uec.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. /*
  2. * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #include "miiphy.h"
  32. /* Default UTBIPAR SMI address */
  33. #ifndef CONFIG_UTBIPAR_INIT_TBIPA
  34. #define CONFIG_UTBIPAR_INIT_TBIPA 0x1F
  35. #endif
  36. static uec_info_t uec_info[] = {
  37. #ifdef CONFIG_UEC_ETH1
  38. STD_UEC_INFO(1), /* UEC1 */
  39. #endif
  40. #ifdef CONFIG_UEC_ETH2
  41. STD_UEC_INFO(2), /* UEC2 */
  42. #endif
  43. #ifdef CONFIG_UEC_ETH3
  44. STD_UEC_INFO(3), /* UEC3 */
  45. #endif
  46. #ifdef CONFIG_UEC_ETH4
  47. STD_UEC_INFO(4), /* UEC4 */
  48. #endif
  49. #ifdef CONFIG_UEC_ETH5
  50. STD_UEC_INFO(5), /* UEC5 */
  51. #endif
  52. #ifdef CONFIG_UEC_ETH6
  53. STD_UEC_INFO(6), /* UEC6 */
  54. #endif
  55. #ifdef CONFIG_UEC_ETH7
  56. STD_UEC_INFO(7), /* UEC7 */
  57. #endif
  58. #ifdef CONFIG_UEC_ETH8
  59. STD_UEC_INFO(8), /* UEC8 */
  60. #endif
  61. };
  62. #define MAXCONTROLLERS (8)
  63. static struct eth_device *devlist[MAXCONTROLLERS];
  64. u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
  65. void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
  66. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  67. {
  68. uec_t *uec_regs;
  69. u32 maccfg1;
  70. if (!uec) {
  71. printf("%s: uec not initial\n", __FUNCTION__);
  72. return -EINVAL;
  73. }
  74. uec_regs = uec->uec_regs;
  75. maccfg1 = in_be32(&uec_regs->maccfg1);
  76. if (mode & COMM_DIR_TX) {
  77. maccfg1 |= MACCFG1_ENABLE_TX;
  78. out_be32(&uec_regs->maccfg1, maccfg1);
  79. uec->mac_tx_enabled = 1;
  80. }
  81. if (mode & COMM_DIR_RX) {
  82. maccfg1 |= MACCFG1_ENABLE_RX;
  83. out_be32(&uec_regs->maccfg1, maccfg1);
  84. uec->mac_rx_enabled = 1;
  85. }
  86. return 0;
  87. }
  88. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  89. {
  90. uec_t *uec_regs;
  91. u32 maccfg1;
  92. if (!uec) {
  93. printf("%s: uec not initial\n", __FUNCTION__);
  94. return -EINVAL;
  95. }
  96. uec_regs = uec->uec_regs;
  97. maccfg1 = in_be32(&uec_regs->maccfg1);
  98. if (mode & COMM_DIR_TX) {
  99. maccfg1 &= ~MACCFG1_ENABLE_TX;
  100. out_be32(&uec_regs->maccfg1, maccfg1);
  101. uec->mac_tx_enabled = 0;
  102. }
  103. if (mode & COMM_DIR_RX) {
  104. maccfg1 &= ~MACCFG1_ENABLE_RX;
  105. out_be32(&uec_regs->maccfg1, maccfg1);
  106. uec->mac_rx_enabled = 0;
  107. }
  108. return 0;
  109. }
  110. static int uec_graceful_stop_tx(uec_private_t *uec)
  111. {
  112. ucc_fast_t *uf_regs;
  113. u32 cecr_subblock;
  114. u32 ucce;
  115. if (!uec || !uec->uccf) {
  116. printf("%s: No handle passed.\n", __FUNCTION__);
  117. return -EINVAL;
  118. }
  119. uf_regs = uec->uccf->uf_regs;
  120. /* Clear the grace stop event */
  121. out_be32(&uf_regs->ucce, UCCE_GRA);
  122. /* Issue host command */
  123. cecr_subblock =
  124. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  125. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  126. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  127. /* Wait for command to complete */
  128. do {
  129. ucce = in_be32(&uf_regs->ucce);
  130. } while (! (ucce & UCCE_GRA));
  131. uec->grace_stopped_tx = 1;
  132. return 0;
  133. }
  134. static int uec_graceful_stop_rx(uec_private_t *uec)
  135. {
  136. u32 cecr_subblock;
  137. u8 ack;
  138. if (!uec) {
  139. printf("%s: No handle passed.\n", __FUNCTION__);
  140. return -EINVAL;
  141. }
  142. if (!uec->p_rx_glbl_pram) {
  143. printf("%s: No init rx global parameter\n", __FUNCTION__);
  144. return -EINVAL;
  145. }
  146. /* Clear acknowledge bit */
  147. ack = uec->p_rx_glbl_pram->rxgstpack;
  148. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  149. uec->p_rx_glbl_pram->rxgstpack = ack;
  150. /* Keep issuing cmd and checking ack bit until it is asserted */
  151. do {
  152. /* Issue host command */
  153. cecr_subblock =
  154. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  155. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  156. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  157. ack = uec->p_rx_glbl_pram->rxgstpack;
  158. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  159. uec->grace_stopped_rx = 1;
  160. return 0;
  161. }
  162. static int uec_restart_tx(uec_private_t *uec)
  163. {
  164. u32 cecr_subblock;
  165. if (!uec || !uec->uec_info) {
  166. printf("%s: No handle passed.\n", __FUNCTION__);
  167. return -EINVAL;
  168. }
  169. cecr_subblock =
  170. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  171. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  172. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  173. uec->grace_stopped_tx = 0;
  174. return 0;
  175. }
  176. static int uec_restart_rx(uec_private_t *uec)
  177. {
  178. u32 cecr_subblock;
  179. if (!uec || !uec->uec_info) {
  180. printf("%s: No handle passed.\n", __FUNCTION__);
  181. return -EINVAL;
  182. }
  183. cecr_subblock =
  184. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  185. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  186. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  187. uec->grace_stopped_rx = 0;
  188. return 0;
  189. }
  190. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  191. {
  192. ucc_fast_private_t *uccf;
  193. if (!uec || !uec->uccf) {
  194. printf("%s: No handle passed.\n", __FUNCTION__);
  195. return -EINVAL;
  196. }
  197. uccf = uec->uccf;
  198. /* check if the UCC number is in range. */
  199. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  200. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  201. return -EINVAL;
  202. }
  203. /* Enable MAC */
  204. uec_mac_enable(uec, mode);
  205. /* Enable UCC fast */
  206. ucc_fast_enable(uccf, mode);
  207. /* RISC microcode start */
  208. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  209. uec_restart_tx(uec);
  210. }
  211. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  212. uec_restart_rx(uec);
  213. }
  214. return 0;
  215. }
  216. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  217. {
  218. ucc_fast_private_t *uccf;
  219. if (!uec || !uec->uccf) {
  220. printf("%s: No handle passed.\n", __FUNCTION__);
  221. return -EINVAL;
  222. }
  223. uccf = uec->uccf;
  224. /* check if the UCC number is in range. */
  225. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  226. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  227. return -EINVAL;
  228. }
  229. /* Stop any transmissions */
  230. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  231. uec_graceful_stop_tx(uec);
  232. }
  233. /* Stop any receptions */
  234. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  235. uec_graceful_stop_rx(uec);
  236. }
  237. /* Disable the UCC fast */
  238. ucc_fast_disable(uec->uccf, mode);
  239. /* Disable the MAC */
  240. uec_mac_disable(uec, mode);
  241. return 0;
  242. }
  243. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  244. {
  245. uec_t *uec_regs;
  246. u32 maccfg2;
  247. if (!uec) {
  248. printf("%s: uec not initial\n", __FUNCTION__);
  249. return -EINVAL;
  250. }
  251. uec_regs = uec->uec_regs;
  252. if (duplex == DUPLEX_HALF) {
  253. maccfg2 = in_be32(&uec_regs->maccfg2);
  254. maccfg2 &= ~MACCFG2_FDX;
  255. out_be32(&uec_regs->maccfg2, maccfg2);
  256. }
  257. if (duplex == DUPLEX_FULL) {
  258. maccfg2 = in_be32(&uec_regs->maccfg2);
  259. maccfg2 |= MACCFG2_FDX;
  260. out_be32(&uec_regs->maccfg2, maccfg2);
  261. }
  262. return 0;
  263. }
  264. static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
  265. {
  266. enet_interface_e enet_if_mode;
  267. uec_info_t *uec_info;
  268. uec_t *uec_regs;
  269. u32 upsmr;
  270. u32 maccfg2;
  271. if (!uec) {
  272. printf("%s: uec not initial\n", __FUNCTION__);
  273. return -EINVAL;
  274. }
  275. uec_info = uec->uec_info;
  276. uec_regs = uec->uec_regs;
  277. enet_if_mode = if_mode;
  278. maccfg2 = in_be32(&uec_regs->maccfg2);
  279. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  280. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  281. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  282. switch (enet_if_mode) {
  283. case ENET_100_MII:
  284. case ENET_10_MII:
  285. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  286. break;
  287. case ENET_1000_GMII:
  288. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  289. break;
  290. case ENET_1000_TBI:
  291. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  292. upsmr |= UPSMR_TBIM;
  293. break;
  294. case ENET_1000_RTBI:
  295. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  296. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  297. break;
  298. case ENET_1000_RGMII_RXID:
  299. case ENET_1000_RGMII_ID:
  300. case ENET_1000_RGMII:
  301. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  302. upsmr |= UPSMR_RPM;
  303. break;
  304. case ENET_100_RGMII:
  305. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  306. upsmr |= UPSMR_RPM;
  307. break;
  308. case ENET_10_RGMII:
  309. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  310. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  311. break;
  312. case ENET_100_RMII:
  313. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  314. upsmr |= UPSMR_RMM;
  315. break;
  316. case ENET_10_RMII:
  317. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  318. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  319. break;
  320. case ENET_1000_SGMII:
  321. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  322. upsmr |= UPSMR_SGMM;
  323. break;
  324. default:
  325. return -EINVAL;
  326. break;
  327. }
  328. out_be32(&uec_regs->maccfg2, maccfg2);
  329. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  330. return 0;
  331. }
  332. static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
  333. {
  334. uint timeout = 0x1000;
  335. u32 miimcfg = 0;
  336. miimcfg = in_be32(&uec_mii_regs->miimcfg);
  337. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  338. out_be32(&uec_mii_regs->miimcfg, miimcfg);
  339. /* Wait until the bus is free */
  340. while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  341. if (timeout <= 0) {
  342. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  343. return -ETIMEDOUT;
  344. }
  345. return 0;
  346. }
  347. static int init_phy(struct eth_device *dev)
  348. {
  349. uec_private_t *uec;
  350. uec_mii_t *umii_regs;
  351. struct uec_mii_info *mii_info;
  352. struct phy_info *curphy;
  353. int err;
  354. uec = (uec_private_t *)dev->priv;
  355. umii_regs = uec->uec_mii_regs;
  356. uec->oldlink = 0;
  357. uec->oldspeed = 0;
  358. uec->oldduplex = -1;
  359. mii_info = malloc(sizeof(*mii_info));
  360. if (!mii_info) {
  361. printf("%s: Could not allocate mii_info", dev->name);
  362. return -ENOMEM;
  363. }
  364. memset(mii_info, 0, sizeof(*mii_info));
  365. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  366. mii_info->speed = SPEED_1000;
  367. } else {
  368. mii_info->speed = SPEED_100;
  369. }
  370. mii_info->duplex = DUPLEX_FULL;
  371. mii_info->pause = 0;
  372. mii_info->link = 1;
  373. mii_info->advertising = (ADVERTISED_10baseT_Half |
  374. ADVERTISED_10baseT_Full |
  375. ADVERTISED_100baseT_Half |
  376. ADVERTISED_100baseT_Full |
  377. ADVERTISED_1000baseT_Full);
  378. mii_info->autoneg = 1;
  379. mii_info->mii_id = uec->uec_info->phy_address;
  380. mii_info->dev = dev;
  381. mii_info->mdio_read = &uec_read_phy_reg;
  382. mii_info->mdio_write = &uec_write_phy_reg;
  383. uec->mii_info = mii_info;
  384. qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
  385. if (init_mii_management_configuration(umii_regs)) {
  386. printf("%s: The MII Bus is stuck!", dev->name);
  387. err = -1;
  388. goto bus_fail;
  389. }
  390. /* get info for this PHY */
  391. curphy = uec_get_phy_info(uec->mii_info);
  392. if (!curphy) {
  393. printf("%s: No PHY found", dev->name);
  394. err = -1;
  395. goto no_phy;
  396. }
  397. mii_info->phyinfo = curphy;
  398. /* Run the commands which initialize the PHY */
  399. if (curphy->init) {
  400. err = curphy->init(uec->mii_info);
  401. if (err)
  402. goto phy_init_fail;
  403. }
  404. return 0;
  405. phy_init_fail:
  406. no_phy:
  407. bus_fail:
  408. free(mii_info);
  409. return err;
  410. }
  411. static void adjust_link(struct eth_device *dev)
  412. {
  413. uec_private_t *uec = (uec_private_t *)dev->priv;
  414. uec_t *uec_regs;
  415. struct uec_mii_info *mii_info = uec->mii_info;
  416. extern void change_phy_interface_mode(struct eth_device *dev,
  417. enet_interface_e mode);
  418. uec_regs = uec->uec_regs;
  419. if (mii_info->link) {
  420. /* Now we make sure that we can be in full duplex mode.
  421. * If not, we operate in half-duplex mode. */
  422. if (mii_info->duplex != uec->oldduplex) {
  423. if (!(mii_info->duplex)) {
  424. uec_set_mac_duplex(uec, DUPLEX_HALF);
  425. printf("%s: Half Duplex\n", dev->name);
  426. } else {
  427. uec_set_mac_duplex(uec, DUPLEX_FULL);
  428. printf("%s: Full Duplex\n", dev->name);
  429. }
  430. uec->oldduplex = mii_info->duplex;
  431. }
  432. if (mii_info->speed != uec->oldspeed) {
  433. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  434. switch (mii_info->speed) {
  435. case 1000:
  436. break;
  437. case 100:
  438. printf ("switching to rgmii 100\n");
  439. /* change phy to rgmii 100 */
  440. change_phy_interface_mode(dev,
  441. ENET_100_RGMII);
  442. /* change the MAC interface mode */
  443. uec_set_mac_if_mode(uec,ENET_100_RGMII);
  444. break;
  445. case 10:
  446. printf ("switching to rgmii 10\n");
  447. /* change phy to rgmii 10 */
  448. change_phy_interface_mode(dev,
  449. ENET_10_RGMII);
  450. /* change the MAC interface mode */
  451. uec_set_mac_if_mode(uec,ENET_10_RGMII);
  452. break;
  453. default:
  454. printf("%s: Ack,Speed(%d)is illegal\n",
  455. dev->name, mii_info->speed);
  456. break;
  457. }
  458. }
  459. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  460. uec->oldspeed = mii_info->speed;
  461. }
  462. if (!uec->oldlink) {
  463. printf("%s: Link is up\n", dev->name);
  464. uec->oldlink = 1;
  465. }
  466. } else { /* if (mii_info->link) */
  467. if (uec->oldlink) {
  468. printf("%s: Link is down\n", dev->name);
  469. uec->oldlink = 0;
  470. uec->oldspeed = 0;
  471. uec->oldduplex = -1;
  472. }
  473. }
  474. }
  475. static void phy_change(struct eth_device *dev)
  476. {
  477. uec_private_t *uec = (uec_private_t *)dev->priv;
  478. /* Update the link, speed, duplex */
  479. uec->mii_info->phyinfo->read_status(uec->mii_info);
  480. /* Adjust the interface according to speed */
  481. adjust_link(dev);
  482. }
  483. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  484. && !defined(BITBANGMII)
  485. /*
  486. * Find a device index from the devlist by name
  487. *
  488. * Returns:
  489. * The index where the device is located, -1 on error
  490. */
  491. static int uec_miiphy_find_dev_by_name(char *devname)
  492. {
  493. int i;
  494. for (i = 0; i < MAXCONTROLLERS; i++) {
  495. if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
  496. break;
  497. }
  498. }
  499. /* If device cannot be found, returns -1 */
  500. if (i == MAXCONTROLLERS) {
  501. debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
  502. i = -1;
  503. }
  504. return i;
  505. }
  506. /*
  507. * Read a MII PHY register.
  508. *
  509. * Returns:
  510. * 0 on success
  511. */
  512. static int uec_miiphy_read(char *devname, unsigned char addr,
  513. unsigned char reg, unsigned short *value)
  514. {
  515. int devindex = 0;
  516. if (devname == NULL || value == NULL) {
  517. debug("%s: NULL pointer given\n", __FUNCTION__);
  518. } else {
  519. devindex = uec_miiphy_find_dev_by_name(devname);
  520. if (devindex >= 0) {
  521. *value = uec_read_phy_reg(devlist[devindex], addr, reg);
  522. }
  523. }
  524. return 0;
  525. }
  526. /*
  527. * Write a MII PHY register.
  528. *
  529. * Returns:
  530. * 0 on success
  531. */
  532. static int uec_miiphy_write(char *devname, unsigned char addr,
  533. unsigned char reg, unsigned short value)
  534. {
  535. int devindex = 0;
  536. if (devname == NULL) {
  537. debug("%s: NULL pointer given\n", __FUNCTION__);
  538. } else {
  539. devindex = uec_miiphy_find_dev_by_name(devname);
  540. if (devindex >= 0) {
  541. uec_write_phy_reg(devlist[devindex], addr, reg, value);
  542. }
  543. }
  544. return 0;
  545. }
  546. #endif
  547. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  548. {
  549. uec_t *uec_regs;
  550. u32 mac_addr1;
  551. u32 mac_addr2;
  552. if (!uec) {
  553. printf("%s: uec not initial\n", __FUNCTION__);
  554. return -EINVAL;
  555. }
  556. uec_regs = uec->uec_regs;
  557. /* if a station address of 0x12345678ABCD, perform a write to
  558. MACSTNADDR1 of 0xCDAB7856,
  559. MACSTNADDR2 of 0x34120000 */
  560. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  561. (mac_addr[3] << 8) | (mac_addr[2]);
  562. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  563. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  564. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  565. return 0;
  566. }
  567. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  568. int *threads_num_ret)
  569. {
  570. int num_threads_numerica;
  571. switch (threads_num) {
  572. case UEC_NUM_OF_THREADS_1:
  573. num_threads_numerica = 1;
  574. break;
  575. case UEC_NUM_OF_THREADS_2:
  576. num_threads_numerica = 2;
  577. break;
  578. case UEC_NUM_OF_THREADS_4:
  579. num_threads_numerica = 4;
  580. break;
  581. case UEC_NUM_OF_THREADS_6:
  582. num_threads_numerica = 6;
  583. break;
  584. case UEC_NUM_OF_THREADS_8:
  585. num_threads_numerica = 8;
  586. break;
  587. default:
  588. printf("%s: Bad number of threads value.",
  589. __FUNCTION__);
  590. return -EINVAL;
  591. }
  592. *threads_num_ret = num_threads_numerica;
  593. return 0;
  594. }
  595. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  596. {
  597. uec_info_t *uec_info;
  598. u32 end_bd;
  599. u8 bmrx = 0;
  600. int i;
  601. uec_info = uec->uec_info;
  602. /* Alloc global Tx parameter RAM page */
  603. uec->tx_glbl_pram_offset = qe_muram_alloc(
  604. sizeof(uec_tx_global_pram_t),
  605. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  606. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  607. qe_muram_addr(uec->tx_glbl_pram_offset);
  608. /* Zero the global Tx prameter RAM */
  609. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  610. /* Init global Tx parameter RAM */
  611. /* TEMODER, RMON statistics disable, one Tx queue */
  612. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  613. /* SQPTR */
  614. uec->send_q_mem_reg_offset = qe_muram_alloc(
  615. sizeof(uec_send_queue_qd_t),
  616. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  617. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  618. qe_muram_addr(uec->send_q_mem_reg_offset);
  619. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  620. /* Setup the table with TxBDs ring */
  621. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  622. * SIZEOFBD;
  623. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  624. (u32)(uec->p_tx_bd_ring));
  625. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  626. end_bd);
  627. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  628. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  629. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  630. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  631. /* TSTATE, global snooping, big endian, the CSB bus selected */
  632. bmrx = BMR_INIT_VALUE;
  633. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  634. /* IPH_Offset */
  635. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  636. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  637. }
  638. /* VTAG table */
  639. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  640. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  641. }
  642. /* TQPTR */
  643. uec->thread_dat_tx_offset = qe_muram_alloc(
  644. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  645. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  646. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  647. qe_muram_addr(uec->thread_dat_tx_offset);
  648. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  649. }
  650. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  651. {
  652. u8 bmrx = 0;
  653. int i;
  654. uec_82xx_address_filtering_pram_t *p_af_pram;
  655. /* Allocate global Rx parameter RAM page */
  656. uec->rx_glbl_pram_offset = qe_muram_alloc(
  657. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  658. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  659. qe_muram_addr(uec->rx_glbl_pram_offset);
  660. /* Zero Global Rx parameter RAM */
  661. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  662. /* Init global Rx parameter RAM */
  663. /* REMODER, Extended feature mode disable, VLAN disable,
  664. LossLess flow control disable, Receive firmware statisic disable,
  665. Extended address parsing mode disable, One Rx queues,
  666. Dynamic maximum/minimum frame length disable, IP checksum check
  667. disable, IP address alignment disable
  668. */
  669. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  670. /* RQPTR */
  671. uec->thread_dat_rx_offset = qe_muram_alloc(
  672. num_threads_rx * sizeof(uec_thread_data_rx_t),
  673. UEC_THREAD_DATA_ALIGNMENT);
  674. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  675. qe_muram_addr(uec->thread_dat_rx_offset);
  676. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  677. /* Type_or_Len */
  678. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  679. /* RxRMON base pointer, we don't need it */
  680. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  681. /* IntCoalescingPTR, we don't need it, no interrupt */
  682. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  683. /* RSTATE, global snooping, big endian, the CSB bus selected */
  684. bmrx = BMR_INIT_VALUE;
  685. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  686. /* MRBLR */
  687. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  688. /* RBDQPTR */
  689. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  690. sizeof(uec_rx_bd_queues_entry_t) + \
  691. sizeof(uec_rx_prefetched_bds_t),
  692. UEC_RX_BD_QUEUES_ALIGNMENT);
  693. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  694. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  695. /* Zero it */
  696. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  697. sizeof(uec_rx_prefetched_bds_t));
  698. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  699. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  700. (u32)uec->p_rx_bd_ring);
  701. /* MFLR */
  702. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  703. /* MINFLR */
  704. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  705. /* MAXD1 */
  706. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  707. /* MAXD2 */
  708. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  709. /* ECAM_PTR */
  710. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  711. /* L2QT */
  712. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  713. /* L3QT */
  714. for (i = 0; i < 8; i++) {
  715. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  716. }
  717. /* VLAN_TYPE */
  718. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  719. /* TCI */
  720. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  721. /* Clear PQ2 style address filtering hash table */
  722. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  723. uec->p_rx_glbl_pram->addressfiltering;
  724. p_af_pram->iaddr_h = 0;
  725. p_af_pram->iaddr_l = 0;
  726. p_af_pram->gaddr_h = 0;
  727. p_af_pram->gaddr_l = 0;
  728. }
  729. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  730. int thread_tx, int thread_rx)
  731. {
  732. uec_init_cmd_pram_t *p_init_enet_param;
  733. u32 init_enet_param_offset;
  734. uec_info_t *uec_info;
  735. int i;
  736. int snum;
  737. u32 init_enet_offset;
  738. u32 entry_val;
  739. u32 command;
  740. u32 cecr_subblock;
  741. uec_info = uec->uec_info;
  742. /* Allocate init enet command parameter */
  743. uec->init_enet_param_offset = qe_muram_alloc(
  744. sizeof(uec_init_cmd_pram_t), 4);
  745. init_enet_param_offset = uec->init_enet_param_offset;
  746. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  747. qe_muram_addr(uec->init_enet_param_offset);
  748. /* Zero init enet command struct */
  749. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  750. /* Init the command struct */
  751. p_init_enet_param = uec->p_init_enet_param;
  752. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  753. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  754. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  755. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  756. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  757. p_init_enet_param->largestexternallookupkeysize = 0;
  758. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  759. << ENET_INIT_PARAM_RGF_SHIFT;
  760. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  761. << ENET_INIT_PARAM_TGF_SHIFT;
  762. /* Init Rx global parameter pointer */
  763. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  764. (u32)uec_info->risc_rx;
  765. /* Init Rx threads */
  766. for (i = 0; i < (thread_rx + 1); i++) {
  767. if ((snum = qe_get_snum()) < 0) {
  768. printf("%s can not get snum\n", __FUNCTION__);
  769. return -ENOMEM;
  770. }
  771. if (i==0) {
  772. init_enet_offset = 0;
  773. } else {
  774. init_enet_offset = qe_muram_alloc(
  775. sizeof(uec_thread_rx_pram_t),
  776. UEC_THREAD_RX_PRAM_ALIGNMENT);
  777. }
  778. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  779. init_enet_offset | (u32)uec_info->risc_rx;
  780. p_init_enet_param->rxthread[i] = entry_val;
  781. }
  782. /* Init Tx global parameter pointer */
  783. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  784. (u32)uec_info->risc_tx;
  785. /* Init Tx threads */
  786. for (i = 0; i < thread_tx; i++) {
  787. if ((snum = qe_get_snum()) < 0) {
  788. printf("%s can not get snum\n", __FUNCTION__);
  789. return -ENOMEM;
  790. }
  791. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  792. UEC_THREAD_TX_PRAM_ALIGNMENT);
  793. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  794. init_enet_offset | (u32)uec_info->risc_tx;
  795. p_init_enet_param->txthread[i] = entry_val;
  796. }
  797. __asm__ __volatile__("sync");
  798. /* Issue QE command */
  799. command = QE_INIT_TX_RX;
  800. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  801. uec->uec_info->uf_info.ucc_num);
  802. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  803. init_enet_param_offset);
  804. return 0;
  805. }
  806. static int uec_startup(uec_private_t *uec)
  807. {
  808. uec_info_t *uec_info;
  809. ucc_fast_info_t *uf_info;
  810. ucc_fast_private_t *uccf;
  811. ucc_fast_t *uf_regs;
  812. uec_t *uec_regs;
  813. int num_threads_tx;
  814. int num_threads_rx;
  815. u32 utbipar;
  816. enet_interface_e enet_interface;
  817. u32 length;
  818. u32 align;
  819. qe_bd_t *bd;
  820. u8 *buf;
  821. int i;
  822. if (!uec || !uec->uec_info) {
  823. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  824. return -EINVAL;
  825. }
  826. uec_info = uec->uec_info;
  827. uf_info = &(uec_info->uf_info);
  828. /* Check if Rx BD ring len is illegal */
  829. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  830. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  831. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  832. __FUNCTION__);
  833. return -EINVAL;
  834. }
  835. /* Check if Tx BD ring len is illegal */
  836. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  837. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  838. __FUNCTION__);
  839. return -EINVAL;
  840. }
  841. /* Check if MRBLR is illegal */
  842. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  843. printf("%s: max rx buffer length must be mutliple of 128.\n",
  844. __FUNCTION__);
  845. return -EINVAL;
  846. }
  847. /* Both Rx and Tx are stopped */
  848. uec->grace_stopped_rx = 1;
  849. uec->grace_stopped_tx = 1;
  850. /* Init UCC fast */
  851. if (ucc_fast_init(uf_info, &uccf)) {
  852. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  853. return -ENOMEM;
  854. }
  855. /* Save uccf */
  856. uec->uccf = uccf;
  857. /* Convert the Tx threads number */
  858. if (uec_convert_threads_num(uec_info->num_threads_tx,
  859. &num_threads_tx)) {
  860. return -EINVAL;
  861. }
  862. /* Convert the Rx threads number */
  863. if (uec_convert_threads_num(uec_info->num_threads_rx,
  864. &num_threads_rx)) {
  865. return -EINVAL;
  866. }
  867. uf_regs = uccf->uf_regs;
  868. /* UEC register is following UCC fast registers */
  869. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  870. /* Save the UEC register pointer to UEC private struct */
  871. uec->uec_regs = uec_regs;
  872. /* Init UPSMR, enable hardware statistics (UCC) */
  873. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  874. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  875. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  876. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  877. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  878. /* Setup MAC interface mode */
  879. uec_set_mac_if_mode(uec, uec_info->enet_interface);
  880. /* Setup MII management base */
  881. #ifndef CONFIG_eTSEC_MDIO_BUS
  882. uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
  883. #else
  884. uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
  885. #endif
  886. /* Setup MII master clock source */
  887. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  888. /* Setup UTBIPAR */
  889. utbipar = in_be32(&uec_regs->utbipar);
  890. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  891. enet_interface = uec->uec_info->enet_interface;
  892. /* Initialize UTBIPAR address to CONFIG_UTBIPAR_INIT_TBIPA for ALL UEC.
  893. * This frees up the remaining SMI addresses for use.
  894. */
  895. utbipar |= CONFIG_UTBIPAR_INIT_TBIPA << UTBIPAR_PHY_ADDRESS_SHIFT;
  896. out_be32(&uec_regs->utbipar, utbipar);
  897. /* Configure the TBI for SGMII operation */
  898. if (uec->uec_info->enet_interface == ENET_1000_SGMII) {
  899. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  900. ENET_TBI_MII_ANA, TBIANA_SETTINGS);
  901. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  902. ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
  903. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  904. ENET_TBI_MII_CR, TBICR_SETTINGS);
  905. }
  906. /* Allocate Tx BDs */
  907. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  908. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  909. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  910. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  911. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  912. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  913. }
  914. align = UEC_TX_BD_RING_ALIGNMENT;
  915. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  916. if (uec->tx_bd_ring_offset != 0) {
  917. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  918. & ~(align - 1));
  919. }
  920. /* Zero all of Tx BDs */
  921. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  922. /* Allocate Rx BDs */
  923. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  924. align = UEC_RX_BD_RING_ALIGNMENT;
  925. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  926. if (uec->rx_bd_ring_offset != 0) {
  927. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  928. & ~(align - 1));
  929. }
  930. /* Zero all of Rx BDs */
  931. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  932. /* Allocate Rx buffer */
  933. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  934. align = UEC_RX_DATA_BUF_ALIGNMENT;
  935. uec->rx_buf_offset = (u32)malloc(length + align);
  936. if (uec->rx_buf_offset != 0) {
  937. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  938. & ~(align - 1));
  939. }
  940. /* Zero all of the Rx buffer */
  941. memset((void *)(uec->rx_buf_offset), 0, length + align);
  942. /* Init TxBD ring */
  943. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  944. uec->txBd = bd;
  945. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  946. BD_DATA_CLEAR(bd);
  947. BD_STATUS_SET(bd, 0);
  948. BD_LENGTH_SET(bd, 0);
  949. bd ++;
  950. }
  951. BD_STATUS_SET((--bd), TxBD_WRAP);
  952. /* Init RxBD ring */
  953. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  954. uec->rxBd = bd;
  955. buf = uec->p_rx_buf;
  956. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  957. BD_DATA_SET(bd, buf);
  958. BD_LENGTH_SET(bd, 0);
  959. BD_STATUS_SET(bd, RxBD_EMPTY);
  960. buf += MAX_RXBUF_LEN;
  961. bd ++;
  962. }
  963. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  964. /* Init global Tx parameter RAM */
  965. uec_init_tx_parameter(uec, num_threads_tx);
  966. /* Init global Rx parameter RAM */
  967. uec_init_rx_parameter(uec, num_threads_rx);
  968. /* Init ethernet Tx and Rx parameter command */
  969. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  970. num_threads_rx)) {
  971. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  972. return -ENOMEM;
  973. }
  974. return 0;
  975. }
  976. static int uec_init(struct eth_device* dev, bd_t *bd)
  977. {
  978. uec_private_t *uec;
  979. int err, i;
  980. struct phy_info *curphy;
  981. uec = (uec_private_t *)dev->priv;
  982. if (uec->the_first_run == 0) {
  983. err = init_phy(dev);
  984. if (err) {
  985. printf("%s: Cannot initialize PHY, aborting.\n",
  986. dev->name);
  987. return err;
  988. }
  989. curphy = uec->mii_info->phyinfo;
  990. if (curphy->config_aneg) {
  991. err = curphy->config_aneg(uec->mii_info);
  992. if (err) {
  993. printf("%s: Can't negotiate PHY\n", dev->name);
  994. return err;
  995. }
  996. }
  997. /* Give PHYs up to 5 sec to report a link */
  998. i = 50;
  999. do {
  1000. err = curphy->read_status(uec->mii_info);
  1001. udelay(100000);
  1002. } while (((i-- > 0) && !uec->mii_info->link) || err);
  1003. if (err || i <= 0)
  1004. printf("warning: %s: timeout on PHY link\n", dev->name);
  1005. uec->the_first_run = 1;
  1006. }
  1007. /* Set up the MAC address */
  1008. if (dev->enetaddr[0] & 0x01) {
  1009. printf("%s: MacAddress is multcast address\n",
  1010. __FUNCTION__);
  1011. return -1;
  1012. }
  1013. uec_set_mac_address(uec, dev->enetaddr);
  1014. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  1015. if (err) {
  1016. printf("%s: cannot enable UEC device\n", dev->name);
  1017. return -1;
  1018. }
  1019. phy_change(dev);
  1020. return (uec->mii_info->link ? 0 : -1);
  1021. }
  1022. static void uec_halt(struct eth_device* dev)
  1023. {
  1024. uec_private_t *uec = (uec_private_t *)dev->priv;
  1025. uec_stop(uec, COMM_DIR_RX_AND_TX);
  1026. }
  1027. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  1028. {
  1029. uec_private_t *uec;
  1030. ucc_fast_private_t *uccf;
  1031. volatile qe_bd_t *bd;
  1032. u16 status;
  1033. int i;
  1034. int result = 0;
  1035. uec = (uec_private_t *)dev->priv;
  1036. uccf = uec->uccf;
  1037. bd = uec->txBd;
  1038. /* Find an empty TxBD */
  1039. for (i = 0; bd->status & TxBD_READY; i++) {
  1040. if (i > 0x100000) {
  1041. printf("%s: tx buffer not ready\n", dev->name);
  1042. return result;
  1043. }
  1044. }
  1045. /* Init TxBD */
  1046. BD_DATA_SET(bd, buf);
  1047. BD_LENGTH_SET(bd, len);
  1048. status = bd->status;
  1049. status &= BD_WRAP;
  1050. status |= (TxBD_READY | TxBD_LAST);
  1051. BD_STATUS_SET(bd, status);
  1052. /* Tell UCC to transmit the buffer */
  1053. ucc_fast_transmit_on_demand(uccf);
  1054. /* Wait for buffer to be transmitted */
  1055. for (i = 0; bd->status & TxBD_READY; i++) {
  1056. if (i > 0x100000) {
  1057. printf("%s: tx error\n", dev->name);
  1058. return result;
  1059. }
  1060. }
  1061. /* Ok, the buffer be transimitted */
  1062. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  1063. uec->txBd = bd;
  1064. result = 1;
  1065. return result;
  1066. }
  1067. static int uec_recv(struct eth_device* dev)
  1068. {
  1069. uec_private_t *uec = dev->priv;
  1070. volatile qe_bd_t *bd;
  1071. u16 status;
  1072. u16 len;
  1073. u8 *data;
  1074. bd = uec->rxBd;
  1075. status = bd->status;
  1076. while (!(status & RxBD_EMPTY)) {
  1077. if (!(status & RxBD_ERROR)) {
  1078. data = BD_DATA(bd);
  1079. len = BD_LENGTH(bd);
  1080. NetReceive(data, len);
  1081. } else {
  1082. printf("%s: Rx error\n", dev->name);
  1083. }
  1084. status &= BD_CLEAN;
  1085. BD_LENGTH_SET(bd, 0);
  1086. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  1087. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  1088. status = bd->status;
  1089. }
  1090. uec->rxBd = bd;
  1091. return 1;
  1092. }
  1093. int uec_initialize(bd_t *bis, uec_info_t *uec_info)
  1094. {
  1095. struct eth_device *dev;
  1096. int i;
  1097. uec_private_t *uec;
  1098. int err;
  1099. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1100. if (!dev)
  1101. return 0;
  1102. memset(dev, 0, sizeof(struct eth_device));
  1103. /* Allocate the UEC private struct */
  1104. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1105. if (!uec) {
  1106. return -ENOMEM;
  1107. }
  1108. memset(uec, 0, sizeof(uec_private_t));
  1109. /* Adjust uec_info */
  1110. #if (MAX_QE_RISC == 4)
  1111. uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1112. uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1113. #endif
  1114. devlist[uec_info->uf_info.ucc_num] = dev;
  1115. uec->uec_info = uec_info;
  1116. uec->dev = dev;
  1117. sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
  1118. dev->iobase = 0;
  1119. dev->priv = (void *)uec;
  1120. dev->init = uec_init;
  1121. dev->halt = uec_halt;
  1122. dev->send = uec_send;
  1123. dev->recv = uec_recv;
  1124. /* Clear the ethnet address */
  1125. for (i = 0; i < 6; i++)
  1126. dev->enetaddr[i] = 0;
  1127. eth_register(dev);
  1128. err = uec_startup(uec);
  1129. if (err) {
  1130. printf("%s: Cannot configure net device, aborting.",dev->name);
  1131. return err;
  1132. }
  1133. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  1134. && !defined(BITBANGMII)
  1135. miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
  1136. #endif
  1137. return 1;
  1138. }
  1139. int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
  1140. {
  1141. int i;
  1142. for (i = 0; i < num; i++)
  1143. uec_initialize(bis, &uecs[i]);
  1144. return 0;
  1145. }
  1146. int uec_standard_init(bd_t *bis)
  1147. {
  1148. return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
  1149. }