clock.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* Epll Clock division values to achive different frequency output */
  29. static struct set_epll_con_val exynos5_epll_div[] = {
  30. { 192000000, 0, 48, 3, 1, 0 },
  31. { 180000000, 0, 45, 3, 1, 0 },
  32. { 73728000, 1, 73, 3, 3, 47710 },
  33. { 67737600, 1, 90, 4, 3, 20762 },
  34. { 49152000, 0, 49, 3, 3, 9961 },
  35. { 45158400, 0, 45, 3, 3, 10381 },
  36. { 180633600, 0, 45, 3, 1, 10381 }
  37. };
  38. /* exynos: return pll clock frequency */
  39. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  40. {
  41. unsigned long m, p, s = 0, mask, fout;
  42. unsigned int freq;
  43. /*
  44. * APLL_CON: MIDV [25:16]
  45. * MPLL_CON: MIDV [25:16]
  46. * EPLL_CON: MIDV [24:16]
  47. * VPLL_CON: MIDV [24:16]
  48. * BPLL_CON: MIDV [25:16]: Exynos5
  49. */
  50. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  51. mask = 0x3ff;
  52. else
  53. mask = 0x1ff;
  54. m = (r >> 16) & mask;
  55. /* PDIV [13:8] */
  56. p = (r >> 8) & 0x3f;
  57. /* SDIV [2:0] */
  58. s = r & 0x7;
  59. freq = CONFIG_SYS_CLK_FREQ;
  60. if (pllreg == EPLL) {
  61. k = k & 0xffff;
  62. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  63. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  64. } else if (pllreg == VPLL) {
  65. k = k & 0xfff;
  66. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  67. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  68. } else {
  69. if (s < 1)
  70. s = 1;
  71. /* FOUT = MDIV * FIN / (PDIV * 2^(SDIV - 1)) */
  72. fout = m * (freq / (p * (1 << (s - 1))));
  73. }
  74. return fout;
  75. }
  76. /* exynos4: return pll clock frequency */
  77. static unsigned long exynos4_get_pll_clk(int pllreg)
  78. {
  79. struct exynos4_clock *clk =
  80. (struct exynos4_clock *)samsung_get_base_clock();
  81. unsigned long r, k = 0;
  82. switch (pllreg) {
  83. case APLL:
  84. r = readl(&clk->apll_con0);
  85. break;
  86. case MPLL:
  87. r = readl(&clk->mpll_con0);
  88. break;
  89. case EPLL:
  90. r = readl(&clk->epll_con0);
  91. k = readl(&clk->epll_con1);
  92. break;
  93. case VPLL:
  94. r = readl(&clk->vpll_con0);
  95. k = readl(&clk->vpll_con1);
  96. break;
  97. default:
  98. printf("Unsupported PLL (%d)\n", pllreg);
  99. return 0;
  100. }
  101. return exynos_get_pll_clk(pllreg, r, k);
  102. }
  103. /* exynos4x12: return pll clock frequency */
  104. static unsigned long exynos4x12_get_pll_clk(int pllreg)
  105. {
  106. struct exynos4x12_clock *clk =
  107. (struct exynos4x12_clock *)samsung_get_base_clock();
  108. unsigned long r, k = 0;
  109. switch (pllreg) {
  110. case APLL:
  111. r = readl(&clk->apll_con0);
  112. break;
  113. case MPLL:
  114. r = readl(&clk->mpll_con0);
  115. break;
  116. case EPLL:
  117. r = readl(&clk->epll_con0);
  118. k = readl(&clk->epll_con1);
  119. break;
  120. case VPLL:
  121. r = readl(&clk->vpll_con0);
  122. k = readl(&clk->vpll_con1);
  123. break;
  124. default:
  125. printf("Unsupported PLL (%d)\n", pllreg);
  126. return 0;
  127. }
  128. return exynos_get_pll_clk(pllreg, r, k);
  129. }
  130. /* exynos5: return pll clock frequency */
  131. static unsigned long exynos5_get_pll_clk(int pllreg)
  132. {
  133. struct exynos5_clock *clk =
  134. (struct exynos5_clock *)samsung_get_base_clock();
  135. unsigned long r, k = 0, fout;
  136. unsigned int pll_div2_sel, fout_sel;
  137. switch (pllreg) {
  138. case APLL:
  139. r = readl(&clk->apll_con0);
  140. break;
  141. case MPLL:
  142. r = readl(&clk->mpll_con0);
  143. break;
  144. case EPLL:
  145. r = readl(&clk->epll_con0);
  146. k = readl(&clk->epll_con1);
  147. break;
  148. case VPLL:
  149. r = readl(&clk->vpll_con0);
  150. k = readl(&clk->vpll_con1);
  151. break;
  152. case BPLL:
  153. r = readl(&clk->bpll_con0);
  154. break;
  155. default:
  156. printf("Unsupported PLL (%d)\n", pllreg);
  157. return 0;
  158. }
  159. fout = exynos_get_pll_clk(pllreg, r, k);
  160. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  161. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  162. if (pllreg == MPLL || pllreg == BPLL) {
  163. pll_div2_sel = readl(&clk->pll_div2_sel);
  164. switch (pllreg) {
  165. case MPLL:
  166. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  167. & MPLL_FOUT_SEL_MASK;
  168. break;
  169. case BPLL:
  170. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  171. & BPLL_FOUT_SEL_MASK;
  172. break;
  173. default:
  174. fout_sel = -1;
  175. break;
  176. }
  177. if (fout_sel == 0)
  178. fout /= 2;
  179. }
  180. return fout;
  181. }
  182. /* exynos4: return ARM clock frequency */
  183. static unsigned long exynos4_get_arm_clk(void)
  184. {
  185. struct exynos4_clock *clk =
  186. (struct exynos4_clock *)samsung_get_base_clock();
  187. unsigned long div;
  188. unsigned long armclk;
  189. unsigned int core_ratio;
  190. unsigned int core2_ratio;
  191. div = readl(&clk->div_cpu0);
  192. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  193. core_ratio = (div >> 0) & 0x7;
  194. core2_ratio = (div >> 28) & 0x7;
  195. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  196. armclk /= (core2_ratio + 1);
  197. return armclk;
  198. }
  199. /* exynos4x12: return ARM clock frequency */
  200. static unsigned long exynos4x12_get_arm_clk(void)
  201. {
  202. struct exynos4x12_clock *clk =
  203. (struct exynos4x12_clock *)samsung_get_base_clock();
  204. unsigned long div;
  205. unsigned long armclk;
  206. unsigned int core_ratio;
  207. unsigned int core2_ratio;
  208. div = readl(&clk->div_cpu0);
  209. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  210. core_ratio = (div >> 0) & 0x7;
  211. core2_ratio = (div >> 28) & 0x7;
  212. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  213. armclk /= (core2_ratio + 1);
  214. return armclk;
  215. }
  216. /* exynos5: return ARM clock frequency */
  217. static unsigned long exynos5_get_arm_clk(void)
  218. {
  219. struct exynos5_clock *clk =
  220. (struct exynos5_clock *)samsung_get_base_clock();
  221. unsigned long div;
  222. unsigned long armclk;
  223. unsigned int arm_ratio;
  224. unsigned int arm2_ratio;
  225. div = readl(&clk->div_cpu0);
  226. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  227. arm_ratio = (div >> 0) & 0x7;
  228. arm2_ratio = (div >> 28) & 0x7;
  229. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  230. armclk /= (arm2_ratio + 1);
  231. return armclk;
  232. }
  233. /* exynos4: return pwm clock frequency */
  234. static unsigned long exynos4_get_pwm_clk(void)
  235. {
  236. struct exynos4_clock *clk =
  237. (struct exynos4_clock *)samsung_get_base_clock();
  238. unsigned long pclk, sclk;
  239. unsigned int sel;
  240. unsigned int ratio;
  241. if (s5p_get_cpu_rev() == 0) {
  242. /*
  243. * CLK_SRC_PERIL0
  244. * PWM_SEL [27:24]
  245. */
  246. sel = readl(&clk->src_peril0);
  247. sel = (sel >> 24) & 0xf;
  248. if (sel == 0x6)
  249. sclk = get_pll_clk(MPLL);
  250. else if (sel == 0x7)
  251. sclk = get_pll_clk(EPLL);
  252. else if (sel == 0x8)
  253. sclk = get_pll_clk(VPLL);
  254. else
  255. return 0;
  256. /*
  257. * CLK_DIV_PERIL3
  258. * PWM_RATIO [3:0]
  259. */
  260. ratio = readl(&clk->div_peril3);
  261. ratio = ratio & 0xf;
  262. } else if (s5p_get_cpu_rev() == 1) {
  263. sclk = get_pll_clk(MPLL);
  264. ratio = 8;
  265. } else
  266. return 0;
  267. pclk = sclk / (ratio + 1);
  268. return pclk;
  269. }
  270. /* exynos4x12: return pwm clock frequency */
  271. static unsigned long exynos4x12_get_pwm_clk(void)
  272. {
  273. unsigned long pclk, sclk;
  274. unsigned int ratio;
  275. sclk = get_pll_clk(MPLL);
  276. ratio = 8;
  277. pclk = sclk / (ratio + 1);
  278. return pclk;
  279. }
  280. /* exynos5: return pwm clock frequency */
  281. static unsigned long exynos5_get_pwm_clk(void)
  282. {
  283. struct exynos5_clock *clk =
  284. (struct exynos5_clock *)samsung_get_base_clock();
  285. unsigned long pclk, sclk;
  286. unsigned int ratio;
  287. /*
  288. * CLK_DIV_PERIC3
  289. * PWM_RATIO [3:0]
  290. */
  291. ratio = readl(&clk->div_peric3);
  292. ratio = ratio & 0xf;
  293. sclk = get_pll_clk(MPLL);
  294. pclk = sclk / (ratio + 1);
  295. return pclk;
  296. }
  297. /* exynos4: return uart clock frequency */
  298. static unsigned long exynos4_get_uart_clk(int dev_index)
  299. {
  300. struct exynos4_clock *clk =
  301. (struct exynos4_clock *)samsung_get_base_clock();
  302. unsigned long uclk, sclk;
  303. unsigned int sel;
  304. unsigned int ratio;
  305. /*
  306. * CLK_SRC_PERIL0
  307. * UART0_SEL [3:0]
  308. * UART1_SEL [7:4]
  309. * UART2_SEL [8:11]
  310. * UART3_SEL [12:15]
  311. * UART4_SEL [16:19]
  312. * UART5_SEL [23:20]
  313. */
  314. sel = readl(&clk->src_peril0);
  315. sel = (sel >> (dev_index << 2)) & 0xf;
  316. if (sel == 0x6)
  317. sclk = get_pll_clk(MPLL);
  318. else if (sel == 0x7)
  319. sclk = get_pll_clk(EPLL);
  320. else if (sel == 0x8)
  321. sclk = get_pll_clk(VPLL);
  322. else
  323. return 0;
  324. /*
  325. * CLK_DIV_PERIL0
  326. * UART0_RATIO [3:0]
  327. * UART1_RATIO [7:4]
  328. * UART2_RATIO [8:11]
  329. * UART3_RATIO [12:15]
  330. * UART4_RATIO [16:19]
  331. * UART5_RATIO [23:20]
  332. */
  333. ratio = readl(&clk->div_peril0);
  334. ratio = (ratio >> (dev_index << 2)) & 0xf;
  335. uclk = sclk / (ratio + 1);
  336. return uclk;
  337. }
  338. /* exynos4x12: return uart clock frequency */
  339. static unsigned long exynos4x12_get_uart_clk(int dev_index)
  340. {
  341. struct exynos4x12_clock *clk =
  342. (struct exynos4x12_clock *)samsung_get_base_clock();
  343. unsigned long uclk, sclk;
  344. unsigned int sel;
  345. unsigned int ratio;
  346. /*
  347. * CLK_SRC_PERIL0
  348. * UART0_SEL [3:0]
  349. * UART1_SEL [7:4]
  350. * UART2_SEL [8:11]
  351. * UART3_SEL [12:15]
  352. * UART4_SEL [16:19]
  353. */
  354. sel = readl(&clk->src_peril0);
  355. sel = (sel >> (dev_index << 2)) & 0xf;
  356. if (sel == 0x6)
  357. sclk = get_pll_clk(MPLL);
  358. else if (sel == 0x7)
  359. sclk = get_pll_clk(EPLL);
  360. else if (sel == 0x8)
  361. sclk = get_pll_clk(VPLL);
  362. else
  363. return 0;
  364. /*
  365. * CLK_DIV_PERIL0
  366. * UART0_RATIO [3:0]
  367. * UART1_RATIO [7:4]
  368. * UART2_RATIO [8:11]
  369. * UART3_RATIO [12:15]
  370. * UART4_RATIO [16:19]
  371. */
  372. ratio = readl(&clk->div_peril0);
  373. ratio = (ratio >> (dev_index << 2)) & 0xf;
  374. uclk = sclk / (ratio + 1);
  375. return uclk;
  376. }
  377. /* exynos5: return uart clock frequency */
  378. static unsigned long exynos5_get_uart_clk(int dev_index)
  379. {
  380. struct exynos5_clock *clk =
  381. (struct exynos5_clock *)samsung_get_base_clock();
  382. unsigned long uclk, sclk;
  383. unsigned int sel;
  384. unsigned int ratio;
  385. /*
  386. * CLK_SRC_PERIC0
  387. * UART0_SEL [3:0]
  388. * UART1_SEL [7:4]
  389. * UART2_SEL [8:11]
  390. * UART3_SEL [12:15]
  391. * UART4_SEL [16:19]
  392. * UART5_SEL [23:20]
  393. */
  394. sel = readl(&clk->src_peric0);
  395. sel = (sel >> (dev_index << 2)) & 0xf;
  396. if (sel == 0x6)
  397. sclk = get_pll_clk(MPLL);
  398. else if (sel == 0x7)
  399. sclk = get_pll_clk(EPLL);
  400. else if (sel == 0x8)
  401. sclk = get_pll_clk(VPLL);
  402. else
  403. return 0;
  404. /*
  405. * CLK_DIV_PERIC0
  406. * UART0_RATIO [3:0]
  407. * UART1_RATIO [7:4]
  408. * UART2_RATIO [8:11]
  409. * UART3_RATIO [12:15]
  410. * UART4_RATIO [16:19]
  411. * UART5_RATIO [23:20]
  412. */
  413. ratio = readl(&clk->div_peric0);
  414. ratio = (ratio >> (dev_index << 2)) & 0xf;
  415. uclk = sclk / (ratio + 1);
  416. return uclk;
  417. }
  418. static unsigned long exynos4_get_mmc_clk(int dev_index)
  419. {
  420. struct exynos4_clock *clk =
  421. (struct exynos4_clock *)samsung_get_base_clock();
  422. unsigned long uclk, sclk;
  423. unsigned int sel, ratio, pre_ratio;
  424. int shift;
  425. sel = readl(&clk->src_fsys);
  426. sel = (sel >> (dev_index << 2)) & 0xf;
  427. if (sel == 0x6)
  428. sclk = get_pll_clk(MPLL);
  429. else if (sel == 0x7)
  430. sclk = get_pll_clk(EPLL);
  431. else if (sel == 0x8)
  432. sclk = get_pll_clk(VPLL);
  433. else
  434. return 0;
  435. switch (dev_index) {
  436. case 0:
  437. case 1:
  438. ratio = readl(&clk->div_fsys1);
  439. pre_ratio = readl(&clk->div_fsys1);
  440. break;
  441. case 2:
  442. case 3:
  443. ratio = readl(&clk->div_fsys2);
  444. pre_ratio = readl(&clk->div_fsys2);
  445. break;
  446. case 4:
  447. ratio = readl(&clk->div_fsys3);
  448. pre_ratio = readl(&clk->div_fsys3);
  449. break;
  450. default:
  451. return 0;
  452. }
  453. if (dev_index == 1 || dev_index == 3)
  454. shift = 16;
  455. ratio = (ratio >> shift) & 0xf;
  456. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  457. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  458. return uclk;
  459. }
  460. static unsigned long exynos5_get_mmc_clk(int dev_index)
  461. {
  462. struct exynos5_clock *clk =
  463. (struct exynos5_clock *)samsung_get_base_clock();
  464. unsigned long uclk, sclk;
  465. unsigned int sel, ratio, pre_ratio;
  466. int shift;
  467. sel = readl(&clk->src_fsys);
  468. sel = (sel >> (dev_index << 2)) & 0xf;
  469. if (sel == 0x6)
  470. sclk = get_pll_clk(MPLL);
  471. else if (sel == 0x7)
  472. sclk = get_pll_clk(EPLL);
  473. else if (sel == 0x8)
  474. sclk = get_pll_clk(VPLL);
  475. else
  476. return 0;
  477. switch (dev_index) {
  478. case 0:
  479. case 1:
  480. ratio = readl(&clk->div_fsys1);
  481. pre_ratio = readl(&clk->div_fsys1);
  482. break;
  483. case 2:
  484. case 3:
  485. ratio = readl(&clk->div_fsys2);
  486. pre_ratio = readl(&clk->div_fsys2);
  487. break;
  488. default:
  489. return 0;
  490. }
  491. if (dev_index == 1 || dev_index == 3)
  492. shift = 16;
  493. ratio = (ratio >> shift) & 0xf;
  494. pre_ratio = (pre_ratio >> (shift + 8)) & 0xff;
  495. uclk = (sclk / (ratio + 1)) / (pre_ratio + 1);
  496. return uclk;
  497. }
  498. /* exynos4: set the mmc clock */
  499. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  500. {
  501. struct exynos4_clock *clk =
  502. (struct exynos4_clock *)samsung_get_base_clock();
  503. unsigned int addr;
  504. unsigned int val;
  505. /*
  506. * CLK_DIV_FSYS1
  507. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  508. * CLK_DIV_FSYS2
  509. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  510. */
  511. if (dev_index < 2) {
  512. addr = (unsigned int)&clk->div_fsys1;
  513. } else {
  514. addr = (unsigned int)&clk->div_fsys2;
  515. dev_index -= 2;
  516. }
  517. val = readl(addr);
  518. val &= ~(0xff << ((dev_index << 4) + 8));
  519. val |= (div & 0xff) << ((dev_index << 4) + 8);
  520. writel(val, addr);
  521. }
  522. /* exynos4x12: set the mmc clock */
  523. static void exynos4x12_set_mmc_clk(int dev_index, unsigned int div)
  524. {
  525. struct exynos4x12_clock *clk =
  526. (struct exynos4x12_clock *)samsung_get_base_clock();
  527. unsigned int addr;
  528. unsigned int val;
  529. /*
  530. * CLK_DIV_FSYS1
  531. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  532. * CLK_DIV_FSYS2
  533. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  534. */
  535. if (dev_index < 2) {
  536. addr = (unsigned int)&clk->div_fsys1;
  537. } else {
  538. addr = (unsigned int)&clk->div_fsys2;
  539. dev_index -= 2;
  540. }
  541. val = readl(addr);
  542. val &= ~(0xff << ((dev_index << 4) + 8));
  543. val |= (div & 0xff) << ((dev_index << 4) + 8);
  544. writel(val, addr);
  545. }
  546. /* exynos5: set the mmc clock */
  547. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  548. {
  549. struct exynos5_clock *clk =
  550. (struct exynos5_clock *)samsung_get_base_clock();
  551. unsigned int addr;
  552. unsigned int val;
  553. /*
  554. * CLK_DIV_FSYS1
  555. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  556. * CLK_DIV_FSYS2
  557. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  558. */
  559. if (dev_index < 2) {
  560. addr = (unsigned int)&clk->div_fsys1;
  561. } else {
  562. addr = (unsigned int)&clk->div_fsys2;
  563. dev_index -= 2;
  564. }
  565. val = readl(addr);
  566. val &= ~(0xff << ((dev_index << 4) + 8));
  567. val |= (div & 0xff) << ((dev_index << 4) + 8);
  568. writel(val, addr);
  569. }
  570. /* get_lcd_clk: return lcd clock frequency */
  571. static unsigned long exynos4_get_lcd_clk(void)
  572. {
  573. struct exynos4_clock *clk =
  574. (struct exynos4_clock *)samsung_get_base_clock();
  575. unsigned long pclk, sclk;
  576. unsigned int sel;
  577. unsigned int ratio;
  578. /*
  579. * CLK_SRC_LCD0
  580. * FIMD0_SEL [3:0]
  581. */
  582. sel = readl(&clk->src_lcd0);
  583. sel = sel & 0xf;
  584. /*
  585. * 0x6: SCLK_MPLL
  586. * 0x7: SCLK_EPLL
  587. * 0x8: SCLK_VPLL
  588. */
  589. if (sel == 0x6)
  590. sclk = get_pll_clk(MPLL);
  591. else if (sel == 0x7)
  592. sclk = get_pll_clk(EPLL);
  593. else if (sel == 0x8)
  594. sclk = get_pll_clk(VPLL);
  595. else
  596. return 0;
  597. /*
  598. * CLK_DIV_LCD0
  599. * FIMD0_RATIO [3:0]
  600. */
  601. ratio = readl(&clk->div_lcd0);
  602. ratio = ratio & 0xf;
  603. pclk = sclk / (ratio + 1);
  604. return pclk;
  605. }
  606. /* get_lcd_clk: return lcd clock frequency */
  607. static unsigned long exynos5_get_lcd_clk(void)
  608. {
  609. struct exynos5_clock *clk =
  610. (struct exynos5_clock *)samsung_get_base_clock();
  611. unsigned long pclk, sclk;
  612. unsigned int sel;
  613. unsigned int ratio;
  614. /*
  615. * CLK_SRC_LCD0
  616. * FIMD0_SEL [3:0]
  617. */
  618. sel = readl(&clk->src_disp1_0);
  619. sel = sel & 0xf;
  620. /*
  621. * 0x6: SCLK_MPLL
  622. * 0x7: SCLK_EPLL
  623. * 0x8: SCLK_VPLL
  624. */
  625. if (sel == 0x6)
  626. sclk = get_pll_clk(MPLL);
  627. else if (sel == 0x7)
  628. sclk = get_pll_clk(EPLL);
  629. else if (sel == 0x8)
  630. sclk = get_pll_clk(VPLL);
  631. else
  632. return 0;
  633. /*
  634. * CLK_DIV_LCD0
  635. * FIMD0_RATIO [3:0]
  636. */
  637. ratio = readl(&clk->div_disp1_0);
  638. ratio = ratio & 0xf;
  639. pclk = sclk / (ratio + 1);
  640. return pclk;
  641. }
  642. void exynos4_set_lcd_clk(void)
  643. {
  644. struct exynos4_clock *clk =
  645. (struct exynos4_clock *)samsung_get_base_clock();
  646. unsigned int cfg = 0;
  647. /*
  648. * CLK_GATE_BLOCK
  649. * CLK_CAM [0]
  650. * CLK_TV [1]
  651. * CLK_MFC [2]
  652. * CLK_G3D [3]
  653. * CLK_LCD0 [4]
  654. * CLK_LCD1 [5]
  655. * CLK_GPS [7]
  656. */
  657. cfg = readl(&clk->gate_block);
  658. cfg |= 1 << 4;
  659. writel(cfg, &clk->gate_block);
  660. /*
  661. * CLK_SRC_LCD0
  662. * FIMD0_SEL [3:0]
  663. * MDNIE0_SEL [7:4]
  664. * MDNIE_PWM0_SEL [8:11]
  665. * MIPI0_SEL [12:15]
  666. * set lcd0 src clock 0x6: SCLK_MPLL
  667. */
  668. cfg = readl(&clk->src_lcd0);
  669. cfg &= ~(0xf);
  670. cfg |= 0x6;
  671. writel(cfg, &clk->src_lcd0);
  672. /*
  673. * CLK_GATE_IP_LCD0
  674. * CLK_FIMD0 [0]
  675. * CLK_MIE0 [1]
  676. * CLK_MDNIE0 [2]
  677. * CLK_DSIM0 [3]
  678. * CLK_SMMUFIMD0 [4]
  679. * CLK_PPMULCD0 [5]
  680. * Gating all clocks for FIMD0
  681. */
  682. cfg = readl(&clk->gate_ip_lcd0);
  683. cfg |= 1 << 0;
  684. writel(cfg, &clk->gate_ip_lcd0);
  685. /*
  686. * CLK_DIV_LCD0
  687. * FIMD0_RATIO [3:0]
  688. * MDNIE0_RATIO [7:4]
  689. * MDNIE_PWM0_RATIO [11:8]
  690. * MDNIE_PWM_PRE_RATIO [15:12]
  691. * MIPI0_RATIO [19:16]
  692. * MIPI0_PRE_RATIO [23:20]
  693. * set fimd ratio
  694. */
  695. cfg &= ~(0xf);
  696. cfg |= 0x1;
  697. writel(cfg, &clk->div_lcd0);
  698. }
  699. void exynos5_set_lcd_clk(void)
  700. {
  701. struct exynos5_clock *clk =
  702. (struct exynos5_clock *)samsung_get_base_clock();
  703. unsigned int cfg = 0;
  704. /*
  705. * CLK_GATE_BLOCK
  706. * CLK_CAM [0]
  707. * CLK_TV [1]
  708. * CLK_MFC [2]
  709. * CLK_G3D [3]
  710. * CLK_LCD0 [4]
  711. * CLK_LCD1 [5]
  712. * CLK_GPS [7]
  713. */
  714. cfg = readl(&clk->gate_block);
  715. cfg |= 1 << 4;
  716. writel(cfg, &clk->gate_block);
  717. /*
  718. * CLK_SRC_LCD0
  719. * FIMD0_SEL [3:0]
  720. * MDNIE0_SEL [7:4]
  721. * MDNIE_PWM0_SEL [8:11]
  722. * MIPI0_SEL [12:15]
  723. * set lcd0 src clock 0x6: SCLK_MPLL
  724. */
  725. cfg = readl(&clk->src_disp1_0);
  726. cfg &= ~(0xf);
  727. cfg |= 0x6;
  728. writel(cfg, &clk->src_disp1_0);
  729. /*
  730. * CLK_GATE_IP_LCD0
  731. * CLK_FIMD0 [0]
  732. * CLK_MIE0 [1]
  733. * CLK_MDNIE0 [2]
  734. * CLK_DSIM0 [3]
  735. * CLK_SMMUFIMD0 [4]
  736. * CLK_PPMULCD0 [5]
  737. * Gating all clocks for FIMD0
  738. */
  739. cfg = readl(&clk->gate_ip_disp1);
  740. cfg |= 1 << 0;
  741. writel(cfg, &clk->gate_ip_disp1);
  742. /*
  743. * CLK_DIV_LCD0
  744. * FIMD0_RATIO [3:0]
  745. * MDNIE0_RATIO [7:4]
  746. * MDNIE_PWM0_RATIO [11:8]
  747. * MDNIE_PWM_PRE_RATIO [15:12]
  748. * MIPI0_RATIO [19:16]
  749. * MIPI0_PRE_RATIO [23:20]
  750. * set fimd ratio
  751. */
  752. cfg &= ~(0xf);
  753. cfg |= 0x0;
  754. writel(cfg, &clk->div_disp1_0);
  755. }
  756. void exynos4_set_mipi_clk(void)
  757. {
  758. struct exynos4_clock *clk =
  759. (struct exynos4_clock *)samsung_get_base_clock();
  760. unsigned int cfg = 0;
  761. /*
  762. * CLK_SRC_LCD0
  763. * FIMD0_SEL [3:0]
  764. * MDNIE0_SEL [7:4]
  765. * MDNIE_PWM0_SEL [8:11]
  766. * MIPI0_SEL [12:15]
  767. * set mipi0 src clock 0x6: SCLK_MPLL
  768. */
  769. cfg = readl(&clk->src_lcd0);
  770. cfg &= ~(0xf << 12);
  771. cfg |= (0x6 << 12);
  772. writel(cfg, &clk->src_lcd0);
  773. /*
  774. * CLK_SRC_MASK_LCD0
  775. * FIMD0_MASK [0]
  776. * MDNIE0_MASK [4]
  777. * MDNIE_PWM0_MASK [8]
  778. * MIPI0_MASK [12]
  779. * set src mask mipi0 0x1: Unmask
  780. */
  781. cfg = readl(&clk->src_mask_lcd0);
  782. cfg |= (0x1 << 12);
  783. writel(cfg, &clk->src_mask_lcd0);
  784. /*
  785. * CLK_GATE_IP_LCD0
  786. * CLK_FIMD0 [0]
  787. * CLK_MIE0 [1]
  788. * CLK_MDNIE0 [2]
  789. * CLK_DSIM0 [3]
  790. * CLK_SMMUFIMD0 [4]
  791. * CLK_PPMULCD0 [5]
  792. * Gating all clocks for MIPI0
  793. */
  794. cfg = readl(&clk->gate_ip_lcd0);
  795. cfg |= 1 << 3;
  796. writel(cfg, &clk->gate_ip_lcd0);
  797. /*
  798. * CLK_DIV_LCD0
  799. * FIMD0_RATIO [3:0]
  800. * MDNIE0_RATIO [7:4]
  801. * MDNIE_PWM0_RATIO [11:8]
  802. * MDNIE_PWM_PRE_RATIO [15:12]
  803. * MIPI0_RATIO [19:16]
  804. * MIPI0_PRE_RATIO [23:20]
  805. * set mipi ratio
  806. */
  807. cfg &= ~(0xf << 16);
  808. cfg |= (0x1 << 16);
  809. writel(cfg, &clk->div_lcd0);
  810. }
  811. /*
  812. * I2C
  813. *
  814. * exynos5: obtaining the I2C clock
  815. */
  816. static unsigned long exynos5_get_i2c_clk(void)
  817. {
  818. struct exynos5_clock *clk =
  819. (struct exynos5_clock *)samsung_get_base_clock();
  820. unsigned long aclk_66, aclk_66_pre, sclk;
  821. unsigned int ratio;
  822. sclk = get_pll_clk(MPLL);
  823. ratio = (readl(&clk->div_top1)) >> 24;
  824. ratio &= 0x7;
  825. aclk_66_pre = sclk / (ratio + 1);
  826. ratio = readl(&clk->div_top0);
  827. ratio &= 0x7;
  828. aclk_66 = aclk_66_pre / (ratio + 1);
  829. return aclk_66;
  830. }
  831. int exynos5_set_epll_clk(unsigned long rate)
  832. {
  833. unsigned int epll_con, epll_con_k;
  834. unsigned int i;
  835. unsigned int lockcnt;
  836. unsigned int start;
  837. struct exynos5_clock *clk =
  838. (struct exynos5_clock *)samsung_get_base_clock();
  839. epll_con = readl(&clk->epll_con0);
  840. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  841. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  842. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  843. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  844. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  845. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  846. if (exynos5_epll_div[i].freq_out == rate)
  847. break;
  848. }
  849. if (i == ARRAY_SIZE(exynos5_epll_div))
  850. return -1;
  851. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  852. epll_con |= exynos5_epll_div[i].en_lock_det <<
  853. EPLL_CON0_LOCK_DET_EN_SHIFT;
  854. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  855. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  856. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  857. /*
  858. * Required period ( in cycles) to genarate a stable clock output.
  859. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  860. * frequency input (as per spec)
  861. */
  862. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  863. writel(lockcnt, &clk->epll_lock);
  864. writel(epll_con, &clk->epll_con0);
  865. writel(epll_con_k, &clk->epll_con1);
  866. start = get_timer(0);
  867. while (!(readl(&clk->epll_con0) &
  868. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  869. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  870. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  871. return -1;
  872. }
  873. }
  874. return 0;
  875. }
  876. void exynos5_set_i2s_clk_source(void)
  877. {
  878. struct exynos5_clock *clk =
  879. (struct exynos5_clock *)samsung_get_base_clock();
  880. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  881. (CLK_SRC_SCLK_EPLL));
  882. }
  883. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  884. unsigned int dst_frq)
  885. {
  886. struct exynos5_clock *clk =
  887. (struct exynos5_clock *)samsung_get_base_clock();
  888. unsigned int div;
  889. if ((dst_frq == 0) || (src_frq == 0)) {
  890. debug("%s: Invalid requency input for prescaler\n", __func__);
  891. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  892. return -1;
  893. }
  894. div = (src_frq / dst_frq);
  895. if (div > AUDIO_1_RATIO_MASK) {
  896. debug("%s: Frequency ratio is out of range\n", __func__);
  897. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  898. return -1;
  899. }
  900. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  901. (div & AUDIO_1_RATIO_MASK));
  902. return 0;
  903. }
  904. /**
  905. * Linearly searches for the most accurate main and fine stage clock scalars
  906. * (divisors) for a specified target frequency and scalar bit sizes by checking
  907. * all multiples of main_scalar_bits values. Will always return scalars up to or
  908. * slower than target.
  909. *
  910. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  911. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  912. * @param input_freq Clock frequency to be scaled in Hz
  913. * @param target_freq Desired clock frequency in Hz
  914. * @param best_fine_scalar Pointer to store the fine stage divisor
  915. *
  916. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  917. * found
  918. */
  919. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  920. unsigned int fine_scalar_bits, unsigned int input_rate,
  921. unsigned int target_rate, unsigned int *best_fine_scalar)
  922. {
  923. int i;
  924. int best_main_scalar = -1;
  925. unsigned int best_error = target_rate;
  926. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  927. const unsigned int loops = 1 << main_scaler_bits;
  928. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  929. target_rate, cap);
  930. assert(best_fine_scalar != NULL);
  931. assert(main_scaler_bits <= fine_scalar_bits);
  932. *best_fine_scalar = 1;
  933. if (input_rate == 0 || target_rate == 0)
  934. return -1;
  935. if (target_rate >= input_rate)
  936. return 1;
  937. for (i = 1; i <= loops; i++) {
  938. const unsigned int effective_div = max(min(input_rate / i /
  939. target_rate, cap), 1);
  940. const unsigned int effective_rate = input_rate / i /
  941. effective_div;
  942. const int error = target_rate - effective_rate;
  943. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  944. effective_rate, error);
  945. if (error >= 0 && error <= best_error) {
  946. best_error = error;
  947. best_main_scalar = i;
  948. *best_fine_scalar = effective_div;
  949. }
  950. }
  951. return best_main_scalar;
  952. }
  953. static int exynos5_set_spi_clk(enum periph_id periph_id,
  954. unsigned int rate)
  955. {
  956. struct exynos5_clock *clk =
  957. (struct exynos5_clock *)samsung_get_base_clock();
  958. int main;
  959. unsigned int fine;
  960. unsigned shift, pre_shift;
  961. unsigned mask = 0xff;
  962. u32 *reg;
  963. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  964. if (main < 0) {
  965. debug("%s: Cannot set clock rate for periph %d",
  966. __func__, periph_id);
  967. return -1;
  968. }
  969. main = main - 1;
  970. fine = fine - 1;
  971. switch (periph_id) {
  972. case PERIPH_ID_SPI0:
  973. reg = &clk->div_peric1;
  974. shift = 0;
  975. pre_shift = 8;
  976. break;
  977. case PERIPH_ID_SPI1:
  978. reg = &clk->div_peric1;
  979. shift = 16;
  980. pre_shift = 24;
  981. break;
  982. case PERIPH_ID_SPI2:
  983. reg = &clk->div_peric2;
  984. shift = 0;
  985. pre_shift = 8;
  986. break;
  987. case PERIPH_ID_SPI3:
  988. reg = &clk->sclk_div_isp;
  989. shift = 0;
  990. pre_shift = 4;
  991. break;
  992. case PERIPH_ID_SPI4:
  993. reg = &clk->sclk_div_isp;
  994. shift = 12;
  995. pre_shift = 16;
  996. break;
  997. default:
  998. debug("%s: Unsupported peripheral ID %d\n", __func__,
  999. periph_id);
  1000. return -1;
  1001. }
  1002. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  1003. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  1004. return 0;
  1005. }
  1006. static unsigned long exynos4_get_i2c_clk(void)
  1007. {
  1008. struct exynos4_clock *clk =
  1009. (struct exynos4_clock *)samsung_get_base_clock();
  1010. unsigned long sclk, aclk_100;
  1011. unsigned int ratio;
  1012. sclk = get_pll_clk(APLL);
  1013. ratio = (readl(&clk->div_top)) >> 4;
  1014. ratio &= 0xf;
  1015. aclk_100 = sclk / (ratio + 1);
  1016. return aclk_100;
  1017. }
  1018. unsigned long get_pll_clk(int pllreg)
  1019. {
  1020. if (cpu_is_exynos5())
  1021. return exynos5_get_pll_clk(pllreg);
  1022. else {
  1023. if (proid_is_exynos4412())
  1024. return exynos4x12_get_pll_clk(pllreg);
  1025. return exynos4_get_pll_clk(pllreg);
  1026. }
  1027. }
  1028. unsigned long get_arm_clk(void)
  1029. {
  1030. if (cpu_is_exynos5())
  1031. return exynos5_get_arm_clk();
  1032. else {
  1033. if (proid_is_exynos4412())
  1034. return exynos4x12_get_arm_clk();
  1035. return exynos4_get_arm_clk();
  1036. }
  1037. }
  1038. unsigned long get_i2c_clk(void)
  1039. {
  1040. if (cpu_is_exynos5()) {
  1041. return exynos5_get_i2c_clk();
  1042. } else if (cpu_is_exynos4()) {
  1043. return exynos4_get_i2c_clk();
  1044. } else {
  1045. debug("I2C clock is not set for this CPU\n");
  1046. return 0;
  1047. }
  1048. }
  1049. unsigned long get_pwm_clk(void)
  1050. {
  1051. if (cpu_is_exynos5())
  1052. return exynos5_get_pwm_clk();
  1053. else {
  1054. if (proid_is_exynos4412())
  1055. return exynos4x12_get_pwm_clk();
  1056. return exynos4_get_pwm_clk();
  1057. }
  1058. }
  1059. unsigned long get_uart_clk(int dev_index)
  1060. {
  1061. if (cpu_is_exynos5())
  1062. return exynos5_get_uart_clk(dev_index);
  1063. else {
  1064. if (proid_is_exynos4412())
  1065. return exynos4x12_get_uart_clk(dev_index);
  1066. return exynos4_get_uart_clk(dev_index);
  1067. }
  1068. }
  1069. unsigned long get_mmc_clk(int dev_index)
  1070. {
  1071. if (cpu_is_exynos5())
  1072. return exynos5_get_mmc_clk(dev_index);
  1073. else
  1074. return exynos4_get_mmc_clk(dev_index);
  1075. }
  1076. void set_mmc_clk(int dev_index, unsigned int div)
  1077. {
  1078. if (cpu_is_exynos5())
  1079. exynos5_set_mmc_clk(dev_index, div);
  1080. else {
  1081. if (proid_is_exynos4412())
  1082. exynos4x12_set_mmc_clk(dev_index, div);
  1083. exynos4_set_mmc_clk(dev_index, div);
  1084. }
  1085. }
  1086. unsigned long get_lcd_clk(void)
  1087. {
  1088. if (cpu_is_exynos4())
  1089. return exynos4_get_lcd_clk();
  1090. else
  1091. return exynos5_get_lcd_clk();
  1092. }
  1093. void set_lcd_clk(void)
  1094. {
  1095. if (cpu_is_exynos4())
  1096. exynos4_set_lcd_clk();
  1097. else
  1098. exynos5_set_lcd_clk();
  1099. }
  1100. void set_mipi_clk(void)
  1101. {
  1102. if (cpu_is_exynos4())
  1103. exynos4_set_mipi_clk();
  1104. }
  1105. int set_spi_clk(int periph_id, unsigned int rate)
  1106. {
  1107. if (cpu_is_exynos5())
  1108. return exynos5_set_spi_clk(periph_id, rate);
  1109. else
  1110. return 0;
  1111. }
  1112. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  1113. {
  1114. if (cpu_is_exynos5())
  1115. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  1116. else
  1117. return 0;
  1118. }
  1119. void set_i2s_clk_source(void)
  1120. {
  1121. if (cpu_is_exynos5())
  1122. exynos5_set_i2s_clk_source();
  1123. }
  1124. int set_epll_clk(unsigned long rate)
  1125. {
  1126. if (cpu_is_exynos5())
  1127. return exynos5_set_epll_clk(rate);
  1128. else
  1129. return 0;
  1130. }