spd_sdram.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912
  1. /*
  2. * (C) Copyright 2006 Freescale Semiconductor, Inc.
  3. *
  4. * (C) Copyright 2006
  5. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  6. *
  7. * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
  8. * (C) Copyright 2003 Motorola Inc.
  9. * Xianghua Xiao (X.Xiao@motorola.com)
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. */
  29. #include <common.h>
  30. #include <asm/processor.h>
  31. #include <i2c.h>
  32. #include <spd.h>
  33. #include <asm/mmu.h>
  34. #include <spd_sdram.h>
  35. void board_add_ram_info(int use_default)
  36. {
  37. volatile immap_t *immap = (immap_t *) CFG_IMMR;
  38. volatile ddr83xx_t *ddr = &immap->ddr;
  39. printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
  40. >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);
  41. if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
  42. puts(", 32-bit");
  43. else
  44. puts(", 64-bit");
  45. if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
  46. puts(", ECC on)");
  47. else
  48. puts(", ECC off)");
  49. #if defined(CFG_LB_SDRAM) && defined(CFG_LBC_SDRAM_SIZE)
  50. puts("\nSDRAM: ");
  51. print_size (CFG_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
  52. #endif
  53. }
  54. #ifdef CONFIG_SPD_EEPROM
  55. DECLARE_GLOBAL_DATA_PTR;
  56. #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
  57. extern void dma_init(void);
  58. extern uint dma_check(void);
  59. extern int dma_xfer(void *dest, uint count, void *src);
  60. #endif
  61. #ifndef CFG_READ_SPD
  62. #define CFG_READ_SPD i2c_read
  63. #endif
  64. /*
  65. * Convert picoseconds into clock cycles (rounding up if needed).
  66. */
  67. int
  68. picos_to_clk(int picos)
  69. {
  70. unsigned int ddr_bus_clk;
  71. int clks;
  72. ddr_bus_clk = gd->ddr_clk >> 1;
  73. clks = picos / (1000000000 / (ddr_bus_clk / 1000));
  74. if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0)
  75. clks++;
  76. return clks;
  77. }
  78. unsigned int banksize(unsigned char row_dens)
  79. {
  80. return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
  81. }
  82. int read_spd(uint addr)
  83. {
  84. return ((int) addr);
  85. }
  86. #undef SPD_DEBUG
  87. #ifdef SPD_DEBUG
  88. static void spd_debug(spd_eeprom_t *spd)
  89. {
  90. printf ("\nDIMM type: %-18.18s\n", spd->mpart);
  91. printf ("SPD size: %d\n", spd->info_size);
  92. printf ("EEPROM size: %d\n", 1 << spd->chip_size);
  93. printf ("Memory type: %d\n", spd->mem_type);
  94. printf ("Row addr: %d\n", spd->nrow_addr);
  95. printf ("Column addr: %d\n", spd->ncol_addr);
  96. printf ("# of rows: %d\n", spd->nrows);
  97. printf ("Row density: %d\n", spd->row_dens);
  98. printf ("# of banks: %d\n", spd->nbanks);
  99. printf ("Data width: %d\n",
  100. 256 * spd->dataw_msb + spd->dataw_lsb);
  101. printf ("Chip width: %d\n", spd->primw);
  102. printf ("Refresh rate: %02X\n", spd->refresh);
  103. printf ("CAS latencies: %02X\n", spd->cas_lat);
  104. printf ("Write latencies: %02X\n", spd->write_lat);
  105. printf ("tRP: %d\n", spd->trp);
  106. printf ("tRCD: %d\n", spd->trcd);
  107. printf ("\n");
  108. }
  109. #endif /* SPD_DEBUG */
  110. long int spd_sdram()
  111. {
  112. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  113. volatile ddr83xx_t *ddr = &immap->ddr;
  114. volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
  115. spd_eeprom_t spd;
  116. unsigned int n_ranks;
  117. unsigned int odt_rd_cfg, odt_wr_cfg;
  118. unsigned char twr_clk, twtr_clk;
  119. unsigned int sdram_type;
  120. unsigned int memsize;
  121. unsigned int law_size;
  122. unsigned char caslat, caslat_ctrl;
  123. unsigned int trfc, trfc_clk, trfc_low, trfc_high;
  124. unsigned int trcd_clk, trtp_clk;
  125. unsigned char cke_min_clk;
  126. unsigned char add_lat, wr_lat;
  127. unsigned char wr_data_delay;
  128. unsigned char four_act;
  129. unsigned char cpo;
  130. unsigned char burstlen;
  131. unsigned char odt_cfg, mode_odt_enable;
  132. unsigned int max_bus_clk;
  133. unsigned int max_data_rate, effective_data_rate;
  134. unsigned int ddrc_clk;
  135. unsigned int refresh_clk;
  136. unsigned int sdram_cfg;
  137. unsigned int ddrc_ecc_enable;
  138. unsigned int pvr = get_pvr();
  139. /* Read SPD parameters with I2C */
  140. CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
  141. #ifdef SPD_DEBUG
  142. spd_debug(&spd);
  143. #endif
  144. /* Check the memory type */
  145. if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
  146. debug("DDR: Module mem type is %02X\n", spd.mem_type);
  147. return 0;
  148. }
  149. /* Check the number of physical bank */
  150. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  151. n_ranks = spd.nrows;
  152. } else {
  153. n_ranks = (spd.nrows & 0x7) + 1;
  154. }
  155. if (n_ranks > 2) {
  156. printf("DDR: The number of physical bank is %02X\n", n_ranks);
  157. return 0;
  158. }
  159. /* Check if the number of row of the module is in the range of DDRC */
  160. if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
  161. printf("DDR: Row number is out of range of DDRC, row=%02X\n",
  162. spd.nrow_addr);
  163. return 0;
  164. }
  165. /* Check if the number of col of the module is in the range of DDRC */
  166. if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
  167. printf("DDR: Col number is out of range of DDRC, col=%02X\n",
  168. spd.ncol_addr);
  169. return 0;
  170. }
  171. #ifdef CFG_DDRCDR_VALUE
  172. /*
  173. * Adjust DDR II IO voltage biasing. It just makes it work.
  174. */
  175. if(spd.mem_type == SPD_MEMTYPE_DDR2) {
  176. immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE;
  177. }
  178. #endif
  179. /*
  180. * ODT configuration recommendation from DDR Controller Chapter.
  181. */
  182. odt_rd_cfg = 0; /* Never assert ODT */
  183. odt_wr_cfg = 0; /* Never assert ODT */
  184. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  185. odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
  186. }
  187. /* Setup DDR chip select register */
  188. #ifdef CFG_83XX_DDR_USES_CS0
  189. ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
  190. ddr->cs_config[0] = ( 1 << 31
  191. | (odt_rd_cfg << 20)
  192. | (odt_wr_cfg << 16)
  193. | (spd.nrow_addr - 12) << 8
  194. | (spd.ncol_addr - 8) );
  195. debug("\n");
  196. debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
  197. debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
  198. if (n_ranks == 2) {
  199. ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
  200. | ((banksize(spd.row_dens) >> 23) - 1) );
  201. ddr->cs_config[1] = ( 1<<31
  202. | (odt_rd_cfg << 20)
  203. | (odt_wr_cfg << 16)
  204. | (spd.nrow_addr-12) << 8
  205. | (spd.ncol_addr-8) );
  206. debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
  207. debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
  208. }
  209. #else
  210. ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
  211. ddr->cs_config[2] = ( 1 << 31
  212. | (odt_rd_cfg << 20)
  213. | (odt_wr_cfg << 16)
  214. | (spd.nrow_addr - 12) << 8
  215. | (spd.ncol_addr - 8) );
  216. debug("\n");
  217. debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
  218. debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
  219. if (n_ranks == 2) {
  220. ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
  221. | ((banksize(spd.row_dens) >> 23) - 1) );
  222. ddr->cs_config[3] = ( 1<<31
  223. | (odt_rd_cfg << 20)
  224. | (odt_wr_cfg << 16)
  225. | (spd.nrow_addr-12) << 8
  226. | (spd.ncol_addr-8) );
  227. debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
  228. debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
  229. }
  230. #endif
  231. /*
  232. * Figure out memory size in Megabytes.
  233. */
  234. memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
  235. /*
  236. * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
  237. */
  238. law_size = 19 + __ilog2(memsize);
  239. /*
  240. * Set up LAWBAR for all of DDR.
  241. */
  242. ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
  243. ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
  244. debug("DDR:bar=0x%08x\n", ecm->bar);
  245. debug("DDR:ar=0x%08x\n", ecm->ar);
  246. /*
  247. * Find the largest CAS by locating the highest 1 bit
  248. * in the spd.cas_lat field. Translate it to a DDR
  249. * controller field value:
  250. *
  251. * CAS Lat DDR I DDR II Ctrl
  252. * Clocks SPD Bit SPD Bit Value
  253. * ------- ------- ------- -----
  254. * 1.0 0 0001
  255. * 1.5 1 0010
  256. * 2.0 2 2 0011
  257. * 2.5 3 0100
  258. * 3.0 4 3 0101
  259. * 3.5 5 0110
  260. * 4.0 6 4 0111
  261. * 4.5 1000
  262. * 5.0 5 1001
  263. */
  264. caslat = __ilog2(spd.cas_lat);
  265. if ((spd.mem_type == SPD_MEMTYPE_DDR)
  266. && (caslat > 6)) {
  267. printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
  268. return 0;
  269. } else if (spd.mem_type == SPD_MEMTYPE_DDR2
  270. && (caslat < 2 || caslat > 5)) {
  271. printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
  272. spd.cas_lat);
  273. return 0;
  274. }
  275. debug("DDR: caslat SPD bit is %d\n", caslat);
  276. max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
  277. + (spd.clk_cycle & 0x0f));
  278. max_data_rate = max_bus_clk * 2;
  279. debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);
  280. ddrc_clk = gd->ddr_clk / 1000000;
  281. effective_data_rate = 0;
  282. if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
  283. if (ddrc_clk <= 460 && ddrc_clk > 350) {
  284. /* DDR controller clk at 350~460 */
  285. effective_data_rate = 400; /* 5ns */
  286. caslat = caslat;
  287. } else if (ddrc_clk <= 350 && ddrc_clk > 280) {
  288. /* DDR controller clk at 280~350 */
  289. effective_data_rate = 333; /* 6ns */
  290. if (spd.clk_cycle2 == 0x60)
  291. caslat = caslat - 1;
  292. else
  293. caslat = caslat;
  294. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  295. /* DDR controller clk at 230~280 */
  296. effective_data_rate = 266; /* 7.5ns */
  297. if (spd.clk_cycle3 == 0x75)
  298. caslat = caslat - 2;
  299. else if (spd.clk_cycle2 == 0x75)
  300. caslat = caslat - 1;
  301. else
  302. caslat = caslat;
  303. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  304. /* DDR controller clk at 90~230 */
  305. effective_data_rate = 200; /* 10ns */
  306. if (spd.clk_cycle3 == 0xa0)
  307. caslat = caslat - 2;
  308. else if (spd.clk_cycle2 == 0xa0)
  309. caslat = caslat - 1;
  310. else
  311. caslat = caslat;
  312. }
  313. } else if (max_data_rate >= 323) { /* it is DDR 333 */
  314. if (ddrc_clk <= 350 && ddrc_clk > 280) {
  315. /* DDR controller clk at 280~350 */
  316. effective_data_rate = 333; /* 6ns */
  317. caslat = caslat;
  318. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  319. /* DDR controller clk at 230~280 */
  320. effective_data_rate = 266; /* 7.5ns */
  321. if (spd.clk_cycle2 == 0x75)
  322. caslat = caslat - 1;
  323. else
  324. caslat = caslat;
  325. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  326. /* DDR controller clk at 90~230 */
  327. effective_data_rate = 200; /* 10ns */
  328. if (spd.clk_cycle3 == 0xa0)
  329. caslat = caslat - 2;
  330. else if (spd.clk_cycle2 == 0xa0)
  331. caslat = caslat - 1;
  332. else
  333. caslat = caslat;
  334. }
  335. } else if (max_data_rate >= 256) { /* it is DDR 266 */
  336. if (ddrc_clk <= 350 && ddrc_clk > 280) {
  337. /* DDR controller clk at 280~350 */
  338. printf("DDR: DDR controller freq is more than "
  339. "max data rate of the module\n");
  340. return 0;
  341. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  342. /* DDR controller clk at 230~280 */
  343. effective_data_rate = 266; /* 7.5ns */
  344. caslat = caslat;
  345. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  346. /* DDR controller clk at 90~230 */
  347. effective_data_rate = 200; /* 10ns */
  348. if (spd.clk_cycle2 == 0xa0)
  349. caslat = caslat - 1;
  350. }
  351. } else if (max_data_rate >= 190) { /* it is DDR 200 */
  352. if (ddrc_clk <= 350 && ddrc_clk > 230) {
  353. /* DDR controller clk at 230~350 */
  354. printf("DDR: DDR controller freq is more than "
  355. "max data rate of the module\n");
  356. return 0;
  357. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  358. /* DDR controller clk at 90~230 */
  359. effective_data_rate = 200; /* 10ns */
  360. caslat = caslat;
  361. }
  362. }
  363. debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
  364. debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
  365. /*
  366. * Errata DDR6 work around: input enable 2 cycles earlier.
  367. * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
  368. */
  369. if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
  370. if (caslat == 2)
  371. ddr->debug_reg = 0x201c0000; /* CL=2 */
  372. else if (caslat == 3)
  373. ddr->debug_reg = 0x202c0000; /* CL=2.5 */
  374. else if (caslat == 4)
  375. ddr->debug_reg = 0x202c0000; /* CL=3.0 */
  376. __asm__ __volatile__ ("sync");
  377. debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
  378. }
  379. /*
  380. * Convert caslat clocks to DDR controller value.
  381. * Force caslat_ctrl to be DDR Controller field-sized.
  382. */
  383. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  384. caslat_ctrl = (caslat + 1) & 0x07;
  385. } else {
  386. caslat_ctrl = (2 * caslat - 1) & 0x0f;
  387. }
  388. debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
  389. debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
  390. caslat, caslat_ctrl);
  391. /*
  392. * Timing Config 0.
  393. * Avoid writing for DDR I.
  394. */
  395. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  396. unsigned char taxpd_clk = 8; /* By the book. */
  397. unsigned char tmrd_clk = 2; /* By the book. */
  398. unsigned char act_pd_exit = 2; /* Empirical? */
  399. unsigned char pre_pd_exit = 6; /* Empirical? */
  400. ddr->timing_cfg_0 = (0
  401. | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
  402. | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
  403. | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
  404. | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
  405. );
  406. debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
  407. }
  408. /*
  409. * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
  410. * use conservative value.
  411. * For DDR II, they are bytes 36 and 37, in quarter nanos.
  412. */
  413. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  414. twr_clk = 3; /* Clocks */
  415. twtr_clk = 1; /* Clocks */
  416. } else {
  417. twr_clk = picos_to_clk(spd.twr * 250);
  418. twtr_clk = picos_to_clk(spd.twtr * 250);
  419. }
  420. /*
  421. * Calculate Trfc, in picos.
  422. * DDR I: Byte 42 straight up in ns.
  423. * DDR II: Byte 40 and 42 swizzled some, in ns.
  424. */
  425. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  426. trfc = spd.trfc * 1000; /* up to ps */
  427. } else {
  428. unsigned int byte40_table_ps[8] = {
  429. 0,
  430. 250,
  431. 330,
  432. 500,
  433. 660,
  434. 750,
  435. 0,
  436. 0
  437. };
  438. trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
  439. + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
  440. }
  441. trfc_clk = picos_to_clk(trfc);
  442. /*
  443. * Trcd, Byte 29, from quarter nanos to ps and clocks.
  444. */
  445. trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
  446. /*
  447. * Convert trfc_clk to DDR controller fields. DDR I should
  448. * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
  449. * 83xx controller has an extended REFREC field of three bits.
  450. * The controller automatically adds 8 clocks to this value,
  451. * so preadjust it down 8 first before splitting it up.
  452. */
  453. trfc_low = (trfc_clk - 8) & 0xf;
  454. trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
  455. ddr->timing_cfg_1 =
  456. (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
  457. ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
  458. (trcd_clk << 20 ) | /* ACTTORW */
  459. (caslat_ctrl << 16 ) | /* CASLAT */
  460. (trfc_low << 12 ) | /* REFEC */
  461. ((twr_clk & 0x07) << 8) | /* WRRREC */
  462. ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
  463. ((twtr_clk & 0x07) << 0) /* WRTORD */
  464. );
  465. /*
  466. * Additive Latency
  467. * For DDR I, 0.
  468. * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
  469. * which comes from Trcd, and also note that:
  470. * add_lat + caslat must be >= 4
  471. */
  472. add_lat = 0;
  473. if (spd.mem_type == SPD_MEMTYPE_DDR2
  474. && (odt_wr_cfg || odt_rd_cfg)
  475. && (caslat < 4)) {
  476. add_lat = trcd_clk - 1;
  477. if ((add_lat + caslat) < 4) {
  478. add_lat = 0;
  479. }
  480. }
  481. /*
  482. * Write Data Delay
  483. * Historically 0x2 == 4/8 clock delay.
  484. * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
  485. */
  486. wr_data_delay = 2;
  487. /*
  488. * Write Latency
  489. * Read to Precharge
  490. * Minimum CKE Pulse Width.
  491. * Four Activate Window
  492. */
  493. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  494. /*
  495. * This is a lie. It should really be 1, but if it is
  496. * set to 1, bits overlap into the old controller's
  497. * otherwise unused ACSM field. If we leave it 0, then
  498. * the HW will magically treat it as 1 for DDR 1. Oh Yea.
  499. */
  500. wr_lat = 0;
  501. trtp_clk = 2; /* By the book. */
  502. cke_min_clk = 1; /* By the book. */
  503. four_act = 1; /* By the book. */
  504. } else {
  505. wr_lat = caslat - 1;
  506. /* Convert SPD value from quarter nanos to picos. */
  507. trtp_clk = picos_to_clk(spd.trtp * 250);
  508. cke_min_clk = 3; /* By the book. */
  509. four_act = picos_to_clk(37500); /* By the book. 1k pages? */
  510. }
  511. /*
  512. * Empirically set ~MCAS-to-preamble override for DDR 2.
  513. * Your milage will vary.
  514. */
  515. cpo = 0;
  516. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  517. if (effective_data_rate == 266 || effective_data_rate == 333) {
  518. cpo = 0x7; /* READ_LAT + 5/4 */
  519. } else if (effective_data_rate == 400) {
  520. cpo = 0x9; /* READ_LAT + 7/4 */
  521. } else {
  522. /* Automatic calibration */
  523. cpo = 0x1f;
  524. }
  525. }
  526. ddr->timing_cfg_2 = (0
  527. | ((add_lat & 0x7) << 28) /* ADD_LAT */
  528. | ((cpo & 0x1f) << 23) /* CPO */
  529. | ((wr_lat & 0x7) << 19) /* WR_LAT */
  530. | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
  531. | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
  532. | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
  533. | ((four_act & 0x1f) << 0) /* FOUR_ACT */
  534. );
  535. debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
  536. debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
  537. /* Check DIMM data bus width */
  538. if (spd.dataw_lsb == 0x20) {
  539. if (spd.mem_type == SPD_MEMTYPE_DDR)
  540. burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
  541. else
  542. burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
  543. debug("\n DDR DIMM: data bus width is 32 bit");
  544. } else {
  545. burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
  546. debug("\n DDR DIMM: data bus width is 64 bit");
  547. }
  548. /* Is this an ECC DDR chip? */
  549. if (spd.config == 0x02)
  550. debug(" with ECC\n");
  551. else
  552. debug(" without ECC\n");
  553. /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
  554. Burst type is sequential
  555. */
  556. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  557. switch (caslat) {
  558. case 1:
  559. ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
  560. break;
  561. case 2:
  562. ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
  563. break;
  564. case 3:
  565. ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
  566. break;
  567. case 4:
  568. ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
  569. break;
  570. default:
  571. printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
  572. return 0;
  573. }
  574. } else {
  575. mode_odt_enable = 0x0; /* Default disabled */
  576. if (odt_wr_cfg || odt_rd_cfg) {
  577. /*
  578. * Bits 6 and 2 in Extended MRS(1)
  579. * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
  580. * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
  581. */
  582. mode_odt_enable = 0x40; /* 150 Ohm */
  583. }
  584. ddr->sdram_mode =
  585. (0
  586. | (1 << (16 + 10)) /* DQS Differential disable */
  587. | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
  588. | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
  589. | ((twr_clk - 1) << 9) /* Write Recovery Autopre */
  590. | (caslat << 4) /* caslat */
  591. | (burstlen << 0) /* Burst length */
  592. );
  593. }
  594. debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
  595. /*
  596. * Clear EMRS2 and EMRS3.
  597. */
  598. ddr->sdram_mode2 = 0;
  599. debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
  600. switch (spd.refresh) {
  601. case 0x00:
  602. case 0x80:
  603. refresh_clk = picos_to_clk(15625000);
  604. break;
  605. case 0x01:
  606. case 0x81:
  607. refresh_clk = picos_to_clk(3900000);
  608. break;
  609. case 0x02:
  610. case 0x82:
  611. refresh_clk = picos_to_clk(7800000);
  612. break;
  613. case 0x03:
  614. case 0x83:
  615. refresh_clk = picos_to_clk(31300000);
  616. break;
  617. case 0x04:
  618. case 0x84:
  619. refresh_clk = picos_to_clk(62500000);
  620. break;
  621. case 0x05:
  622. case 0x85:
  623. refresh_clk = picos_to_clk(125000000);
  624. break;
  625. default:
  626. refresh_clk = 0x512;
  627. break;
  628. }
  629. /*
  630. * Set BSTOPRE to 0x100 for page mode
  631. * If auto-charge is used, set BSTOPRE = 0
  632. */
  633. ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
  634. debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
  635. /*
  636. * SDRAM Cfg 2
  637. */
  638. odt_cfg = 0;
  639. if (odt_rd_cfg | odt_wr_cfg) {
  640. odt_cfg = 0x2; /* ODT to IOs during reads */
  641. }
  642. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  643. ddr->sdram_cfg2 = (0
  644. | (0 << 26) /* True DQS */
  645. | (odt_cfg << 21) /* ODT only read */
  646. | (1 << 12) /* 1 refresh at a time */
  647. );
  648. debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
  649. }
  650. #ifdef CFG_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
  651. ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL;
  652. #endif
  653. debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
  654. asm("sync;isync");
  655. udelay(600);
  656. /*
  657. * Figure out the settings for the sdram_cfg register. Build up
  658. * the value in 'sdram_cfg' before writing since the write into
  659. * the register will actually enable the memory controller, and all
  660. * settings must be done before enabling.
  661. *
  662. * sdram_cfg[0] = 1 (ddr sdram logic enable)
  663. * sdram_cfg[1] = 1 (self-refresh-enable)
  664. * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
  665. * 010 DDR 1 SDRAM
  666. * 011 DDR 2 SDRAM
  667. * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
  668. * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
  669. */
  670. if (spd.mem_type == SPD_MEMTYPE_DDR)
  671. sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
  672. else
  673. sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
  674. sdram_cfg = (0
  675. | SDRAM_CFG_MEM_EN /* DDR enable */
  676. | SDRAM_CFG_SREN /* Self refresh */
  677. | sdram_type /* SDRAM type */
  678. );
  679. /* sdram_cfg[3] = RD_EN - registered DIMM enable */
  680. if (spd.mod_attr & 0x02)
  681. sdram_cfg |= SDRAM_CFG_RD_EN;
  682. /* The DIMM is 32bit width */
  683. if (spd.dataw_lsb == 0x20) {
  684. if (spd.mem_type == SPD_MEMTYPE_DDR)
  685. sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
  686. if (spd.mem_type == SPD_MEMTYPE_DDR2)
  687. sdram_cfg |= SDRAM_CFG_32_BE;
  688. }
  689. ddrc_ecc_enable = 0;
  690. #if defined(CONFIG_DDR_ECC)
  691. /* Enable ECC with sdram_cfg[2] */
  692. if (spd.config == 0x02) {
  693. sdram_cfg |= 0x20000000;
  694. ddrc_ecc_enable = 1;
  695. /* disable error detection */
  696. ddr->err_disable = ~ECC_ERROR_ENABLE;
  697. /* set single bit error threshold to maximum value,
  698. * reset counter to zero */
  699. ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
  700. (0 << ECC_ERROR_MAN_SBEC_SHIFT);
  701. }
  702. debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
  703. debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
  704. #endif
  705. debug(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
  706. #if defined(CONFIG_DDR_2T_TIMING)
  707. /*
  708. * Enable 2T timing by setting sdram_cfg[16].
  709. */
  710. sdram_cfg |= SDRAM_CFG_2T_EN;
  711. #endif
  712. /* Enable controller, and GO! */
  713. ddr->sdram_cfg = sdram_cfg;
  714. asm("sync;isync");
  715. udelay(500);
  716. debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
  717. return memsize; /*in MBytes*/
  718. }
  719. #endif /* CONFIG_SPD_EEPROM */
  720. #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
  721. /*
  722. * Use timebase counter, get_timer() is not availabe
  723. * at this point of initialization yet.
  724. */
  725. static __inline__ unsigned long get_tbms (void)
  726. {
  727. unsigned long tbl;
  728. unsigned long tbu1, tbu2;
  729. unsigned long ms;
  730. unsigned long long tmp;
  731. ulong tbclk = get_tbclk();
  732. /* get the timebase ticks */
  733. do {
  734. asm volatile ("mftbu %0":"=r" (tbu1):);
  735. asm volatile ("mftb %0":"=r" (tbl):);
  736. asm volatile ("mftbu %0":"=r" (tbu2):);
  737. } while (tbu1 != tbu2);
  738. /* convert ticks to ms */
  739. tmp = (unsigned long long)(tbu1);
  740. tmp = (tmp << 32);
  741. tmp += (unsigned long long)(tbl);
  742. ms = tmp/(tbclk/1000);
  743. return ms;
  744. }
  745. /*
  746. * Initialize all of memory for ECC, then enable errors.
  747. */
  748. /* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
  749. void ddr_enable_ecc(unsigned int dram_size)
  750. {
  751. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  752. volatile ddr83xx_t *ddr= &immap->ddr;
  753. unsigned long t_start, t_end;
  754. register u64 *p;
  755. register uint size;
  756. unsigned int pattern[2];
  757. #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
  758. uint i;
  759. #endif
  760. icache_enable();
  761. t_start = get_tbms();
  762. pattern[0] = 0xdeadbeef;
  763. pattern[1] = 0xdeadbeef;
  764. #if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
  765. debug("ddr init: CPU FP write method\n");
  766. size = dram_size;
  767. for (p = 0; p < (u64*)(size); p++) {
  768. ppcDWstore((u32*)p, pattern);
  769. }
  770. __asm__ __volatile__ ("sync");
  771. #else
  772. debug("ddr init: DMA method\n");
  773. size = 0x2000;
  774. for (p = 0; p < (u64*)(size); p++) {
  775. ppcDWstore((u32*)p, pattern);
  776. }
  777. __asm__ __volatile__ ("sync");
  778. /* Initialise DMA for direct transfer */
  779. dma_init();
  780. /* Start DMA to transfer */
  781. dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
  782. dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
  783. dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
  784. dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
  785. dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
  786. dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
  787. dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
  788. dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
  789. dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
  790. dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
  791. for (i = 1; i < dram_size / 0x800000; i++) {
  792. dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
  793. }
  794. #endif
  795. t_end = get_tbms();
  796. icache_disable();
  797. debug("\nREADY!!\n");
  798. debug("ddr init duration: %ld ms\n", t_end - t_start);
  799. /* Clear All ECC Errors */
  800. if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
  801. ddr->err_detect |= ECC_ERROR_DETECT_MME;
  802. if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
  803. ddr->err_detect |= ECC_ERROR_DETECT_MBE;
  804. if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
  805. ddr->err_detect |= ECC_ERROR_DETECT_SBE;
  806. if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
  807. ddr->err_detect |= ECC_ERROR_DETECT_MSE;
  808. /* Disable ECC-Interrupts */
  809. ddr->err_int_en &= ECC_ERR_INT_DISABLE;
  810. /* Enable errors for ECC */
  811. ddr->err_disable &= ECC_ERROR_ENABLE;
  812. __asm__ __volatile__ ("sync");
  813. __asm__ __volatile__ ("isync");
  814. }
  815. #endif /* CONFIG_DDR_ECC */