enetaddr[i] = 0;
  1137. eth_register(dev);
  1138. err = uec_startup(uec);
  1139. if (err) {
  1140. printf("%s: Cannot configure net device, aborting.",dev->name);
  1141. return err;
  1142. }
  1143. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  1144. && !defined(BITBANGMII)
  1145. miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
  1146. #endif
  1147. return 1;
  1148. }
  1149. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  1150. && !defined(BITBANGMII)
  1151. /*
  1152. * Read a MII PHY register.
  1153. *
  1154. * Returns:
  1155. * 0 on success
  1156. */
  1157. static int uec_miiphy_read(char *devname, unsigned char addr,
  1158. unsigned char reg, unsigned short *value)
  1159. {
  1160. *value = uec_read_phy_reg(devlist[0], addr, reg);
  1161. return 0;
  1162. }
  1163. /*
  1164. * Write a MII PHY register.
  1165. *
  1166. * Returns:
  1167. * 0 on success
  1168. */
  1169. static int uec_miiphy_write(char *devname, unsigned char addr,
  1170. unsigned char reg, unsigned short value)
  1171. {
  1172. uec_write_phy_reg(devlist[0], addr, reg, value);
  1173. return 0;
  1174. }
  1175. #endif
  1176. #endif /* CONFIG_QE */