lmb.c 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <common.h>
  13. #include <lmb.h>
  14. #define LMB_ALLOC_ANYWHERE 0
  15. void lmb_dump_all(struct lmb *lmb)
  16. {
  17. #ifdef DEBUG
  18. unsigned long i;
  19. debug("lmb_dump_all:\n");
  20. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  21. debug(" memory.size = 0x%llx\n",
  22. (unsigned long long)lmb->memory.size);
  23. for (i=0; i < lmb->memory.cnt ;i++) {
  24. debug(" memory.reg[0x%x].base = 0x%llx\n", i,
  25. lmb->memory.region[i].base);
  26. debug(" .size = 0x%llx\n",
  27. lmb->memory.region[i].size);
  28. }
  29. debug("\n reserved.cnt = 0x%lx\n", lmb->reserved.cnt);
  30. debug(" reserved.size = 0x%llx\n", lmb->reserved.size);
  31. for (i=0; i < lmb->reserved.cnt ;i++) {
  32. debug(" reserved.reg[0x%x].base = 0x%llx\n", i,
  33. lmb->reserved.region[i].base);
  34. debug(" .size = 0x%llx\n",
  35. lmb->reserved.region[i].size);
  36. }
  37. #endif /* DEBUG */
  38. }
  39. static long lmb_addrs_overlap(phys_addr_t base1,
  40. phys_size_t size1, phys_addr_t base2, phys_size_t size2)
  41. {
  42. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  43. }
  44. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  45. phys_addr_t base2, phys_size_t size2)
  46. {
  47. if (base2 == base1 + size1)
  48. return 1;
  49. else if (base1 == base2 + size2)
  50. return -1;
  51. return 0;
  52. }
  53. static long lmb_regions_adjacent(struct lmb_region *rgn,
  54. unsigned long r1, unsigned long r2)
  55. {
  56. phys_addr_t base1 = rgn->region[r1].base;
  57. phys_size_t size1 = rgn->region[r1].size;
  58. phys_addr_t base2 = rgn->region[r2].base;
  59. phys_size_t size2 = rgn->region[r2].size;
  60. return lmb_addrs_adjacent(base1, size1, base2, size2);
  61. }
  62. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  63. {
  64. unsigned long i;
  65. for (i = r; i < rgn->cnt - 1; i++) {
  66. rgn->region[i].base = rgn->region[i + 1].base;
  67. rgn->region[i].size = rgn->region[i + 1].size;
  68. }
  69. rgn->cnt--;
  70. }
  71. /* Assumption: base addr of region 1 < base addr of region 2 */
  72. static void lmb_coalesce_regions(struct lmb_region *rgn,
  73. unsigned long r1, unsigned long r2)
  74. {
  75. rgn->region[r1].size += rgn->region[r2].size;
  76. lmb_remove_region(rgn, r2);
  77. }
  78. void lmb_init(struct lmb *lmb)
  79. {
  80. /* Create a dummy zero size LMB which will get coalesced away later.
  81. * This simplifies the lmb_add() code below...
  82. */
  83. lmb->memory.region[0].base = 0;
  84. lmb->memory.region[0].size = 0;
  85. lmb->memory.cnt = 1;
  86. lmb->memory.size = 0;
  87. /* Ditto. */
  88. lmb->reserved.region[0].base = 0;
  89. lmb->reserved.region[0].size = 0;
  90. lmb->reserved.cnt = 1;
  91. lmb->reserved.size = 0;
  92. }
  93. /* This routine called with relocation disabled. */
  94. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base, phys_size_t size)
  95. {
  96. unsigned long coalesced = 0;
  97. long adjacent, i;
  98. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  99. rgn->region[0].base = base;
  100. rgn->region[0].size = size;
  101. return 0;
  102. }
  103. /* First try and coalesce this LMB with another. */
  104. for (i=0; i < rgn->cnt; i++) {
  105. phys_addr_t rgnbase = rgn->region[i].base;
  106. phys_size_t rgnsize = rgn->region[i].size;
  107. if ((rgnbase == base) && (rgnsize == size))
  108. /* Already have this region, so we're done */
  109. return 0;
  110. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  111. if ( adjacent > 0 ) {
  112. rgn->region[i].base -= size;
  113. rgn->region[i].size += size;
  114. coalesced++;
  115. break;
  116. }
  117. else if ( adjacent < 0 ) {
  118. rgn->region[i].size += size;
  119. coalesced++;
  120. break;
  121. }
  122. }
  123. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  124. lmb_coalesce_regions(rgn, i, i+1);
  125. coalesced++;
  126. }
  127. if (coalesced)
  128. return coalesced;
  129. if (rgn->cnt >= MAX_LMB_REGIONS)
  130. return -1;
  131. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  132. for (i = rgn->cnt-1; i >= 0; i--) {
  133. if (base < rgn->region[i].base) {
  134. rgn->region[i+1].base = rgn->region[i].base;
  135. rgn->region[i+1].size = rgn->region[i].size;
  136. } else {
  137. rgn->region[i+1].base = base;
  138. rgn->region[i+1].size = size;
  139. break;
  140. }
  141. }
  142. if (base < rgn->region[0].base) {
  143. rgn->region[0].base = base;
  144. rgn->region[0].size = size;
  145. }
  146. rgn->cnt++;
  147. return 0;
  148. }
  149. /* This routine may be called with relocation disabled. */
  150. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  151. {
  152. struct lmb_region *_rgn = &(lmb->memory);
  153. return lmb_add_region(_rgn, base, size);
  154. }
  155. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  156. {
  157. struct lmb_region *_rgn = &(lmb->reserved);
  158. return lmb_add_region(_rgn, base, size);
  159. }
  160. long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  161. phys_size_t size)
  162. {
  163. unsigned long i;
  164. for (i=0; i < rgn->cnt; i++) {
  165. phys_addr_t rgnbase = rgn->region[i].base;
  166. phys_size_t rgnsize = rgn->region[i].size;
  167. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  168. break;
  169. }
  170. }
  171. return (i < rgn->cnt) ? i : -1;
  172. }
  173. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  174. {
  175. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  176. }
  177. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  178. {
  179. phys_addr_t alloc;
  180. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  181. if (alloc == 0)
  182. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  183. size, max_addr);
  184. return alloc;
  185. }
  186. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  187. {
  188. return addr & ~(size - 1);
  189. }
  190. static phys_addr_t lmb_align_up(phys_addr_t addr, ulong size)
  191. {
  192. return (addr + (size - 1)) & ~(size - 1);
  193. }
  194. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  195. {
  196. long i, j;
  197. phys_addr_t base = 0;
  198. for (i = lmb->memory.cnt-1; i >= 0; i--) {
  199. phys_addr_t lmbbase = lmb->memory.region[i].base;
  200. phys_size_t lmbsize = lmb->memory.region[i].size;
  201. if (max_addr == LMB_ALLOC_ANYWHERE)
  202. base = lmb_align_down(lmbbase + lmbsize - size, align);
  203. else if (lmbbase < max_addr) {
  204. base = min(lmbbase + lmbsize, max_addr);
  205. base = lmb_align_down(base - size, align);
  206. } else
  207. continue;
  208. while ((lmbbase <= base) &&
  209. ((j = lmb_overlaps_region(&(lmb->reserved), base, size)) >= 0) )
  210. base = lmb_align_down(lmb->reserved.region[j].base - size,
  211. align);
  212. if ((base != 0) && (lmbbase <= base))
  213. break;
  214. }
  215. if (i < 0)
  216. return 0;
  217. if (lmb_add_region(&(lmb->reserved), base, lmb_align_up(size, align)) < 0)
  218. return 0;
  219. return base;
  220. }
  221. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  222. {
  223. int i;
  224. for (i = 0; i < lmb->reserved.cnt; i++) {
  225. phys_addr_t upper = lmb->reserved.region[i].base +
  226. lmb->reserved.region[i].size - 1;
  227. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  228. return 1;
  229. }
  230. return 0;
  231. }