LzmaDec.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /* LzmaDec.c -- LZMA Decoder
  2. 2008-11-06 : Igor Pavlov : Public domain */
  3. #include <config.h>
  4. #include <common.h>
  5. #include <watchdog.h>
  6. #include "LzmaDec.h"
  7. #include <linux/string.h>
  8. #define kNumTopBits 24
  9. #define kTopValue ((UInt32)1 << kNumTopBits)
  10. #define kNumBitModelTotalBits 11
  11. #define kBitModelTotal (1 << kNumBitModelTotalBits)
  12. #define kNumMoveBits 5
  13. #define RC_INIT_SIZE 5
  14. #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  15. #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  16. #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  17. #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  18. #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  19. { UPDATE_0(p); i = (i + i); A0; } else \
  20. { UPDATE_1(p); i = (i + i) + 1; A1; }
  21. #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
  22. #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
  23. #define TREE_DECODE(probs, limit, i) \
  24. { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  25. /* #define _LZMA_SIZE_OPT */
  26. #ifdef _LZMA_SIZE_OPT
  27. #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  28. #else
  29. #define TREE_6_DECODE(probs, i) \
  30. { i = 1; \
  31. TREE_GET_BIT(probs, i); \
  32. TREE_GET_BIT(probs, i); \
  33. TREE_GET_BIT(probs, i); \
  34. TREE_GET_BIT(probs, i); \
  35. TREE_GET_BIT(probs, i); \
  36. TREE_GET_BIT(probs, i); \
  37. i -= 0x40; }
  38. #endif
  39. #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
  40. #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  41. #define UPDATE_0_CHECK range = bound;
  42. #define UPDATE_1_CHECK range -= bound; code -= bound;
  43. #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  44. { UPDATE_0_CHECK; i = (i + i); A0; } else \
  45. { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
  46. #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  47. #define TREE_DECODE_CHECK(probs, limit, i) \
  48. { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  49. #define kNumPosBitsMax 4
  50. #define kNumPosStatesMax (1 << kNumPosBitsMax)
  51. #define kLenNumLowBits 3
  52. #define kLenNumLowSymbols (1 << kLenNumLowBits)
  53. #define kLenNumMidBits 3
  54. #define kLenNumMidSymbols (1 << kLenNumMidBits)
  55. #define kLenNumHighBits 8
  56. #define kLenNumHighSymbols (1 << kLenNumHighBits)
  57. #define LenChoice 0
  58. #define LenChoice2 (LenChoice + 1)
  59. #define LenLow (LenChoice2 + 1)
  60. #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
  61. #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
  62. #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  63. #define kNumStates 12
  64. #define kNumLitStates 7
  65. #define kStartPosModelIndex 4
  66. #define kEndPosModelIndex 14
  67. #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
  68. #define kNumPosSlotBits 6
  69. #define kNumLenToPosStates 4
  70. #define kNumAlignBits 4
  71. #define kAlignTableSize (1 << kNumAlignBits)
  72. #define kMatchMinLen 2
  73. #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
  74. #define IsMatch 0
  75. #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
  76. #define IsRepG0 (IsRep + kNumStates)
  77. #define IsRepG1 (IsRepG0 + kNumStates)
  78. #define IsRepG2 (IsRepG1 + kNumStates)
  79. #define IsRep0Long (IsRepG2 + kNumStates)
  80. #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
  81. #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
  82. #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
  83. #define LenCoder (Align + kAlignTableSize)
  84. #define RepLenCoder (LenCoder + kNumLenProbs)
  85. #define Literal (RepLenCoder + kNumLenProbs)
  86. #define LZMA_BASE_SIZE 1846
  87. #define LZMA_LIT_SIZE 768
  88. #define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
  89. #if Literal != LZMA_BASE_SIZE
  90. StopCompilingDueBUG
  91. #endif
  92. static const Byte kLiteralNextStates[kNumStates * 2] =
  93. {
  94. 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5,
  95. 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10
  96. };
  97. #define LZMA_DIC_MIN (1 << 12)
  98. /* First LZMA-symbol is always decoded.
  99. And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
  100. Out:
  101. Result:
  102. SZ_OK - OK
  103. SZ_ERROR_DATA - Error
  104. p->remainLen:
  105. < kMatchSpecLenStart : normal remain
  106. = kMatchSpecLenStart : finished
  107. = kMatchSpecLenStart + 1 : Flush marker
  108. = kMatchSpecLenStart + 2 : State Init Marker
  109. */
  110. static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  111. {
  112. CLzmaProb *probs = p->probs;
  113. unsigned state = p->state;
  114. UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  115. unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  116. unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
  117. unsigned lc = p->prop.lc;
  118. Byte *dic = p->dic;
  119. SizeT dicBufSize = p->dicBufSize;
  120. SizeT dicPos = p->dicPos;
  121. UInt32 processedPos = p->processedPos;
  122. UInt32 checkDicSize = p->checkDicSize;
  123. unsigned len = 0;
  124. const Byte *buf = p->buf;
  125. UInt32 range = p->range;
  126. UInt32 code = p->code;
  127. WATCHDOG_RESET();
  128. do
  129. {
  130. CLzmaProb *prob;
  131. UInt32 bound;
  132. unsigned ttt;
  133. unsigned posState = processedPos & pbMask;
  134. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  135. IF_BIT_0(prob)
  136. {
  137. unsigned symbol;
  138. UPDATE_0(prob);
  139. prob = probs + Literal;
  140. if (checkDicSize != 0 || processedPos != 0)
  141. prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
  142. (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
  143. if (state < kNumLitStates)
  144. {
  145. symbol = 1;
  146. WATCHDOG_RESET();
  147. do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
  148. }
  149. else
  150. {
  151. unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  152. unsigned offs = 0x100;
  153. symbol = 1;
  154. WATCHDOG_RESET();
  155. do
  156. {
  157. unsigned bit;
  158. CLzmaProb *probLit;
  159. matchByte <<= 1;
  160. bit = (matchByte & offs);
  161. probLit = prob + offs + bit + symbol;
  162. GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
  163. }
  164. while (symbol < 0x100);
  165. }
  166. dic[dicPos++] = (Byte)symbol;
  167. processedPos++;
  168. state = kLiteralNextStates[state];
  169. /* if (state < 4) state = 0; else if (state < 10) state -= 3; else state -= 6; */
  170. continue;
  171. }
  172. else
  173. {
  174. UPDATE_1(prob);
  175. prob = probs + IsRep + state;
  176. IF_BIT_0(prob)
  177. {
  178. UPDATE_0(prob);
  179. state += kNumStates;
  180. prob = probs + LenCoder;
  181. }
  182. else
  183. {
  184. UPDATE_1(prob);
  185. if (checkDicSize == 0 && processedPos == 0)
  186. return SZ_ERROR_DATA;
  187. prob = probs + IsRepG0 + state;
  188. IF_BIT_0(prob)
  189. {
  190. UPDATE_0(prob);
  191. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  192. IF_BIT_0(prob)
  193. {
  194. UPDATE_0(prob);
  195. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  196. dicPos++;
  197. processedPos++;
  198. state = state < kNumLitStates ? 9 : 11;
  199. continue;
  200. }
  201. UPDATE_1(prob);
  202. }
  203. else
  204. {
  205. UInt32 distance;
  206. UPDATE_1(prob);
  207. prob = probs + IsRepG1 + state;
  208. IF_BIT_0(prob)
  209. {
  210. UPDATE_0(prob);
  211. distance = rep1;
  212. }
  213. else
  214. {
  215. UPDATE_1(prob);
  216. prob = probs + IsRepG2 + state;
  217. IF_BIT_0(prob)
  218. {
  219. UPDATE_0(prob);
  220. distance = rep2;
  221. }
  222. else
  223. {
  224. UPDATE_1(prob);
  225. distance = rep3;
  226. rep3 = rep2;
  227. }
  228. rep2 = rep1;
  229. }
  230. rep1 = rep0;
  231. rep0 = distance;
  232. }
  233. state = state < kNumLitStates ? 8 : 11;
  234. prob = probs + RepLenCoder;
  235. }
  236. {
  237. unsigned limit, offset;
  238. CLzmaProb *probLen = prob + LenChoice;
  239. IF_BIT_0(probLen)
  240. {
  241. UPDATE_0(probLen);
  242. probLen = prob + LenLow + (posState << kLenNumLowBits);
  243. offset = 0;
  244. limit = (1 << kLenNumLowBits);
  245. }
  246. else
  247. {
  248. UPDATE_1(probLen);
  249. probLen = prob + LenChoice2;
  250. IF_BIT_0(probLen)
  251. {
  252. UPDATE_0(probLen);
  253. probLen = prob + LenMid + (posState << kLenNumMidBits);
  254. offset = kLenNumLowSymbols;
  255. limit = (1 << kLenNumMidBits);
  256. }
  257. else
  258. {
  259. UPDATE_1(probLen);
  260. probLen = prob + LenHigh;
  261. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  262. limit = (1 << kLenNumHighBits);
  263. }
  264. }
  265. TREE_DECODE(probLen, limit, len);
  266. len += offset;
  267. }
  268. if (state >= kNumStates)
  269. {
  270. UInt32 distance;
  271. prob = probs + PosSlot +
  272. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
  273. TREE_6_DECODE(prob, distance);
  274. if (distance >= kStartPosModelIndex)
  275. {
  276. unsigned posSlot = (unsigned)distance;
  277. int numDirectBits = (int)(((distance >> 1) - 1));
  278. distance = (2 | (distance & 1));
  279. if (posSlot < kEndPosModelIndex)
  280. {
  281. distance <<= numDirectBits;
  282. prob = probs + SpecPos + distance - posSlot - 1;
  283. {
  284. UInt32 mask = 1;
  285. unsigned i = 1;
  286. WATCHDOG_RESET();
  287. do
  288. {
  289. GET_BIT2(prob + i, i, ; , distance |= mask);
  290. mask <<= 1;
  291. }
  292. while (--numDirectBits != 0);
  293. }
  294. }
  295. else
  296. {
  297. numDirectBits -= kNumAlignBits;
  298. WATCHDOG_RESET();
  299. do
  300. {
  301. NORMALIZE
  302. range >>= 1;
  303. {
  304. UInt32 t;
  305. code -= range;
  306. t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
  307. distance = (distance << 1) + (t + 1);
  308. code += range & t;
  309. }
  310. /*
  311. distance <<= 1;
  312. if (code >= range)
  313. {
  314. code -= range;
  315. distance |= 1;
  316. }
  317. */
  318. }
  319. while (--numDirectBits != 0);
  320. prob = probs + Align;
  321. distance <<= kNumAlignBits;
  322. {
  323. unsigned i = 1;
  324. GET_BIT2(prob + i, i, ; , distance |= 1);
  325. GET_BIT2(prob + i, i, ; , distance |= 2);
  326. GET_BIT2(prob + i, i, ; , distance |= 4);
  327. GET_BIT2(prob + i, i, ; , distance |= 8);
  328. }
  329. if (distance == (UInt32)0xFFFFFFFF)
  330. {
  331. len += kMatchSpecLenStart;
  332. state -= kNumStates;
  333. break;
  334. }
  335. }
  336. }
  337. rep3 = rep2;
  338. rep2 = rep1;
  339. rep1 = rep0;
  340. rep0 = distance + 1;
  341. if (checkDicSize == 0)
  342. {
  343. if (distance >= processedPos)
  344. return SZ_ERROR_DATA;
  345. }
  346. else if (distance >= checkDicSize)
  347. return SZ_ERROR_DATA;
  348. state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
  349. /* state = kLiteralNextStates[state]; */
  350. }
  351. len += kMatchMinLen;
  352. if (limit == dicPos)
  353. return SZ_ERROR_DATA;
  354. {
  355. SizeT rem = limit - dicPos;
  356. unsigned curLen = ((rem < len) ? (unsigned)rem : len);
  357. SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
  358. processedPos += curLen;
  359. len -= curLen;
  360. if (pos + curLen <= dicBufSize)
  361. {
  362. Byte *dest = dic + dicPos;
  363. ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
  364. const Byte *lim = dest + curLen;
  365. dicPos += curLen;
  366. WATCHDOG_RESET();
  367. do
  368. *(dest) = (Byte)*(dest + src);
  369. while (++dest != lim);
  370. }
  371. else
  372. {
  373. WATCHDOG_RESET();
  374. do
  375. {
  376. dic[dicPos++] = dic[pos];
  377. if (++pos == dicBufSize)
  378. pos = 0;
  379. }
  380. while (--curLen != 0);
  381. }
  382. }
  383. }
  384. }
  385. while (dicPos < limit && buf < bufLimit);
  386. WATCHDOG_RESET();
  387. NORMALIZE;
  388. p->buf = buf;
  389. p->range = range;
  390. p->code = code;
  391. p->remainLen = len;
  392. p->dicPos = dicPos;
  393. p->processedPos = processedPos;
  394. p->reps[0] = rep0;
  395. p->reps[1] = rep1;
  396. p->reps[2] = rep2;
  397. p->reps[3] = rep3;
  398. p->state = state;
  399. return SZ_OK;
  400. }
  401. static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
  402. {
  403. if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
  404. {
  405. Byte *dic = p->dic;
  406. SizeT dicPos = p->dicPos;
  407. SizeT dicBufSize = p->dicBufSize;
  408. unsigned len = p->remainLen;
  409. UInt32 rep0 = p->reps[0];
  410. if (limit - dicPos < len)
  411. len = (unsigned)(limit - dicPos);
  412. if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
  413. p->checkDicSize = p->prop.dicSize;
  414. p->processedPos += len;
  415. p->remainLen -= len;
  416. while (len-- != 0)
  417. {
  418. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  419. dicPos++;
  420. }
  421. p->dicPos = dicPos;
  422. }
  423. }
  424. static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  425. {
  426. do
  427. {
  428. SizeT limit2 = limit;
  429. if (p->checkDicSize == 0)
  430. {
  431. UInt32 rem = p->prop.dicSize - p->processedPos;
  432. if (limit - p->dicPos > rem)
  433. limit2 = p->dicPos + rem;
  434. }
  435. RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
  436. if (p->processedPos >= p->prop.dicSize)
  437. p->checkDicSize = p->prop.dicSize;
  438. LzmaDec_WriteRem(p, limit);
  439. }
  440. while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
  441. if (p->remainLen > kMatchSpecLenStart)
  442. {
  443. p->remainLen = kMatchSpecLenStart;
  444. }
  445. return 0;
  446. }
  447. typedef enum
  448. {
  449. DUMMY_ERROR, /* unexpected end of input stream */
  450. DUMMY_LIT,
  451. DUMMY_MATCH,
  452. DUMMY_REP
  453. } ELzmaDummy;
  454. static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
  455. {
  456. UInt32 range = p->range;
  457. UInt32 code = p->code;
  458. const Byte *bufLimit = buf + inSize;
  459. CLzmaProb *probs = p->probs;
  460. unsigned state = p->state;
  461. ELzmaDummy res;
  462. {
  463. CLzmaProb *prob;
  464. UInt32 bound;
  465. unsigned ttt;
  466. unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
  467. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  468. IF_BIT_0_CHECK(prob)
  469. {
  470. UPDATE_0_CHECK
  471. /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
  472. prob = probs + Literal;
  473. if (p->checkDicSize != 0 || p->processedPos != 0)
  474. prob += (LZMA_LIT_SIZE *
  475. ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
  476. (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
  477. if (state < kNumLitStates)
  478. {
  479. unsigned symbol = 1;
  480. do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
  481. }
  482. else
  483. {
  484. unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
  485. ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
  486. unsigned offs = 0x100;
  487. unsigned symbol = 1;
  488. do
  489. {
  490. unsigned bit;
  491. CLzmaProb *probLit;
  492. matchByte <<= 1;
  493. bit = (matchByte & offs);
  494. probLit = prob + offs + bit + symbol;
  495. GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
  496. }
  497. while (symbol < 0x100);
  498. }
  499. res = DUMMY_LIT;
  500. }
  501. else
  502. {
  503. unsigned len;
  504. UPDATE_1_CHECK;
  505. prob = probs + IsRep + state;
  506. IF_BIT_0_CHECK(prob)
  507. {
  508. UPDATE_0_CHECK;
  509. state = 0;
  510. prob = probs + LenCoder;
  511. res = DUMMY_MATCH;
  512. }
  513. else
  514. {
  515. UPDATE_1_CHECK;
  516. res = DUMMY_REP;
  517. prob = probs + IsRepG0 + state;
  518. IF_BIT_0_CHECK(prob)
  519. {
  520. UPDATE_0_CHECK;
  521. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  522. IF_BIT_0_CHECK(prob)
  523. {
  524. UPDATE_0_CHECK;
  525. NORMALIZE_CHECK;
  526. return DUMMY_REP;
  527. }
  528. else
  529. {
  530. UPDATE_1_CHECK;
  531. }
  532. }
  533. else
  534. {
  535. UPDATE_1_CHECK;
  536. prob = probs + IsRepG1 + state;
  537. IF_BIT_0_CHECK(prob)
  538. {
  539. UPDATE_0_CHECK;
  540. }
  541. else
  542. {
  543. UPDATE_1_CHECK;
  544. prob = probs + IsRepG2 + state;
  545. IF_BIT_0_CHECK(prob)
  546. {
  547. UPDATE_0_CHECK;
  548. }
  549. else
  550. {
  551. UPDATE_1_CHECK;
  552. }
  553. }
  554. }
  555. state = kNumStates;
  556. prob = probs + RepLenCoder;
  557. }
  558. {
  559. unsigned limit, offset;
  560. CLzmaProb *probLen = prob + LenChoice;
  561. IF_BIT_0_CHECK(probLen)
  562. {
  563. UPDATE_0_CHECK;
  564. probLen = prob + LenLow + (posState << kLenNumLowBits);
  565. offset = 0;
  566. limit = 1 << kLenNumLowBits;
  567. }
  568. else
  569. {
  570. UPDATE_1_CHECK;
  571. probLen = prob + LenChoice2;
  572. IF_BIT_0_CHECK(probLen)
  573. {
  574. UPDATE_0_CHECK;
  575. probLen = prob + LenMid + (posState << kLenNumMidBits);
  576. offset = kLenNumLowSymbols;
  577. limit = 1 << kLenNumMidBits;
  578. }
  579. else
  580. {
  581. UPDATE_1_CHECK;
  582. probLen = prob + LenHigh;
  583. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  584. limit = 1 << kLenNumHighBits;
  585. }
  586. }
  587. TREE_DECODE_CHECK(probLen, limit, len);
  588. len += offset;
  589. }
  590. if (state < 4)
  591. {
  592. unsigned posSlot;
  593. prob = probs + PosSlot +
  594. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
  595. kNumPosSlotBits);
  596. TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
  597. if (posSlot >= kStartPosModelIndex)
  598. {
  599. int numDirectBits = ((posSlot >> 1) - 1);
  600. /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
  601. if (posSlot < kEndPosModelIndex)
  602. {
  603. prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
  604. }
  605. else
  606. {
  607. numDirectBits -= kNumAlignBits;
  608. do
  609. {
  610. NORMALIZE_CHECK
  611. range >>= 1;
  612. code -= range & (((code - range) >> 31) - 1);
  613. /* if (code >= range) code -= range; */
  614. }
  615. while (--numDirectBits != 0);
  616. prob = probs + Align;
  617. numDirectBits = kNumAlignBits;
  618. }
  619. {
  620. unsigned i = 1;
  621. do
  622. {
  623. GET_BIT_CHECK(prob + i, i);
  624. }
  625. while (--numDirectBits != 0);
  626. }
  627. }
  628. }
  629. }
  630. }
  631. NORMALIZE_CHECK;
  632. return res;
  633. }
  634. static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
  635. {
  636. p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
  637. p->range = 0xFFFFFFFF;
  638. p->needFlush = 0;
  639. }
  640. void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
  641. {
  642. p->needFlush = 1;
  643. p->remainLen = 0;
  644. p->tempBufSize = 0;
  645. if (initDic)
  646. {
  647. p->processedPos = 0;
  648. p->checkDicSize = 0;
  649. p->needInitState = 1;
  650. }
  651. if (initState)
  652. p->needInitState = 1;
  653. }
  654. void LzmaDec_Init(CLzmaDec *p)
  655. {
  656. p->dicPos = 0;
  657. LzmaDec_InitDicAndState(p, True, True);
  658. }
  659. static void LzmaDec_InitStateReal(CLzmaDec *p)
  660. {
  661. UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
  662. UInt32 i;
  663. CLzmaProb *probs = p->probs;
  664. for (i = 0; i < numProbs; i++)
  665. probs[i] = kBitModelTotal >> 1;
  666. p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
  667. p->state = 0;
  668. p->needInitState = 0;
  669. }
  670. SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
  671. ELzmaFinishMode finishMode, ELzmaStatus *status)
  672. {
  673. SizeT inSize = *srcLen;
  674. (*srcLen) = 0;
  675. LzmaDec_WriteRem(p, dicLimit);
  676. *status = LZMA_STATUS_NOT_SPECIFIED;
  677. while (p->remainLen != kMatchSpecLenStart)
  678. {
  679. int checkEndMarkNow;
  680. if (p->needFlush != 0)
  681. {
  682. for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
  683. p->tempBuf[p->tempBufSize++] = *src++;
  684. if (p->tempBufSize < RC_INIT_SIZE)
  685. {
  686. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  687. return SZ_OK;
  688. }
  689. if (p->tempBuf[0] != 0)
  690. return SZ_ERROR_DATA;
  691. LzmaDec_InitRc(p, p->tempBuf);
  692. p->tempBufSize = 0;
  693. }
  694. checkEndMarkNow = 0;
  695. if (p->dicPos >= dicLimit)
  696. {
  697. if (p->remainLen == 0 && p->code == 0)
  698. {
  699. *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
  700. return SZ_OK;
  701. }
  702. if (finishMode == LZMA_FINISH_ANY)
  703. {
  704. *status = LZMA_STATUS_NOT_FINISHED;
  705. return SZ_OK;
  706. }
  707. if (p->remainLen != 0)
  708. {
  709. *status = LZMA_STATUS_NOT_FINISHED;
  710. return SZ_ERROR_DATA;
  711. }
  712. checkEndMarkNow = 1;
  713. }
  714. if (p->needInitState)
  715. LzmaDec_InitStateReal(p);
  716. if (p->tempBufSize == 0)
  717. {
  718. SizeT processed;
  719. const Byte *bufLimit;
  720. if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  721. {
  722. int dummyRes = LzmaDec_TryDummy(p, src, inSize);
  723. if (dummyRes == DUMMY_ERROR)
  724. {
  725. memcpy(p->tempBuf, src, inSize);
  726. p->tempBufSize = (unsigned)inSize;
  727. (*srcLen) += inSize;
  728. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  729. return SZ_OK;
  730. }
  731. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  732. {
  733. *status = LZMA_STATUS_NOT_FINISHED;
  734. return SZ_ERROR_DATA;
  735. }
  736. bufLimit = src;
  737. }
  738. else
  739. bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
  740. p->buf = src;
  741. if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
  742. return SZ_ERROR_DATA;
  743. processed = (SizeT)(p->buf - src);
  744. (*srcLen) += processed;
  745. src += processed;
  746. inSize -= processed;
  747. }
  748. else
  749. {
  750. unsigned rem = p->tempBufSize, lookAhead = 0;
  751. while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
  752. p->tempBuf[rem++] = src[lookAhead++];
  753. p->tempBufSize = rem;
  754. if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  755. {
  756. int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
  757. if (dummyRes == DUMMY_ERROR)
  758. {
  759. (*srcLen) += lookAhead;
  760. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  761. return SZ_OK;
  762. }
  763. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  764. {
  765. *status = LZMA_STATUS_NOT_FINISHED;
  766. return SZ_ERROR_DATA;
  767. }
  768. }
  769. p->buf = p->tempBuf;
  770. if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
  771. return SZ_ERROR_DATA;
  772. lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
  773. (*srcLen) += lookAhead;
  774. src += lookAhead;
  775. inSize -= lookAhead;
  776. p->tempBufSize = 0;
  777. }
  778. }
  779. if (p->code == 0)
  780. *status = LZMA_STATUS_FINISHED_WITH_MARK;
  781. return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
  782. }
  783. SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
  784. {
  785. SizeT outSize = *destLen;
  786. SizeT inSize = *srcLen;
  787. *srcLen = *destLen = 0;
  788. for (;;)
  789. {
  790. SizeT inSizeCur = inSize, outSizeCur, dicPos;
  791. ELzmaFinishMode curFinishMode;
  792. SRes res;
  793. if (p->dicPos == p->dicBufSize)
  794. p->dicPos = 0;
  795. dicPos = p->dicPos;
  796. if (outSize > p->dicBufSize - dicPos)
  797. {
  798. outSizeCur = p->dicBufSize;
  799. curFinishMode = LZMA_FINISH_ANY;
  800. }
  801. else
  802. {
  803. outSizeCur = dicPos + outSize;
  804. curFinishMode = finishMode;
  805. }
  806. res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
  807. src += inSizeCur;
  808. inSize -= inSizeCur;
  809. *srcLen += inSizeCur;
  810. outSizeCur = p->dicPos - dicPos;
  811. memcpy(dest, p->dic + dicPos, outSizeCur);
  812. dest += outSizeCur;
  813. outSize -= outSizeCur;
  814. *destLen += outSizeCur;
  815. if (res != 0)
  816. return res;
  817. if (outSizeCur == 0 || outSize == 0)
  818. return SZ_OK;
  819. }
  820. }
  821. void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
  822. {
  823. alloc->Free(alloc, p->probs);
  824. p->probs = 0;
  825. }
  826. static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
  827. {
  828. alloc->Free(alloc, p->dic);
  829. p->dic = 0;
  830. }
  831. void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
  832. {
  833. LzmaDec_FreeProbs(p, alloc);
  834. LzmaDec_FreeDict(p, alloc);
  835. }
  836. SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
  837. {
  838. UInt32 dicSize;
  839. Byte d;
  840. if (size < LZMA_PROPS_SIZE)
  841. return SZ_ERROR_UNSUPPORTED;
  842. else
  843. dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  844. if (dicSize < LZMA_DIC_MIN)
  845. dicSize = LZMA_DIC_MIN;
  846. p->dicSize = dicSize;
  847. d = data[0];
  848. if (d >= (9 * 5 * 5))
  849. return SZ_ERROR_UNSUPPORTED;
  850. p->lc = d % 9;
  851. d /= 9;
  852. p->pb = d / 5;
  853. p->lp = d % 5;
  854. return SZ_OK;
  855. }
  856. static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
  857. {
  858. UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  859. if (p->probs == 0 || numProbs != p->numProbs)
  860. {
  861. LzmaDec_FreeProbs(p, alloc);
  862. p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
  863. p->numProbs = numProbs;
  864. if (p->probs == 0)
  865. return SZ_ERROR_MEM;
  866. }
  867. return SZ_OK;
  868. }
  869. SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  870. {
  871. CLzmaProps propNew;
  872. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  873. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  874. p->prop = propNew;
  875. return SZ_OK;
  876. }
  877. SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  878. {
  879. CLzmaProps propNew;
  880. SizeT dicBufSize;
  881. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  882. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  883. dicBufSize = propNew.dicSize;
  884. if (p->dic == 0 || dicBufSize != p->dicBufSize)
  885. {
  886. LzmaDec_FreeDict(p, alloc);
  887. p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
  888. if (p->dic == 0)
  889. {
  890. LzmaDec_FreeProbs(p, alloc);
  891. return SZ_ERROR_MEM;
  892. }
  893. }
  894. p->dicBufSize = dicBufSize;
  895. p->prop = propNew;
  896. return SZ_OK;
  897. }
  898. SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
  899. const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
  900. ELzmaStatus *status, ISzAlloc *alloc)
  901. {
  902. CLzmaDec p;
  903. SRes res;
  904. SizeT inSize = *srcLen;
  905. SizeT outSize = *destLen;
  906. *srcLen = *destLen = 0;
  907. if (inSize < RC_INIT_SIZE)
  908. return SZ_ERROR_INPUT_EOF;
  909. LzmaDec_Construct(&p);
  910. res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
  911. if (res != 0)
  912. return res;
  913. p.dic = dest;
  914. p.dicBufSize = outSize;
  915. LzmaDec_Init(&p);
  916. *srcLen = inSize;
  917. res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  918. if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
  919. res = SZ_ERROR_INPUT_EOF;
  920. (*destLen) = p.dicPos;
  921. LzmaDec_FreeProbs(&p, alloc);
  922. return res;
  923. }