zfs_sha256.c 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. /*
  2. * GRUB -- GRand Unified Bootloader
  3. * Copyright (C) 1999,2000,2001,2002,2003,2004 Free Software Foundation, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. /*
  20. * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
  21. * Use is subject to license terms.
  22. */
  23. #include <common.h>
  24. #include <malloc.h>
  25. #include <linux/stat.h>
  26. #include <linux/time.h>
  27. #include <linux/ctype.h>
  28. #include <asm/byteorder.h>
  29. #include "zfs_common.h"
  30. #include <zfs/zfs.h>
  31. #include <zfs/zio.h>
  32. #include <zfs/dnode.h>
  33. #include <zfs/uberblock_impl.h>
  34. #include <zfs/vdev_impl.h>
  35. #include <zfs/zio_checksum.h>
  36. #include <zfs/zap_impl.h>
  37. #include <zfs/zap_leaf.h>
  38. #include <zfs/zfs_znode.h>
  39. #include <zfs/dmu.h>
  40. #include <zfs/dmu_objset.h>
  41. #include <zfs/dsl_dir.h>
  42. #include <zfs/dsl_dataset.h>
  43. /*
  44. * SHA-256 checksum, as specified in FIPS 180-2, available at:
  45. * http://csrc.nist.gov/cryptval
  46. *
  47. * This is a very compact implementation of SHA-256.
  48. * It is designed to be simple and portable, not to be fast.
  49. */
  50. /*
  51. * The literal definitions according to FIPS180-2 would be:
  52. *
  53. * Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
  54. * Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
  55. *
  56. * We use logical equivalents which require one less op.
  57. */
  58. #define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
  59. #define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
  60. #define Rot32(x, s) (((x) >> s) | ((x) << (32 - s)))
  61. #define SIGMA0(x) (Rot32(x, 2) ^ Rot32(x, 13) ^ Rot32(x, 22))
  62. #define SIGMA1(x) (Rot32(x, 6) ^ Rot32(x, 11) ^ Rot32(x, 25))
  63. #define sigma0(x) (Rot32(x, 7) ^ Rot32(x, 18) ^ ((x) >> 3))
  64. #define sigma1(x) (Rot32(x, 17) ^ Rot32(x, 19) ^ ((x) >> 10))
  65. static const uint32_t SHA256_K[64] = {
  66. 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
  67. 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
  68. 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
  69. 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
  70. 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
  71. 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
  72. 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
  73. 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
  74. 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
  75. 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
  76. 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
  77. 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
  78. 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
  79. 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
  80. 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
  81. 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
  82. };
  83. static void
  84. SHA256Transform(uint32_t *H, const uint8_t *cp)
  85. {
  86. uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64];
  87. for (t = 0; t < 16; t++, cp += 4)
  88. W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3];
  89. for (t = 16; t < 64; t++)
  90. W[t] = sigma1(W[t - 2]) + W[t - 7] +
  91. sigma0(W[t - 15]) + W[t - 16];
  92. a = H[0]; b = H[1]; c = H[2]; d = H[3];
  93. e = H[4]; f = H[5]; g = H[6]; h = H[7];
  94. for (t = 0; t < 64; t++) {
  95. T1 = h + SIGMA1(e) + Ch(e, f, g) + SHA256_K[t] + W[t];
  96. T2 = SIGMA0(a) + Maj(a, b, c);
  97. h = g; g = f; f = e; e = d + T1;
  98. d = c; c = b; b = a; a = T1 + T2;
  99. }
  100. H[0] += a; H[1] += b; H[2] += c; H[3] += d;
  101. H[4] += e; H[5] += f; H[6] += g; H[7] += h;
  102. }
  103. void
  104. zio_checksum_SHA256(const void *buf, uint64_t size,
  105. zfs_endian_t endian, zio_cksum_t *zcp)
  106. {
  107. uint32_t H[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
  108. 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
  109. uint8_t pad[128];
  110. unsigned padsize = size & 63;
  111. unsigned i;
  112. for (i = 0; i < size - padsize; i += 64)
  113. SHA256Transform(H, (uint8_t *)buf + i);
  114. for (i = 0; i < padsize; i++)
  115. pad[i] = ((uint8_t *)buf)[i];
  116. for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++)
  117. pad[padsize] = 0;
  118. for (i = 0; i < 8; i++)
  119. pad[padsize++] = (size << 3) >> (56 - 8 * i);
  120. for (i = 0; i < padsize; i += 64)
  121. SHA256Transform(H, pad + i);
  122. zcp->zc_word[0] = cpu_to_zfs64((uint64_t)H[0] << 32 | H[1],
  123. endian);
  124. zcp->zc_word[1] = cpu_to_zfs64((uint64_t)H[2] << 32 | H[3],
  125. endian);
  126. zcp->zc_word[2] = cpu_to_zfs64((uint64_t)H[4] << 32 | H[5],
  127. endian);
  128. zcp->zc_word[3] = cpu_to_zfs64((uint64_t)H[6] << 32 | H[7],
  129. endian);
  130. }