lmb.c 6.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <common.h>
  13. #include <lmb.h>
  14. #define LMB_ALLOC_ANYWHERE 0
  15. void lmb_dump_all(struct lmb *lmb)
  16. {
  17. #ifdef DEBUG
  18. unsigned long i;
  19. debug("lmb_dump_all:\n");
  20. debug(" memory.cnt = 0x%lx\n", lmb->memory.cnt);
  21. debug(" memory.size = 0x%08x\n", lmb->memory.size);
  22. for (i=0; i < lmb->memory.cnt ;i++) {
  23. debug(" memory.reg[0x%x].base = 0x%08x\n", i,
  24. lmb->memory.region[i].base);
  25. debug(" .size = 0x%08x\n",
  26. lmb->memory.region[i].size);
  27. }
  28. debug("\n reserved.cnt = 0x%lx\n", lmb->reserved.cnt);
  29. debug(" reserved.size = 0x%08x\n", lmb->reserved.size);
  30. for (i=0; i < lmb->reserved.cnt ;i++) {
  31. debug(" reserved.reg[0x%x].base = 0x%08x\n", i,
  32. lmb->reserved.region[i].base);
  33. debug(" .size = 0x%08x\n",
  34. lmb->reserved.region[i].size);
  35. }
  36. #endif /* DEBUG */
  37. }
  38. static unsigned long lmb_addrs_overlap(ulong base1,
  39. ulong size1, ulong base2, ulong size2)
  40. {
  41. return ((base1 < (base2+size2)) && (base2 < (base1+size1)));
  42. }
  43. static long lmb_addrs_adjacent(ulong base1, ulong size1,
  44. ulong base2, ulong size2)
  45. {
  46. if (base2 == base1 + size1)
  47. return 1;
  48. else if (base1 == base2 + size2)
  49. return -1;
  50. return 0;
  51. }
  52. static long lmb_regions_adjacent(struct lmb_region *rgn,
  53. unsigned long r1, unsigned long r2)
  54. {
  55. ulong base1 = rgn->region[r1].base;
  56. ulong size1 = rgn->region[r1].size;
  57. ulong base2 = rgn->region[r2].base;
  58. ulong size2 = rgn->region[r2].size;
  59. return lmb_addrs_adjacent(base1, size1, base2, size2);
  60. }
  61. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  62. {
  63. unsigned long i;
  64. for (i = r; i < rgn->cnt - 1; i++) {
  65. rgn->region[i].base = rgn->region[i + 1].base;
  66. rgn->region[i].size = rgn->region[i + 1].size;
  67. }
  68. rgn->cnt--;
  69. }
  70. /* Assumption: base addr of region 1 < base addr of region 2 */
  71. static void lmb_coalesce_regions(struct lmb_region *rgn,
  72. unsigned long r1, unsigned long r2)
  73. {
  74. rgn->region[r1].size += rgn->region[r2].size;
  75. lmb_remove_region(rgn, r2);
  76. }
  77. void lmb_init(struct lmb *lmb)
  78. {
  79. /* Create a dummy zero size LMB which will get coalesced away later.
  80. * This simplifies the lmb_add() code below...
  81. */
  82. lmb->memory.region[0].base = 0;
  83. lmb->memory.region[0].size = 0;
  84. lmb->memory.cnt = 1;
  85. lmb->memory.size = 0;
  86. /* Ditto. */
  87. lmb->reserved.region[0].base = 0;
  88. lmb->reserved.region[0].size = 0;
  89. lmb->reserved.cnt = 1;
  90. lmb->reserved.size = 0;
  91. }
  92. /* This routine called with relocation disabled. */
  93. static long lmb_add_region(struct lmb_region *rgn, ulong base, ulong size)
  94. {
  95. unsigned long coalesced = 0;
  96. long adjacent, i;
  97. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  98. rgn->region[0].base = base;
  99. rgn->region[0].size = size;
  100. return 0;
  101. }
  102. /* First try and coalesce this LMB with another. */
  103. for (i=0; i < rgn->cnt; i++) {
  104. ulong rgnbase = rgn->region[i].base;
  105. ulong rgnsize = rgn->region[i].size;
  106. if ((rgnbase == base) && (rgnsize == size))
  107. /* Already have this region, so we're done */
  108. return 0;
  109. adjacent = lmb_addrs_adjacent(base,size,rgnbase,rgnsize);
  110. if ( adjacent > 0 ) {
  111. rgn->region[i].base -= size;
  112. rgn->region[i].size += size;
  113. coalesced++;
  114. break;
  115. }
  116. else if ( adjacent < 0 ) {
  117. rgn->region[i].size += size;
  118. coalesced++;
  119. break;
  120. }
  121. }
  122. if ((i < rgn->cnt-1) && lmb_regions_adjacent(rgn, i, i+1) ) {
  123. lmb_coalesce_regions(rgn, i, i+1);
  124. coalesced++;
  125. }
  126. if (coalesced)
  127. return coalesced;
  128. if (rgn->cnt >= MAX_LMB_REGIONS)
  129. return -1;
  130. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  131. for (i = rgn->cnt-1; i >= 0; i--) {
  132. if (base < rgn->region[i].base) {
  133. rgn->region[i+1].base = rgn->region[i].base;
  134. rgn->region[i+1].size = rgn->region[i].size;
  135. } else {
  136. rgn->region[i+1].base = base;
  137. rgn->region[i+1].size = size;
  138. break;
  139. }
  140. }
  141. if (base < rgn->region[0].base) {
  142. rgn->region[0].base = base;
  143. rgn->region[0].size = size;
  144. }
  145. rgn->cnt++;
  146. return 0;
  147. }
  148. /* This routine may be called with relocation disabled. */
  149. long lmb_add(struct lmb *lmb, ulong base, ulong size)
  150. {
  151. struct lmb_region *_rgn = &(lmb->memory);
  152. return lmb_add_region(_rgn, base, size);
  153. }
  154. long lmb_reserve(struct lmb *lmb, ulong base, ulong size)
  155. {
  156. struct lmb_region *_rgn = &(lmb->reserved);
  157. return lmb_add_region(_rgn, base, size);
  158. }
  159. long lmb_overlaps_region(struct lmb_region *rgn, ulong base,
  160. ulong size)
  161. {
  162. unsigned long i;
  163. for (i=0; i < rgn->cnt; i++) {
  164. ulong rgnbase = rgn->region[i].base;
  165. ulong rgnsize = rgn->region[i].size;
  166. if ( lmb_addrs_overlap(base,size,rgnbase,rgnsize) ) {
  167. break;
  168. }
  169. }
  170. return (i < rgn->cnt) ? i : -1;
  171. }
  172. ulong lmb_alloc(struct lmb *lmb, ulong size, ulong align)
  173. {
  174. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  175. }
  176. ulong lmb_alloc_base(struct lmb *lmb, ulong size, ulong align, ulong max_addr)
  177. {
  178. ulong alloc;
  179. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  180. if (alloc == 0)
  181. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  182. size, max_addr);
  183. return alloc;
  184. }
  185. static ulong lmb_align_down(ulong addr, ulong size)
  186. {
  187. return addr & ~(size - 1);
  188. }
  189. static ulong lmb_align_up(ulong addr, ulong size)
  190. {
  191. return (addr + (size - 1)) & ~(size - 1);
  192. }
  193. ulong __lmb_alloc_base(struct lmb *lmb, ulong size, ulong align, ulong max_addr)
  194. {
  195. long i, j;
  196. ulong base = 0;
  197. for (i = lmb->memory.cnt-1; i >= 0; i--) {
  198. ulong lmbbase = lmb->memory.region[i].base;
  199. ulong lmbsize = lmb->memory.region[i].size;
  200. if (max_addr == LMB_ALLOC_ANYWHERE)
  201. base = lmb_align_down(lmbbase + lmbsize - size, align);
  202. else if (lmbbase < max_addr) {
  203. base = min(lmbbase + lmbsize, max_addr);
  204. base = lmb_align_down(base - size, align);
  205. } else
  206. continue;
  207. while ((lmbbase <= base) &&
  208. ((j = lmb_overlaps_region(&(lmb->reserved), base, size)) >= 0) )
  209. base = lmb_align_down(lmb->reserved.region[j].base - size,
  210. align);
  211. if ((base != 0) && (lmbbase <= base))
  212. break;
  213. }
  214. if (i < 0)
  215. return 0;
  216. if (lmb_add_region(&(lmb->reserved), base, lmb_align_up(size, align)) < 0)
  217. return 0;
  218. return base;
  219. }
  220. int lmb_is_reserved(struct lmb *lmb, ulong addr)
  221. {
  222. int i;
  223. for (i = 0; i < lmb->reserved.cnt; i++) {
  224. ulong upper = lmb->reserved.region[i].base +
  225. lmb->reserved.region[i].size - 1;
  226. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  227. return 1;
  228. }
  229. return 0;
  230. }