nand_boot_fsl_elbc.c 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152
  1. /*
  2. * NAND boot for Freescale Enhanced Local Bus Controller, Flash Control Machine
  3. *
  4. * (C) Copyright 2006-2008
  5. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  6. *
  7. * Copyright (c) 2008 Freescale Semiconductor, Inc.
  8. * Author: Scott Wood <scottwood@freescale.com>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/fsl_lbc.h>
  28. #include <linux/mtd/nand.h>
  29. #define WINDOW_SIZE 8192
  30. static void nand_wait(void)
  31. {
  32. fsl_lbc_t *regs = LBC_BASE_ADDR;
  33. for (;;) {
  34. uint32_t status = in_be32(&regs->ltesr);
  35. if (status == 1)
  36. return;
  37. if (status & 1) {
  38. puts("read failed (ltesr)\n");
  39. for (;;);
  40. }
  41. }
  42. }
  43. static void nand_load(unsigned int offs, int uboot_size, uchar *dst)
  44. {
  45. fsl_lbc_t *regs = LBC_BASE_ADDR;
  46. uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE;
  47. int large = in_be32(&regs->bank[0].or) & OR_FCM_PGS;
  48. int block_shift = large ? 17 : 14;
  49. int block_size = 1 << block_shift;
  50. int page_size = large ? 2048 : 512;
  51. int bad_marker = large ? page_size + 0 : page_size + 5;
  52. int fmr = (15 << FMR_CWTO_SHIFT) | (2 << FMR_AL_SHIFT) | 2;
  53. int pos = 0;
  54. if (offs & (block_size - 1)) {
  55. puts("bad offset\n");
  56. for (;;);
  57. }
  58. if (large) {
  59. fmr |= FMR_ECCM;
  60. out_be32(&regs->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
  61. (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
  62. out_be32(&regs->fir,
  63. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  64. (FIR_OP_CA << FIR_OP1_SHIFT) |
  65. (FIR_OP_PA << FIR_OP2_SHIFT) |
  66. (FIR_OP_CW1 << FIR_OP3_SHIFT) |
  67. (FIR_OP_RBW << FIR_OP4_SHIFT));
  68. } else {
  69. out_be32(&regs->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
  70. out_be32(&regs->fir,
  71. (FIR_OP_CW0 << FIR_OP0_SHIFT) |
  72. (FIR_OP_CA << FIR_OP1_SHIFT) |
  73. (FIR_OP_PA << FIR_OP2_SHIFT) |
  74. (FIR_OP_RBW << FIR_OP3_SHIFT));
  75. }
  76. out_be32(&regs->fbcr, 0);
  77. clrsetbits_be32(&regs->bank[0].br, BR_DECC, BR_DECC_CHK_GEN);
  78. while (pos < uboot_size) {
  79. int i = 0;
  80. out_be32(&regs->fbar, offs >> block_shift);
  81. do {
  82. int j;
  83. unsigned int page_offs = (offs & (block_size - 1)) << 1;
  84. out_be32(&regs->ltesr, ~0);
  85. out_be32(&regs->lteatr, 0);
  86. out_be32(&regs->fpar, page_offs);
  87. out_be32(&regs->fmr, fmr);
  88. out_be32(&regs->lsor, 0);
  89. nand_wait();
  90. page_offs %= WINDOW_SIZE;
  91. /*
  92. * If either of the first two pages are marked bad,
  93. * continue to the next block.
  94. */
  95. if (i++ < 2 && buf[page_offs + bad_marker] != 0xff) {
  96. puts("skipping\n");
  97. offs = (offs + block_size) & ~(block_size - 1);
  98. pos &= ~(block_size - 1);
  99. break;
  100. }
  101. for (j = 0; j < page_size; j++)
  102. dst[pos + j] = buf[page_offs + j];
  103. pos += page_size;
  104. offs += page_size;
  105. } while ((offs & (block_size - 1)) && (pos < uboot_size));
  106. }
  107. }
  108. /*
  109. * The main entry for NAND booting. It's necessary that SDRAM is already
  110. * configured and available since this code loads the main U-Boot image
  111. * from NAND into SDRAM and starts it from there.
  112. */
  113. void nand_boot(void)
  114. {
  115. __attribute__((noreturn)) void (*uboot)(void);
  116. /*
  117. * Load U-Boot image from NAND into RAM
  118. */
  119. nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
  120. (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
  121. /*
  122. * Jump to U-Boot image
  123. */
  124. puts("transfering control\n");
  125. /*
  126. * Clean d-cache and invalidate i-cache, to
  127. * make sure that no stale data is executed.
  128. */
  129. flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE);
  130. uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
  131. uboot();
  132. }