nand_boot.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. /*
  2. * (C) Copyright 2006-2008
  3. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation; either version 2 of
  8. * the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  18. * MA 02111-1307 USA
  19. */
  20. #include <common.h>
  21. #include <nand.h>
  22. #include <asm/io.h>
  23. static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
  24. #if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
  25. /*
  26. * NAND command for small page NAND devices (512)
  27. */
  28. static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  29. {
  30. struct nand_chip *this = mtd->priv;
  31. int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  32. if (this->dev_ready)
  33. while (!this->dev_ready(mtd))
  34. ;
  35. else
  36. CONFIG_SYS_NAND_READ_DELAY;
  37. /* Begin command latch cycle */
  38. this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  39. /* Set ALE and clear CLE to start address cycle */
  40. /* Column address */
  41. this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  42. this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
  43. this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
  44. NAND_CTRL_ALE); /* A[24:17] */
  45. #ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
  46. /* One more address cycle for devices > 32MiB */
  47. this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
  48. NAND_CTRL_ALE); /* A[28:25] */
  49. #endif
  50. /* Latch in address */
  51. this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  52. /*
  53. * Wait a while for the data to be ready
  54. */
  55. while (!this->dev_ready(mtd))
  56. ;
  57. return 0;
  58. }
  59. #else
  60. /*
  61. * NAND command for large page NAND devices (2k)
  62. */
  63. static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
  64. {
  65. struct nand_chip *this = mtd->priv;
  66. int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
  67. void (*hwctrl)(struct mtd_info *mtd, int cmd,
  68. unsigned int ctrl) = this->cmd_ctrl;
  69. while (!this->dev_ready(mtd))
  70. ;
  71. /* Emulate NAND_CMD_READOOB */
  72. if (cmd == NAND_CMD_READOOB) {
  73. offs += CONFIG_SYS_NAND_PAGE_SIZE;
  74. cmd = NAND_CMD_READ0;
  75. }
  76. /* Shift the offset from byte addressing to word addressing. */
  77. if (this->options & NAND_BUSWIDTH_16)
  78. offs >>= 1;
  79. /* Begin command latch cycle */
  80. hwctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  81. /* Set ALE and clear CLE to start address cycle */
  82. /* Column address */
  83. hwctrl(mtd, offs & 0xff,
  84. NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
  85. hwctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
  86. /* Row address */
  87. hwctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
  88. hwctrl(mtd, ((page_addr >> 8) & 0xff),
  89. NAND_CTRL_ALE); /* A[27:20] */
  90. #ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
  91. /* One more address cycle for devices > 128MiB */
  92. hwctrl(mtd, (page_addr >> 16) & 0x0f,
  93. NAND_CTRL_ALE); /* A[31:28] */
  94. #endif
  95. /* Latch in address */
  96. hwctrl(mtd, NAND_CMD_READSTART,
  97. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  98. hwctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  99. /*
  100. * Wait a while for the data to be ready
  101. */
  102. while (!this->dev_ready(mtd))
  103. ;
  104. return 0;
  105. }
  106. #endif
  107. static int nand_is_bad_block(struct mtd_info *mtd, int block)
  108. {
  109. struct nand_chip *this = mtd->priv;
  110. nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
  111. /*
  112. * Read one byte
  113. */
  114. if (readb(this->IO_ADDR_R) != 0xff)
  115. return 1;
  116. return 0;
  117. }
  118. static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
  119. {
  120. struct nand_chip *this = mtd->priv;
  121. u_char *ecc_calc;
  122. u_char *ecc_code;
  123. u_char *oob_data;
  124. int i;
  125. int eccsize = CONFIG_SYS_NAND_ECCSIZE;
  126. int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
  127. int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
  128. uint8_t *p = dst;
  129. int stat;
  130. nand_command(mtd, block, page, 0, NAND_CMD_READ0);
  131. /* No malloc available for now, just use some temporary locations
  132. * in SDRAM
  133. */
  134. ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
  135. ecc_code = ecc_calc + 0x100;
  136. oob_data = ecc_calc + 0x200;
  137. for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  138. this->ecc.hwctl(mtd, NAND_ECC_READ);
  139. this->read_buf(mtd, p, eccsize);
  140. this->ecc.calculate(mtd, p, &ecc_calc[i]);
  141. }
  142. this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
  143. /* Pick the ECC bytes out of the oob data */
  144. for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
  145. ecc_code[i] = oob_data[nand_ecc_pos[i]];
  146. eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
  147. p = dst;
  148. for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  149. /* No chance to do something with the possible error message
  150. * from correct_data(). We just hope that all possible errors
  151. * are corrected by this routine.
  152. */
  153. stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
  154. }
  155. return 0;
  156. }
  157. static int nand_load(struct mtd_info *mtd, unsigned int offs,
  158. unsigned int uboot_size, uchar *dst)
  159. {
  160. unsigned int block, lastblock;
  161. unsigned int page;
  162. /*
  163. * offs has to be aligned to a page address!
  164. */
  165. block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
  166. lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
  167. page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
  168. while (block <= lastblock) {
  169. if (!nand_is_bad_block(mtd, block)) {
  170. /*
  171. * Skip bad blocks
  172. */
  173. while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
  174. nand_read_page(mtd, block, page, dst);
  175. dst += CONFIG_SYS_NAND_PAGE_SIZE;
  176. page++;
  177. }
  178. page = 0;
  179. } else {
  180. lastblock++;
  181. }
  182. block++;
  183. }
  184. return 0;
  185. }
  186. /*
  187. * The main entry for NAND booting. It's necessary that SDRAM is already
  188. * configured and available since this code loads the main U-Boot image
  189. * from NAND into SDRAM and starts it from there.
  190. */
  191. void nand_boot(void)
  192. {
  193. struct nand_chip nand_chip;
  194. nand_info_t nand_info;
  195. int ret;
  196. __attribute__((noreturn)) void (*uboot)(void);
  197. /*
  198. * Init board specific nand support
  199. */
  200. nand_chip.select_chip = NULL;
  201. nand_info.priv = &nand_chip;
  202. nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
  203. nand_chip.dev_ready = NULL; /* preset to NULL */
  204. nand_chip.options = 0;
  205. board_nand_init(&nand_chip);
  206. if (nand_chip.select_chip)
  207. nand_chip.select_chip(&nand_info, 0);
  208. /*
  209. * Load U-Boot image from NAND into RAM
  210. */
  211. ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
  212. (uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
  213. #ifdef CONFIG_NAND_ENV_DST
  214. nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
  215. (uchar *)CONFIG_NAND_ENV_DST);
  216. #ifdef CONFIG_ENV_OFFSET_REDUND
  217. nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
  218. (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
  219. #endif
  220. #endif
  221. if (nand_chip.select_chip)
  222. nand_chip.select_chip(&nand_info, -1);
  223. /*
  224. * Jump to U-Boot image
  225. */
  226. uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
  227. (*uboot)();
  228. }