uec.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266
  1. /*
  2. * Copyright (C) 2006 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #if defined(CONFIG_QE)
  32. #ifdef CONFIG_UEC_ETH1
  33. static uec_info_t eth1_uec_info = {
  34. .uf_info = {
  35. .ucc_num = CFG_UEC1_UCC_NUM,
  36. .rx_clock = CFG_UEC1_RX_CLK,
  37. .tx_clock = CFG_UEC1_TX_CLK,
  38. .eth_type = CFG_UEC1_ETH_TYPE,
  39. },
  40. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  41. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  42. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  43. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  44. .tx_bd_ring_len = 16,
  45. .rx_bd_ring_len = 16,
  46. .phy_address = CFG_UEC1_PHY_ADDR,
  47. .enet_interface = CFG_UEC1_INTERFACE_MODE,
  48. };
  49. #endif
  50. #ifdef CONFIG_UEC_ETH2
  51. static uec_info_t eth2_uec_info = {
  52. .uf_info = {
  53. .ucc_num = CFG_UEC2_UCC_NUM,
  54. .rx_clock = CFG_UEC2_RX_CLK,
  55. .tx_clock = CFG_UEC2_TX_CLK,
  56. .eth_type = CFG_UEC2_ETH_TYPE,
  57. },
  58. .num_threads_tx = UEC_NUM_OF_THREADS_4,
  59. .num_threads_rx = UEC_NUM_OF_THREADS_4,
  60. .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  61. .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
  62. .tx_bd_ring_len = 16,
  63. .rx_bd_ring_len = 16,
  64. .phy_address = CFG_UEC2_PHY_ADDR,
  65. .enet_interface = CFG_UEC2_INTERFACE_MODE,
  66. };
  67. #endif
  68. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  69. {
  70. uec_t *uec_regs;
  71. u32 maccfg1;
  72. if (!uec) {
  73. printf("%s: uec not initial\n", __FUNCTION__);
  74. return -EINVAL;
  75. }
  76. uec_regs = uec->uec_regs;
  77. maccfg1 = in_be32(&uec_regs->maccfg1);
  78. if (mode & COMM_DIR_TX) {
  79. maccfg1 |= MACCFG1_ENABLE_TX;
  80. out_be32(&uec_regs->maccfg1, maccfg1);
  81. uec->mac_tx_enabled = 1;
  82. }
  83. if (mode & COMM_DIR_RX) {
  84. maccfg1 |= MACCFG1_ENABLE_RX;
  85. out_be32(&uec_regs->maccfg1, maccfg1);
  86. uec->mac_rx_enabled = 1;
  87. }
  88. return 0;
  89. }
  90. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  91. {
  92. uec_t *uec_regs;
  93. u32 maccfg1;
  94. if (!uec) {
  95. printf("%s: uec not initial\n", __FUNCTION__);
  96. return -EINVAL;
  97. }
  98. uec_regs = uec->uec_regs;
  99. maccfg1 = in_be32(&uec_regs->maccfg1);
  100. if (mode & COMM_DIR_TX) {
  101. maccfg1 &= ~MACCFG1_ENABLE_TX;
  102. out_be32(&uec_regs->maccfg1, maccfg1);
  103. uec->mac_tx_enabled = 0;
  104. }
  105. if (mode & COMM_DIR_RX) {
  106. maccfg1 &= ~MACCFG1_ENABLE_RX;
  107. out_be32(&uec_regs->maccfg1, maccfg1);
  108. uec->mac_rx_enabled = 0;
  109. }
  110. return 0;
  111. }
  112. static int uec_graceful_stop_tx(uec_private_t *uec)
  113. {
  114. ucc_fast_t *uf_regs;
  115. u32 cecr_subblock;
  116. u32 ucce;
  117. if (!uec || !uec->uccf) {
  118. printf("%s: No handle passed.\n", __FUNCTION__);
  119. return -EINVAL;
  120. }
  121. uf_regs = uec->uccf->uf_regs;
  122. /* Clear the grace stop event */
  123. out_be32(&uf_regs->ucce, UCCE_GRA);
  124. /* Issue host command */
  125. cecr_subblock =
  126. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  127. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  128. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  129. /* Wait for command to complete */
  130. do {
  131. ucce = in_be32(&uf_regs->ucce);
  132. } while (! (ucce & UCCE_GRA));
  133. uec->grace_stopped_tx = 1;
  134. return 0;
  135. }
  136. static int uec_graceful_stop_rx(uec_private_t *uec)
  137. {
  138. u32 cecr_subblock;
  139. u8 ack;
  140. if (!uec) {
  141. printf("%s: No handle passed.\n", __FUNCTION__);
  142. return -EINVAL;
  143. }
  144. if (!uec->p_rx_glbl_pram) {
  145. printf("%s: No init rx global parameter\n", __FUNCTION__);
  146. return -EINVAL;
  147. }
  148. /* Clear acknowledge bit */
  149. ack = uec->p_rx_glbl_pram->rxgstpack;
  150. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  151. uec->p_rx_glbl_pram->rxgstpack = ack;
  152. /* Keep issuing cmd and checking ack bit until it is asserted */
  153. do {
  154. /* Issue host command */
  155. cecr_subblock =
  156. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  157. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  158. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  159. ack = uec->p_rx_glbl_pram->rxgstpack;
  160. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  161. uec->grace_stopped_rx = 1;
  162. return 0;
  163. }
  164. static int uec_restart_tx(uec_private_t *uec)
  165. {
  166. u32 cecr_subblock;
  167. if (!uec || !uec->uec_info) {
  168. printf("%s: No handle passed.\n", __FUNCTION__);
  169. return -EINVAL;
  170. }
  171. cecr_subblock =
  172. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  173. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  174. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  175. uec->grace_stopped_tx = 0;
  176. return 0;
  177. }
  178. static int uec_restart_rx(uec_private_t *uec)
  179. {
  180. u32 cecr_subblock;
  181. if (!uec || !uec->uec_info) {
  182. printf("%s: No handle passed.\n", __FUNCTION__);
  183. return -EINVAL;
  184. }
  185. cecr_subblock =
  186. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  187. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  188. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  189. uec->grace_stopped_rx = 0;
  190. return 0;
  191. }
  192. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  193. {
  194. ucc_fast_private_t *uccf;
  195. if (!uec || !uec->uccf) {
  196. printf("%s: No handle passed.\n", __FUNCTION__);
  197. return -EINVAL;
  198. }
  199. uccf = uec->uccf;
  200. /* check if the UCC number is in range. */
  201. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  202. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  203. return -EINVAL;
  204. }
  205. /* Enable MAC */
  206. uec_mac_enable(uec, mode);
  207. /* Enable UCC fast */
  208. ucc_fast_enable(uccf, mode);
  209. /* RISC microcode start */
  210. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  211. uec_restart_tx(uec);
  212. }
  213. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  214. uec_restart_rx(uec);
  215. }
  216. return 0;
  217. }
  218. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  219. {
  220. ucc_fast_private_t *uccf;
  221. if (!uec || !uec->uccf) {
  222. printf("%s: No handle passed.\n", __FUNCTION__);
  223. return -EINVAL;
  224. }
  225. uccf = uec->uccf;
  226. /* check if the UCC number is in range. */
  227. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  228. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  229. return -EINVAL;
  230. }
  231. /* Stop any transmissions */
  232. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  233. uec_graceful_stop_tx(uec);
  234. }
  235. /* Stop any receptions */
  236. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  237. uec_graceful_stop_rx(uec);
  238. }
  239. /* Disable the UCC fast */
  240. ucc_fast_disable(uec->uccf, mode);
  241. /* Disable the MAC */
  242. uec_mac_disable(uec, mode);
  243. return 0;
  244. }
  245. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  246. {
  247. uec_t *uec_regs;
  248. u32 maccfg2;
  249. if (!uec) {
  250. printf("%s: uec not initial\n", __FUNCTION__);
  251. return -EINVAL;
  252. }
  253. uec_regs = uec->uec_regs;
  254. if (duplex == DUPLEX_HALF) {
  255. maccfg2 = in_be32(&uec_regs->maccfg2);
  256. maccfg2 &= ~MACCFG2_FDX;
  257. out_be32(&uec_regs->maccfg2, maccfg2);
  258. }
  259. if (duplex == DUPLEX_FULL) {
  260. maccfg2 = in_be32(&uec_regs->maccfg2);
  261. maccfg2 |= MACCFG2_FDX;
  262. out_be32(&uec_regs->maccfg2, maccfg2);
  263. }
  264. return 0;
  265. }
  266. static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
  267. {
  268. enet_interface_e enet_if_mode;
  269. uec_info_t *uec_info;
  270. uec_t *uec_regs;
  271. u32 upsmr;
  272. u32 maccfg2;
  273. if (!uec) {
  274. printf("%s: uec not initial\n", __FUNCTION__);
  275. return -EINVAL;
  276. }
  277. uec_info = uec->uec_info;
  278. uec_regs = uec->uec_regs;
  279. enet_if_mode = if_mode;
  280. maccfg2 = in_be32(&uec_regs->maccfg2);
  281. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  282. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  283. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  284. switch (enet_if_mode) {
  285. case ENET_100_MII:
  286. case ENET_10_MII:
  287. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  288. break;
  289. case ENET_1000_GMII:
  290. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  291. break;
  292. case ENET_1000_TBI:
  293. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  294. upsmr |= UPSMR_TBIM;
  295. break;
  296. case ENET_1000_RTBI:
  297. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  298. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  299. break;
  300. case ENET_1000_RGMII:
  301. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  302. upsmr |= UPSMR_RPM;
  303. break;
  304. case ENET_100_RGMII:
  305. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  306. upsmr |= UPSMR_RPM;
  307. break;
  308. case ENET_10_RGMII:
  309. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  310. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  311. break;
  312. case ENET_100_RMII:
  313. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  314. upsmr |= UPSMR_RMM;
  315. break;
  316. case ENET_10_RMII:
  317. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  318. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  319. break;
  320. default:
  321. return -EINVAL;
  322. break;
  323. }
  324. out_be32(&uec_regs->maccfg2, maccfg2);
  325. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  326. return 0;
  327. }
  328. static int init_mii_management_configuration(uec_t *uec_regs)
  329. {
  330. uint timeout = 0x1000;
  331. u32 miimcfg = 0;
  332. miimcfg = in_be32(&uec_regs->miimcfg);
  333. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  334. out_be32(&uec_regs->miimcfg, miimcfg);
  335. /* Wait until the bus is free */
  336. while ((in_be32(&uec_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  337. if (timeout <= 0) {
  338. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  339. return -ETIMEDOUT;
  340. }
  341. return 0;
  342. }
  343. static int init_phy(struct eth_device *dev)
  344. {
  345. uec_private_t *uec;
  346. uec_t *uec_regs;
  347. struct uec_mii_info *mii_info;
  348. struct phy_info *curphy;
  349. int err;
  350. uec = (uec_private_t *)dev->priv;
  351. uec_regs = uec->uec_regs;
  352. uec->oldlink = 0;
  353. uec->oldspeed = 0;
  354. uec->oldduplex = -1;
  355. mii_info = malloc(sizeof(*mii_info));
  356. if (!mii_info) {
  357. printf("%s: Could not allocate mii_info", dev->name);
  358. return -ENOMEM;
  359. }
  360. memset(mii_info, 0, sizeof(*mii_info));
  361. mii_info->speed = SPEED_1000;
  362. mii_info->duplex = DUPLEX_FULL;
  363. mii_info->pause = 0;
  364. mii_info->link = 1;
  365. mii_info->advertising = (ADVERTISED_10baseT_Half |
  366. ADVERTISED_10baseT_Full |
  367. ADVERTISED_100baseT_Half |
  368. ADVERTISED_100baseT_Full |
  369. ADVERTISED_1000baseT_Full);
  370. mii_info->autoneg = 1;
  371. mii_info->mii_id = uec->uec_info->phy_address;
  372. mii_info->dev = dev;
  373. mii_info->mdio_read = &read_phy_reg;
  374. mii_info->mdio_write = &write_phy_reg;
  375. uec->mii_info = mii_info;
  376. if (init_mii_management_configuration(uec_regs)) {
  377. printf("%s: The MII Bus is stuck!", dev->name);
  378. err = -1;
  379. goto bus_fail;
  380. }
  381. /* get info for this PHY */
  382. curphy = get_phy_info(uec->mii_info);
  383. if (!curphy) {
  384. printf("%s: No PHY found", dev->name);
  385. err = -1;
  386. goto no_phy;
  387. }
  388. mii_info->phyinfo = curphy;
  389. /* Run the commands which initialize the PHY */
  390. if (curphy->init) {
  391. err = curphy->init(uec->mii_info);
  392. if (err)
  393. goto phy_init_fail;
  394. }
  395. return 0;
  396. phy_init_fail:
  397. no_phy:
  398. bus_fail:
  399. free(mii_info);
  400. return err;
  401. }
  402. static void adjust_link(struct eth_device *dev)
  403. {
  404. uec_private_t *uec = (uec_private_t *)dev->priv;
  405. uec_t *uec_regs;
  406. struct uec_mii_info *mii_info = uec->mii_info;
  407. extern void change_phy_interface_mode(struct eth_device *dev,
  408. enet_interface_e mode);
  409. uec_regs = uec->uec_regs;
  410. if (mii_info->link) {
  411. /* Now we make sure that we can be in full duplex mode.
  412. * If not, we operate in half-duplex mode. */
  413. if (mii_info->duplex != uec->oldduplex) {
  414. if (!(mii_info->duplex)) {
  415. uec_set_mac_duplex(uec, DUPLEX_HALF);
  416. printf("%s: Half Duplex\n", dev->name);
  417. } else {
  418. uec_set_mac_duplex(uec, DUPLEX_FULL);
  419. printf("%s: Full Duplex\n", dev->name);
  420. }
  421. uec->oldduplex = mii_info->duplex;
  422. }
  423. if (mii_info->speed != uec->oldspeed) {
  424. switch (mii_info->speed) {
  425. case 1000:
  426. break;
  427. case 100:
  428. printf ("switching to rgmii 100\n");
  429. /* change phy to rgmii 100 */
  430. change_phy_interface_mode(dev,
  431. ENET_100_RGMII);
  432. /* change the MAC interface mode */
  433. uec_set_mac_if_mode(uec,ENET_100_RGMII);
  434. break;
  435. case 10:
  436. printf ("switching to rgmii 10\n");
  437. /* change phy to rgmii 10 */
  438. change_phy_interface_mode(dev,
  439. ENET_10_RGMII);
  440. /* change the MAC interface mode */
  441. uec_set_mac_if_mode(uec,ENET_10_RGMII);
  442. break;
  443. default:
  444. printf("%s: Ack,Speed(%d)is illegal\n",
  445. dev->name, mii_info->speed);
  446. break;
  447. }
  448. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  449. uec->oldspeed = mii_info->speed;
  450. }
  451. if (!uec->oldlink) {
  452. printf("%s: Link is up\n", dev->name);
  453. uec->oldlink = 1;
  454. }
  455. } else { /* if (mii_info->link) */
  456. if (uec->oldlink) {
  457. printf("%s: Link is down\n", dev->name);
  458. uec->oldlink = 0;
  459. uec->oldspeed = 0;
  460. uec->oldduplex = -1;
  461. }
  462. }
  463. }
  464. static void phy_change(struct eth_device *dev)
  465. {
  466. uec_private_t *uec = (uec_private_t *)dev->priv;
  467. uec_t *uec_regs;
  468. int result = 0;
  469. uec_regs = uec->uec_regs;
  470. /* Delay 5s to give the PHY a chance to change the register state */
  471. udelay(5000000);
  472. /* Update the link, speed, duplex */
  473. result = uec->mii_info->phyinfo->read_status(uec->mii_info);
  474. /* Adjust the interface according to speed */
  475. if ((0 == result) || (uec->mii_info->link == 0)) {
  476. adjust_link(dev);
  477. }
  478. }
  479. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  480. {
  481. uec_t *uec_regs;
  482. u32 mac_addr1;
  483. u32 mac_addr2;
  484. if (!uec) {
  485. printf("%s: uec not initial\n", __FUNCTION__);
  486. return -EINVAL;
  487. }
  488. uec_regs = uec->uec_regs;
  489. /* if a station address of 0x12345678ABCD, perform a write to
  490. MACSTNADDR1 of 0xCDAB7856,
  491. MACSTNADDR2 of 0x34120000 */
  492. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  493. (mac_addr[3] << 8) | (mac_addr[2]);
  494. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  495. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  496. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  497. return 0;
  498. }
  499. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  500. int *threads_num_ret)
  501. {
  502. int num_threads_numerica;
  503. switch (threads_num) {
  504. case UEC_NUM_OF_THREADS_1:
  505. num_threads_numerica = 1;
  506. break;
  507. case UEC_NUM_OF_THREADS_2:
  508. num_threads_numerica = 2;
  509. break;
  510. case UEC_NUM_OF_THREADS_4:
  511. num_threads_numerica = 4;
  512. break;
  513. case UEC_NUM_OF_THREADS_6:
  514. num_threads_numerica = 6;
  515. break;
  516. case UEC_NUM_OF_THREADS_8:
  517. num_threads_numerica = 8;
  518. break;
  519. default:
  520. printf("%s: Bad number of threads value.",
  521. __FUNCTION__);
  522. return -EINVAL;
  523. }
  524. *threads_num_ret = num_threads_numerica;
  525. return 0;
  526. }
  527. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  528. {
  529. uec_info_t *uec_info;
  530. u32 end_bd;
  531. u8 bmrx = 0;
  532. int i;
  533. uec_info = uec->uec_info;
  534. /* Alloc global Tx parameter RAM page */
  535. uec->tx_glbl_pram_offset = qe_muram_alloc(
  536. sizeof(uec_tx_global_pram_t),
  537. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  538. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  539. qe_muram_addr(uec->tx_glbl_pram_offset);
  540. /* Zero the global Tx prameter RAM */
  541. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  542. /* Init global Tx parameter RAM */
  543. /* TEMODER, RMON statistics disable, one Tx queue */
  544. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  545. /* SQPTR */
  546. uec->send_q_mem_reg_offset = qe_muram_alloc(
  547. sizeof(uec_send_queue_qd_t),
  548. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  549. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  550. qe_muram_addr(uec->send_q_mem_reg_offset);
  551. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  552. /* Setup the table with TxBDs ring */
  553. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  554. * SIZEOFBD;
  555. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  556. (u32)(uec->p_tx_bd_ring));
  557. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  558. end_bd);
  559. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  560. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  561. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  562. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  563. /* TSTATE, global snooping, big endian, the CSB bus selected */
  564. bmrx = BMR_INIT_VALUE;
  565. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  566. /* IPH_Offset */
  567. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  568. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  569. }
  570. /* VTAG table */
  571. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  572. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  573. }
  574. /* TQPTR */
  575. uec->thread_dat_tx_offset = qe_muram_alloc(
  576. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  577. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  578. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  579. qe_muram_addr(uec->thread_dat_tx_offset);
  580. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  581. }
  582. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  583. {
  584. u8 bmrx = 0;
  585. int i;
  586. uec_82xx_address_filtering_pram_t *p_af_pram;
  587. /* Allocate global Rx parameter RAM page */
  588. uec->rx_glbl_pram_offset = qe_muram_alloc(
  589. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  590. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  591. qe_muram_addr(uec->rx_glbl_pram_offset);
  592. /* Zero Global Rx parameter RAM */
  593. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  594. /* Init global Rx parameter RAM */
  595. /* REMODER, Extended feature mode disable, VLAN disable,
  596. LossLess flow control disable, Receive firmware statisic disable,
  597. Extended address parsing mode disable, One Rx queues,
  598. Dynamic maximum/minimum frame length disable, IP checksum check
  599. disable, IP address alignment disable
  600. */
  601. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  602. /* RQPTR */
  603. uec->thread_dat_rx_offset = qe_muram_alloc(
  604. num_threads_rx * sizeof(uec_thread_data_rx_t),
  605. UEC_THREAD_DATA_ALIGNMENT);
  606. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  607. qe_muram_addr(uec->thread_dat_rx_offset);
  608. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  609. /* Type_or_Len */
  610. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  611. /* RxRMON base pointer, we don't need it */
  612. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  613. /* IntCoalescingPTR, we don't need it, no interrupt */
  614. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  615. /* RSTATE, global snooping, big endian, the CSB bus selected */
  616. bmrx = BMR_INIT_VALUE;
  617. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  618. /* MRBLR */
  619. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  620. /* RBDQPTR */
  621. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  622. sizeof(uec_rx_bd_queues_entry_t) + \
  623. sizeof(uec_rx_prefetched_bds_t),
  624. UEC_RX_BD_QUEUES_ALIGNMENT);
  625. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  626. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  627. /* Zero it */
  628. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  629. sizeof(uec_rx_prefetched_bds_t));
  630. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  631. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  632. (u32)uec->p_rx_bd_ring);
  633. /* MFLR */
  634. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  635. /* MINFLR */
  636. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  637. /* MAXD1 */
  638. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  639. /* MAXD2 */
  640. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  641. /* ECAM_PTR */
  642. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  643. /* L2QT */
  644. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  645. /* L3QT */
  646. for (i = 0; i < 8; i++) {
  647. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  648. }
  649. /* VLAN_TYPE */
  650. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  651. /* TCI */
  652. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  653. /* Clear PQ2 style address filtering hash table */
  654. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  655. uec->p_rx_glbl_pram->addressfiltering;
  656. p_af_pram->iaddr_h = 0;
  657. p_af_pram->iaddr_l = 0;
  658. p_af_pram->gaddr_h = 0;
  659. p_af_pram->gaddr_l = 0;
  660. }
  661. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  662. int thread_tx, int thread_rx)
  663. {
  664. uec_init_cmd_pram_t *p_init_enet_param;
  665. u32 init_enet_param_offset;
  666. uec_info_t *uec_info;
  667. int i;
  668. int snum;
  669. u32 init_enet_offset;
  670. u32 entry_val;
  671. u32 command;
  672. u32 cecr_subblock;
  673. uec_info = uec->uec_info;
  674. /* Allocate init enet command parameter */
  675. uec->init_enet_param_offset = qe_muram_alloc(
  676. sizeof(uec_init_cmd_pram_t), 4);
  677. init_enet_param_offset = uec->init_enet_param_offset;
  678. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  679. qe_muram_addr(uec->init_enet_param_offset);
  680. /* Zero init enet command struct */
  681. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  682. /* Init the command struct */
  683. p_init_enet_param = uec->p_init_enet_param;
  684. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  685. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  686. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  687. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  688. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  689. p_init_enet_param->largestexternallookupkeysize = 0;
  690. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  691. << ENET_INIT_PARAM_RGF_SHIFT;
  692. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  693. << ENET_INIT_PARAM_TGF_SHIFT;
  694. /* Init Rx global parameter pointer */
  695. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  696. (u32)uec_info->riscRx;
  697. /* Init Rx threads */
  698. for (i = 0; i < (thread_rx + 1); i++) {
  699. if ((snum = qe_get_snum()) < 0) {
  700. printf("%s can not get snum\n", __FUNCTION__);
  701. return -ENOMEM;
  702. }
  703. if (i==0) {
  704. init_enet_offset = 0;
  705. } else {
  706. init_enet_offset = qe_muram_alloc(
  707. sizeof(uec_thread_rx_pram_t),
  708. UEC_THREAD_RX_PRAM_ALIGNMENT);
  709. }
  710. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  711. init_enet_offset | (u32)uec_info->riscRx;
  712. p_init_enet_param->rxthread[i] = entry_val;
  713. }
  714. /* Init Tx global parameter pointer */
  715. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  716. (u32)uec_info->riscTx;
  717. /* Init Tx threads */
  718. for (i = 0; i < thread_tx; i++) {
  719. if ((snum = qe_get_snum()) < 0) {
  720. printf("%s can not get snum\n", __FUNCTION__);
  721. return -ENOMEM;
  722. }
  723. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  724. UEC_THREAD_TX_PRAM_ALIGNMENT);
  725. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  726. init_enet_offset | (u32)uec_info->riscTx;
  727. p_init_enet_param->txthread[i] = entry_val;
  728. }
  729. __asm__ __volatile__("sync");
  730. /* Issue QE command */
  731. command = QE_INIT_TX_RX;
  732. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  733. uec->uec_info->uf_info.ucc_num);
  734. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  735. init_enet_param_offset);
  736. return 0;
  737. }
  738. static int uec_startup(uec_private_t *uec)
  739. {
  740. uec_info_t *uec_info;
  741. ucc_fast_info_t *uf_info;
  742. ucc_fast_private_t *uccf;
  743. ucc_fast_t *uf_regs;
  744. uec_t *uec_regs;
  745. int num_threads_tx;
  746. int num_threads_rx;
  747. u32 utbipar;
  748. enet_interface_e enet_interface;
  749. u32 length;
  750. u32 align;
  751. qe_bd_t *bd;
  752. u8 *buf;
  753. int i;
  754. if (!uec || !uec->uec_info) {
  755. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  756. return -EINVAL;
  757. }
  758. uec_info = uec->uec_info;
  759. uf_info = &(uec_info->uf_info);
  760. /* Check if Rx BD ring len is illegal */
  761. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  762. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  763. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  764. __FUNCTION__);
  765. return -EINVAL;
  766. }
  767. /* Check if Tx BD ring len is illegal */
  768. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  769. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  770. __FUNCTION__);
  771. return -EINVAL;
  772. }
  773. /* Check if MRBLR is illegal */
  774. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  775. printf("%s: max rx buffer length must be mutliple of 128.\n",
  776. __FUNCTION__);
  777. return -EINVAL;
  778. }
  779. /* Both Rx and Tx are stopped */
  780. uec->grace_stopped_rx = 1;
  781. uec->grace_stopped_tx = 1;
  782. /* Init UCC fast */
  783. if (ucc_fast_init(uf_info, &uccf)) {
  784. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  785. return -ENOMEM;
  786. }
  787. /* Save uccf */
  788. uec->uccf = uccf;
  789. /* Convert the Tx threads number */
  790. if (uec_convert_threads_num(uec_info->num_threads_tx,
  791. &num_threads_tx)) {
  792. return -EINVAL;
  793. }
  794. /* Convert the Rx threads number */
  795. if (uec_convert_threads_num(uec_info->num_threads_rx,
  796. &num_threads_rx)) {
  797. return -EINVAL;
  798. }
  799. uf_regs = uccf->uf_regs;
  800. /* UEC register is following UCC fast registers */
  801. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  802. /* Save the UEC register pointer to UEC private struct */
  803. uec->uec_regs = uec_regs;
  804. /* Init UPSMR, enable hardware statistics (UCC) */
  805. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  806. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  807. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  808. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  809. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  810. /* Setup MAC interface mode */
  811. uec_set_mac_if_mode(uec, uec_info->enet_interface);
  812. /* Setup MII master clock source */
  813. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  814. /* Setup UTBIPAR */
  815. utbipar = in_be32(&uec_regs->utbipar);
  816. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  817. enet_interface = uec->uec_info->enet_interface;
  818. if (enet_interface == ENET_1000_TBI ||
  819. enet_interface == ENET_1000_RTBI) {
  820. utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num)
  821. << UTBIPAR_PHY_ADDRESS_SHIFT;
  822. } else {
  823. utbipar |= (0x10 + uec_info->uf_info.ucc_num)
  824. << UTBIPAR_PHY_ADDRESS_SHIFT;
  825. }
  826. out_be32(&uec_regs->utbipar, utbipar);
  827. /* Allocate Tx BDs */
  828. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  829. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  830. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  831. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  832. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  833. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  834. }
  835. align = UEC_TX_BD_RING_ALIGNMENT;
  836. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  837. if (uec->tx_bd_ring_offset != 0) {
  838. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  839. & ~(align - 1));
  840. }
  841. /* Zero all of Tx BDs */
  842. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  843. /* Allocate Rx BDs */
  844. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  845. align = UEC_RX_BD_RING_ALIGNMENT;
  846. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  847. if (uec->rx_bd_ring_offset != 0) {
  848. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  849. & ~(align - 1));
  850. }
  851. /* Zero all of Rx BDs */
  852. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  853. /* Allocate Rx buffer */
  854. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  855. align = UEC_RX_DATA_BUF_ALIGNMENT;
  856. uec->rx_buf_offset = (u32)malloc(length + align);
  857. if (uec->rx_buf_offset != 0) {
  858. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  859. & ~(align - 1));
  860. }
  861. /* Zero all of the Rx buffer */
  862. memset((void *)(uec->rx_buf_offset), 0, length + align);
  863. /* Init TxBD ring */
  864. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  865. uec->txBd = bd;
  866. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  867. BD_DATA_CLEAR(bd);
  868. BD_STATUS_SET(bd, 0);
  869. BD_LENGTH_SET(bd, 0);
  870. bd ++;
  871. }
  872. BD_STATUS_SET((--bd), TxBD_WRAP);
  873. /* Init RxBD ring */
  874. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  875. uec->rxBd = bd;
  876. buf = uec->p_rx_buf;
  877. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  878. BD_DATA_SET(bd, buf);
  879. BD_LENGTH_SET(bd, 0);
  880. BD_STATUS_SET(bd, RxBD_EMPTY);
  881. buf += MAX_RXBUF_LEN;
  882. bd ++;
  883. }
  884. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  885. /* Init global Tx parameter RAM */
  886. uec_init_tx_parameter(uec, num_threads_tx);
  887. /* Init global Rx parameter RAM */
  888. uec_init_rx_parameter(uec, num_threads_rx);
  889. /* Init ethernet Tx and Rx parameter command */
  890. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  891. num_threads_rx)) {
  892. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  893. return -ENOMEM;
  894. }
  895. return 0;
  896. }
  897. static int uec_init(struct eth_device* dev, bd_t *bd)
  898. {
  899. uec_private_t *uec;
  900. int err;
  901. uec = (uec_private_t *)dev->priv;
  902. if (uec->the_first_run == 0) {
  903. /* Set up the MAC address */
  904. if (dev->enetaddr[0] & 0x01) {
  905. printf("%s: MacAddress is multcast address\n",
  906. __FUNCTION__);
  907. return -EINVAL;
  908. }
  909. uec_set_mac_address(uec, dev->enetaddr);
  910. uec->the_first_run = 1;
  911. }
  912. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  913. if (err) {
  914. printf("%s: cannot enable UEC device\n", dev->name);
  915. return err;
  916. }
  917. return 0;
  918. }
  919. static void uec_halt(struct eth_device* dev)
  920. {
  921. uec_private_t *uec = (uec_private_t *)dev->priv;
  922. uec_stop(uec, COMM_DIR_RX_AND_TX);
  923. }
  924. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  925. {
  926. uec_private_t *uec;
  927. ucc_fast_private_t *uccf;
  928. volatile qe_bd_t *bd;
  929. volatile u16 status;
  930. int i;
  931. int result = 0;
  932. uec = (uec_private_t *)dev->priv;
  933. uccf = uec->uccf;
  934. bd = uec->txBd;
  935. /* Find an empty TxBD */
  936. for (i = 0; BD_STATUS(bd) & TxBD_READY; i++) {
  937. if (i > 0x100000) {
  938. printf("%s: tx buffer not ready\n", dev->name);
  939. return result;
  940. }
  941. }
  942. /* Init TxBD */
  943. BD_DATA_SET(bd, buf);
  944. BD_LENGTH_SET(bd, len);
  945. status = BD_STATUS(bd);
  946. status &= BD_WRAP;
  947. status |= (TxBD_READY | TxBD_LAST);
  948. BD_STATUS_SET(bd, status);
  949. /* Tell UCC to transmit the buffer */
  950. ucc_fast_transmit_on_demand(uccf);
  951. /* Wait for buffer to be transmitted */
  952. status = BD_STATUS(bd);
  953. for (i = 0; status & TxBD_READY; i++) {
  954. if (i > 0x100000) {
  955. printf("%s: tx error\n", dev->name);
  956. return result;
  957. }
  958. status = BD_STATUS(bd);
  959. }
  960. /* Ok, the buffer be transimitted */
  961. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  962. uec->txBd = bd;
  963. result = 1;
  964. return result;
  965. }
  966. static int uec_recv(struct eth_device* dev)
  967. {
  968. uec_private_t *uec = dev->priv;
  969. volatile qe_bd_t *bd;
  970. volatile u16 status;
  971. u16 len;
  972. u8 *data;
  973. bd = uec->rxBd;
  974. status = BD_STATUS(bd);
  975. while (!(status & RxBD_EMPTY)) {
  976. if (!(status & RxBD_ERROR)) {
  977. data = BD_DATA(bd);
  978. len = BD_LENGTH(bd);
  979. NetReceive(data, len);
  980. } else {
  981. printf("%s: Rx error\n", dev->name);
  982. }
  983. status &= BD_CLEAN;
  984. BD_LENGTH_SET(bd, 0);
  985. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  986. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  987. status = BD_STATUS(bd);
  988. }
  989. uec->rxBd = bd;
  990. return 1;
  991. }
  992. int uec_initialize(int index)
  993. {
  994. struct eth_device *dev;
  995. int i;
  996. uec_private_t *uec;
  997. uec_info_t *uec_info;
  998. int err;
  999. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1000. if (!dev)
  1001. return 0;
  1002. memset(dev, 0, sizeof(struct eth_device));
  1003. /* Allocate the UEC private struct */
  1004. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1005. if (!uec) {
  1006. return -ENOMEM;
  1007. }
  1008. memset(uec, 0, sizeof(uec_private_t));
  1009. /* Init UEC private struct, they come from board.h */
  1010. if (index == 0) {
  1011. #ifdef CONFIG_UEC_ETH1
  1012. uec_info = &eth1_uec_info;
  1013. #endif
  1014. } else if (index == 1) {
  1015. #ifdef CONFIG_UEC_ETH2
  1016. uec_info = &eth2_uec_info;
  1017. #endif
  1018. } else {
  1019. printf("%s: index is illegal.\n", __FUNCTION__);
  1020. return -EINVAL;
  1021. }
  1022. uec->uec_info = uec_info;
  1023. sprintf(dev->name, "FSL UEC%d", index);
  1024. dev->iobase = 0;
  1025. dev->priv = (void *)uec;
  1026. dev->init = uec_init;
  1027. dev->halt = uec_halt;
  1028. dev->send = uec_send;
  1029. dev->recv = uec_recv;
  1030. /* Clear the ethnet address */
  1031. for (i = 0; i < 6; i++)
  1032. dev->enetaddr[i] = 0;
  1033. eth_register(dev);
  1034. err = uec_startup(uec);
  1035. if (err) {
  1036. printf("%s: Cannot configure net device, aborting.",dev->name);
  1037. return err;
  1038. }
  1039. err = init_phy(dev);
  1040. if (err) {
  1041. printf("%s: Cannot initialize PHY, aborting.\n", dev->name);
  1042. return err;
  1043. }
  1044. phy_change(dev);
  1045. return 1;
  1046. }
  1047. #endif /* CONFIG_QE */