hashtable.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*
  2. * This implementation is based on code from uClibc-0.9.30.3 but was
  3. * modified and extended for use within U-Boot.
  4. *
  5. * Copyright (C) 2010 Wolfgang Denk <wd@denx.de>
  6. *
  7. * Original license header:
  8. *
  9. * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
  10. * This file is part of the GNU C Library.
  11. * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
  12. *
  13. * The GNU C Library is free software; you can redistribute it and/or
  14. * modify it under the terms of the GNU Lesser General Public
  15. * License as published by the Free Software Foundation; either
  16. * version 2.1 of the License, or (at your option) any later version.
  17. *
  18. * The GNU C Library is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * Lesser General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU Lesser General Public
  24. * License along with the GNU C Library; if not, write to the Free
  25. * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
  26. * 02111-1307 USA.
  27. */
  28. #include <errno.h>
  29. #include <malloc.h>
  30. #ifdef USE_HOSTCC /* HOST build */
  31. # include <string.h>
  32. # include <assert.h>
  33. # ifndef debug
  34. # ifdef DEBUG
  35. # define debug(fmt,args...) printf(fmt ,##args)
  36. # else
  37. # define debug(fmt,args...)
  38. # endif
  39. # endif
  40. #else /* U-Boot build */
  41. # include <common.h>
  42. # include <linux/string.h>
  43. #endif
  44. #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
  45. #define CONFIG_ENV_MIN_ENTRIES 64
  46. #endif
  47. #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
  48. #define CONFIG_ENV_MAX_ENTRIES 512
  49. #endif
  50. #include "search.h"
  51. /*
  52. * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
  53. * [Knuth] The Art of Computer Programming, part 3 (6.4)
  54. */
  55. /*
  56. * The non-reentrant version use a global space for storing the hash table.
  57. */
  58. static struct hsearch_data htab;
  59. /*
  60. * The reentrant version has no static variables to maintain the state.
  61. * Instead the interface of all functions is extended to take an argument
  62. * which describes the current status.
  63. */
  64. typedef struct _ENTRY {
  65. unsigned int used;
  66. ENTRY entry;
  67. } _ENTRY;
  68. /*
  69. * hcreate()
  70. */
  71. /*
  72. * For the used double hash method the table size has to be a prime. To
  73. * correct the user given table size we need a prime test. This trivial
  74. * algorithm is adequate because
  75. * a) the code is (most probably) called a few times per program run and
  76. * b) the number is small because the table must fit in the core
  77. * */
  78. static int isprime(unsigned int number)
  79. {
  80. /* no even number will be passed */
  81. unsigned int div = 3;
  82. while (div * div < number && number % div != 0)
  83. div += 2;
  84. return number % div != 0;
  85. }
  86. int hcreate(size_t nel)
  87. {
  88. return hcreate_r(nel, &htab);
  89. }
  90. /*
  91. * Before using the hash table we must allocate memory for it.
  92. * Test for an existing table are done. We allocate one element
  93. * more as the found prime number says. This is done for more effective
  94. * indexing as explained in the comment for the hsearch function.
  95. * The contents of the table is zeroed, especially the field used
  96. * becomes zero.
  97. */
  98. int hcreate_r(size_t nel, struct hsearch_data *htab)
  99. {
  100. /* Test for correct arguments. */
  101. if (htab == NULL) {
  102. __set_errno(EINVAL);
  103. return 0;
  104. }
  105. /* There is still another table active. Return with error. */
  106. if (htab->table != NULL)
  107. return 0;
  108. /* Change nel to the first prime number not smaller as nel. */
  109. nel |= 1; /* make odd */
  110. while (!isprime(nel))
  111. nel += 2;
  112. htab->size = nel;
  113. htab->filled = 0;
  114. /* allocate memory and zero out */
  115. htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY));
  116. if (htab->table == NULL)
  117. return 0;
  118. /* everything went alright */
  119. return 1;
  120. }
  121. /*
  122. * hdestroy()
  123. */
  124. void hdestroy(void)
  125. {
  126. hdestroy_r(&htab);
  127. }
  128. /*
  129. * After using the hash table it has to be destroyed. The used memory can
  130. * be freed and the local static variable can be marked as not used.
  131. */
  132. void hdestroy_r(struct hsearch_data *htab)
  133. {
  134. int i;
  135. /* Test for correct arguments. */
  136. if (htab == NULL) {
  137. __set_errno(EINVAL);
  138. return;
  139. }
  140. /* free used memory */
  141. for (i = 1; i <= htab->size; ++i) {
  142. if (htab->table[i].used) {
  143. ENTRY *ep = &htab->table[i].entry;
  144. free(ep->key);
  145. free(ep->data);
  146. }
  147. }
  148. free(htab->table);
  149. /* the sign for an existing table is an value != NULL in htable */
  150. htab->table = NULL;
  151. }
  152. /*
  153. * hsearch()
  154. */
  155. /*
  156. * This is the search function. It uses double hashing with open addressing.
  157. * The argument item.key has to be a pointer to an zero terminated, most
  158. * probably strings of chars. The function for generating a number of the
  159. * strings is simple but fast. It can be replaced by a more complex function
  160. * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
  161. *
  162. * We use an trick to speed up the lookup. The table is created by hcreate
  163. * with one more element available. This enables us to use the index zero
  164. * special. This index will never be used because we store the first hash
  165. * index in the field used where zero means not used. Every other value
  166. * means used. The used field can be used as a first fast comparison for
  167. * equality of the stored and the parameter value. This helps to prevent
  168. * unnecessary expensive calls of strcmp.
  169. *
  170. * This implementation differs from the standard library version of
  171. * this function in a number of ways:
  172. *
  173. * - While the standard version does not make any assumptions about
  174. * the type of the stored data objects at all, this implementation
  175. * works with NUL terminated strings only.
  176. * - Instead of storing just pointers to the original objects, we
  177. * create local copies so the caller does not need to care about the
  178. * data any more.
  179. * - The standard implementation does not provide a way to update an
  180. * existing entry. This version will create a new entry or update an
  181. * existing one when both "action == ENTER" and "item.data != NULL".
  182. * - Instead of returning 1 on success, we return the index into the
  183. * internal hash table, which is also guaranteed to be positive.
  184. * This allows us direct access to the found hash table slot for
  185. * example for functions like hdelete().
  186. */
  187. ENTRY *hsearch(ENTRY item, ACTION action)
  188. {
  189. ENTRY *result;
  190. (void) hsearch_r(item, action, &result, &htab);
  191. return result;
  192. }
  193. int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval,
  194. struct hsearch_data *htab)
  195. {
  196. unsigned int hval;
  197. unsigned int count;
  198. unsigned int len = strlen(item.key);
  199. unsigned int idx;
  200. /* Compute an value for the given string. Perhaps use a better method. */
  201. hval = len;
  202. count = len;
  203. while (count-- > 0) {
  204. hval <<= 4;
  205. hval += item.key[count];
  206. }
  207. /*
  208. * First hash function:
  209. * simply take the modul but prevent zero.
  210. */
  211. hval %= htab->size;
  212. if (hval == 0)
  213. ++hval;
  214. /* The first index tried. */
  215. idx = hval;
  216. if (htab->table[idx].used) {
  217. /*
  218. * Further action might be required according to the
  219. * action value.
  220. */
  221. unsigned hval2;
  222. if (htab->table[idx].used == hval
  223. && strcmp(item.key, htab->table[idx].entry.key) == 0) {
  224. /* Overwrite existing value? */
  225. if ((action == ENTER) && (item.data != NULL)) {
  226. free(htab->table[idx].entry.data);
  227. htab->table[idx].entry.data =
  228. strdup(item.data);
  229. if (!htab->table[idx].entry.data) {
  230. __set_errno(ENOMEM);
  231. *retval = NULL;
  232. return 0;
  233. }
  234. }
  235. /* return found entry */
  236. *retval = &htab->table[idx].entry;
  237. return idx;
  238. }
  239. /*
  240. * Second hash function:
  241. * as suggested in [Knuth]
  242. */
  243. hval2 = 1 + hval % (htab->size - 2);
  244. do {
  245. /*
  246. * Because SIZE is prime this guarantees to
  247. * step through all available indices.
  248. */
  249. if (idx <= hval2)
  250. idx = htab->size + idx - hval2;
  251. else
  252. idx -= hval2;
  253. /*
  254. * If we visited all entries leave the loop
  255. * unsuccessfully.
  256. */
  257. if (idx == hval)
  258. break;
  259. /* If entry is found use it. */
  260. if ((htab->table[idx].used == hval)
  261. && strcmp(item.key, htab->table[idx].entry.key) == 0) {
  262. /* Overwrite existing value? */
  263. if ((action == ENTER) && (item.data != NULL)) {
  264. free(htab->table[idx].entry.data);
  265. htab->table[idx].entry.data =
  266. strdup(item.data);
  267. if (!htab->table[idx].entry.data) {
  268. __set_errno(ENOMEM);
  269. *retval = NULL;
  270. return 0;
  271. }
  272. }
  273. /* return found entry */
  274. *retval = &htab->table[idx].entry;
  275. return idx;
  276. }
  277. }
  278. while (htab->table[idx].used);
  279. }
  280. /* An empty bucket has been found. */
  281. if (action == ENTER) {
  282. /*
  283. * If table is full and another entry should be
  284. * entered return with error.
  285. */
  286. if (htab->filled == htab->size) {
  287. __set_errno(ENOMEM);
  288. *retval = NULL;
  289. return 0;
  290. }
  291. /*
  292. * Create new entry;
  293. * create copies of item.key and item.data
  294. */
  295. htab->table[idx].used = hval;
  296. htab->table[idx].entry.key = strdup(item.key);
  297. htab->table[idx].entry.data = strdup(item.data);
  298. if (!htab->table[idx].entry.key ||
  299. !htab->table[idx].entry.data) {
  300. __set_errno(ENOMEM);
  301. *retval = NULL;
  302. return 0;
  303. }
  304. ++htab->filled;
  305. /* return new entry */
  306. *retval = &htab->table[idx].entry;
  307. return 1;
  308. }
  309. __set_errno(ESRCH);
  310. *retval = NULL;
  311. return 0;
  312. }
  313. /*
  314. * hdelete()
  315. */
  316. /*
  317. * The standard implementation of hsearch(3) does not provide any way
  318. * to delete any entries from the hash table. We extend the code to
  319. * do that.
  320. */
  321. int hdelete(const char *key)
  322. {
  323. return hdelete_r(key, &htab);
  324. }
  325. int hdelete_r(const char *key, struct hsearch_data *htab)
  326. {
  327. ENTRY e, *ep;
  328. int idx;
  329. debug("hdelete: DELETE key \"%s\"\n", key);
  330. e.key = (char *)key;
  331. if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) {
  332. __set_errno(ESRCH);
  333. return 0; /* not found */
  334. }
  335. /* free used ENTRY */
  336. debug("hdelete: DELETING key \"%s\"\n", key);
  337. free(ep->key);
  338. free(ep->data);
  339. htab->table[idx].used = 0;
  340. --htab->filled;
  341. return 1;
  342. }
  343. /*
  344. * hexport()
  345. */
  346. /*
  347. * Export the data stored in the hash table in linearized form.
  348. *
  349. * Entries are exported as "name=value" strings, separated by an
  350. * arbitrary (non-NUL, of course) separator character. This allows to
  351. * use this function both when formatting the U-Boot environment for
  352. * external storage (using '\0' as separator), but also when using it
  353. * for the "printenv" command to print all variables, simply by using
  354. * as '\n" as separator. This can also be used for new features like
  355. * exporting the environment data as text file, including the option
  356. * for later re-import.
  357. *
  358. * The entries in the result list will be sorted by ascending key
  359. * values.
  360. *
  361. * If the separator character is different from NUL, then any
  362. * separator characters and backslash characters in the values will
  363. * be escaped by a preceeding backslash in output. This is needed for
  364. * example to enable multi-line values, especially when the output
  365. * shall later be parsed (for example, for re-import).
  366. *
  367. * There are several options how the result buffer is handled:
  368. *
  369. * *resp size
  370. * -----------
  371. * NULL 0 A string of sufficient length will be allocated.
  372. * NULL >0 A string of the size given will be
  373. * allocated. An error will be returned if the size is
  374. * not sufficient. Any unused bytes in the string will
  375. * be '\0'-padded.
  376. * !NULL 0 The user-supplied buffer will be used. No length
  377. * checking will be performed, i. e. it is assumed that
  378. * the buffer size will always be big enough. DANGEROUS.
  379. * !NULL >0 The user-supplied buffer will be used. An error will
  380. * be returned if the size is not sufficient. Any unused
  381. * bytes in the string will be '\0'-padded.
  382. */
  383. ssize_t hexport(const char sep, char **resp, size_t size)
  384. {
  385. return hexport_r(&htab, sep, resp, size);
  386. }
  387. static int cmpkey(const void *p1, const void *p2)
  388. {
  389. ENTRY *e1 = *(ENTRY **) p1;
  390. ENTRY *e2 = *(ENTRY **) p2;
  391. return (strcmp(e1->key, e2->key));
  392. }
  393. ssize_t hexport_r(struct hsearch_data *htab, const char sep,
  394. char **resp, size_t size)
  395. {
  396. ENTRY *list[htab->size];
  397. char *res, *p;
  398. size_t totlen;
  399. int i, n;
  400. /* Test for correct arguments. */
  401. if ((resp == NULL) || (htab == NULL)) {
  402. __set_errno(EINVAL);
  403. return (-1);
  404. }
  405. debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %d\n",
  406. htab, htab->size, htab->filled, size);
  407. /*
  408. * Pass 1:
  409. * search used entries,
  410. * save addresses and compute total length
  411. */
  412. for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
  413. if (htab->table[i].used) {
  414. ENTRY *ep = &htab->table[i].entry;
  415. list[n++] = ep;
  416. totlen += strlen(ep->key) + 2;
  417. if (sep == '\0') {
  418. totlen += strlen(ep->data);
  419. } else { /* check if escapes are needed */
  420. char *s = ep->data;
  421. while (*s) {
  422. ++totlen;
  423. /* add room for needed escape chars */
  424. if ((*s == sep) || (*s == '\\'))
  425. ++totlen;
  426. ++s;
  427. }
  428. }
  429. totlen += 2; /* for '=' and 'sep' char */
  430. }
  431. }
  432. #ifdef DEBUG
  433. /* Pass 1a: print unsorted list */
  434. printf("Unsorted: n=%d\n", n);
  435. for (i = 0; i < n; ++i) {
  436. printf("\t%3d: %p ==> %-10s => %s\n",
  437. i, list[i], list[i]->key, list[i]->data);
  438. }
  439. #endif
  440. /* Sort list by keys */
  441. qsort(list, n, sizeof(ENTRY *), cmpkey);
  442. /* Check if the user supplied buffer size is sufficient */
  443. if (size) {
  444. if (size < totlen + 1) { /* provided buffer too small */
  445. debug("### buffer too small: %d, but need %d\n",
  446. size, totlen + 1);
  447. __set_errno(ENOMEM);
  448. return (-1);
  449. }
  450. } else {
  451. size = totlen + 1;
  452. }
  453. /* Check if the user provided a buffer */
  454. if (*resp) {
  455. /* yes; clear it */
  456. res = *resp;
  457. memset(res, '\0', size);
  458. } else {
  459. /* no, allocate and clear one */
  460. *resp = res = calloc(1, size);
  461. if (res == NULL) {
  462. __set_errno(ENOMEM);
  463. return (-1);
  464. }
  465. }
  466. /*
  467. * Pass 2:
  468. * export sorted list of result data
  469. */
  470. for (i = 0, p = res; i < n; ++i) {
  471. char *s;
  472. s = list[i]->key;
  473. while (*s)
  474. *p++ = *s++;
  475. *p++ = '=';
  476. s = list[i]->data;
  477. while (*s) {
  478. if ((*s == sep) || (*s == '\\'))
  479. *p++ = '\\'; /* escape */
  480. *p++ = *s++;
  481. }
  482. *p++ = sep;
  483. }
  484. *p = '\0'; /* terminate result */
  485. return size;
  486. }
  487. /*
  488. * himport()
  489. */
  490. /*
  491. * Import linearized data into hash table.
  492. *
  493. * This is the inverse function to hexport(): it takes a linear list
  494. * of "name=value" pairs and creates hash table entries from it.
  495. *
  496. * Entries without "value", i. e. consisting of only "name" or
  497. * "name=", will cause this entry to be deleted from the hash table.
  498. *
  499. * The "flag" argument can be used to control the behaviour: when the
  500. * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
  501. * new data will be added to an existing hash table; otherwise, old
  502. * data will be discarded and a new hash table will be created.
  503. *
  504. * The separator character for the "name=value" pairs can be selected,
  505. * so we both support importing from externally stored environment
  506. * data (separated by NUL characters) and from plain text files
  507. * (entries separated by newline characters).
  508. *
  509. * To allow for nicely formatted text input, leading white space
  510. * (sequences of SPACE and TAB chars) is ignored, and entries starting
  511. * (after removal of any leading white space) with a '#' character are
  512. * considered comments and ignored.
  513. *
  514. * [NOTE: this means that a variable name cannot start with a '#'
  515. * character.]
  516. *
  517. * When using a non-NUL separator character, backslash is used as
  518. * escape character in the value part, allowing for example for
  519. * multi-line values.
  520. *
  521. * In theory, arbitrary separator characters can be used, but only
  522. * '\0' and '\n' have really been tested.
  523. */
  524. int himport(const char *env, size_t size, const char sep, int flag)
  525. {
  526. return himport_r(&htab, env, size, sep, flag);
  527. }
  528. int himport_r(struct hsearch_data *htab,
  529. const char *env, size_t size, const char sep, int flag)
  530. {
  531. char *data, *sp, *dp, *name, *value;
  532. /* Test for correct arguments. */
  533. if (htab == NULL) {
  534. __set_errno(EINVAL);
  535. return 0;
  536. }
  537. /* we allocate new space to make sure we can write to the array */
  538. if ((data = malloc(size)) == NULL) {
  539. debug("himport_r: can't malloc %d bytes\n", size);
  540. __set_errno(ENOMEM);
  541. return 0;
  542. }
  543. memcpy(data, env, size);
  544. dp = data;
  545. if ((flag & H_NOCLEAR) == 0) {
  546. /* Destroy old hash table if one exists */
  547. debug("Destroy Hash Table: %p table = %p\n", htab,
  548. htab->table);
  549. if (htab->table)
  550. hdestroy_r(htab);
  551. }
  552. /*
  553. * Create new hash table (if needed). The computation of the hash
  554. * table size is based on heuristics: in a sample of some 70+
  555. * existing systems we found an average size of 39+ bytes per entry
  556. * in the environment (for the whole key=value pair). Assuming a
  557. * size of 8 per entry (= safety factor of ~5) should provide enough
  558. * safety margin for any existing environment definitions and still
  559. * allow for more than enough dynamic additions. Note that the
  560. * "size" argument is supposed to give the maximum enviroment size
  561. * (CONFIG_ENV_SIZE). This heuristics will result in
  562. * unreasonably large numbers (and thus memory footprint) for
  563. * big flash environments (>8,000 entries for 64 KB
  564. * envrionment size), so we clip it to a reasonable value.
  565. * On the other hand we need to add some more entries for free
  566. * space when importing very small buffers. Both boundaries can
  567. * be overwritten in the board config file if needed.
  568. */
  569. if (!htab->table) {
  570. int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
  571. if (nent > CONFIG_ENV_MAX_ENTRIES)
  572. nent = CONFIG_ENV_MAX_ENTRIES;
  573. debug("Create Hash Table: N=%d\n", nent);
  574. if (hcreate_r(nent, htab) == 0) {
  575. free(data);
  576. return 0;
  577. }
  578. }
  579. /* Parse environment; allow for '\0' and 'sep' as separators */
  580. do {
  581. ENTRY e, *rv;
  582. /* skip leading white space */
  583. while ((*dp == ' ') || (*dp == '\t'))
  584. ++dp;
  585. /* skip comment lines */
  586. if (*dp == '#') {
  587. while (*dp && (*dp != sep))
  588. ++dp;
  589. ++dp;
  590. continue;
  591. }
  592. /* parse name */
  593. for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
  594. ;
  595. /* deal with "name" and "name=" entries (delete var) */
  596. if (*dp == '\0' || *(dp + 1) == '\0' ||
  597. *dp == sep || *(dp + 1) == sep) {
  598. if (*dp == '=')
  599. *dp++ = '\0';
  600. *dp++ = '\0'; /* terminate name */
  601. debug("DELETE CANDIDATE: \"%s\"\n", name);
  602. if (hdelete_r(name, htab) == 0)
  603. debug("DELETE ERROR ##############################\n");
  604. continue;
  605. }
  606. *dp++ = '\0'; /* terminate name */
  607. /* parse value; deal with escapes */
  608. for (value = sp = dp; *dp && (*dp != sep); ++dp) {
  609. if ((*dp == '\\') && *(dp + 1))
  610. ++dp;
  611. *sp++ = *dp;
  612. }
  613. *sp++ = '\0'; /* terminate value */
  614. ++dp;
  615. /* enter into hash table */
  616. e.key = name;
  617. e.data = value;
  618. hsearch_r(e, ENTER, &rv, htab);
  619. if (rv == NULL) {
  620. printf("himport_r: can't insert \"%s=%s\" into hash table\n",
  621. name, value);
  622. return 0;
  623. }
  624. debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
  625. htab, htab->filled, htab->size,
  626. rv, name, value);
  627. } while ((dp < data + size) && *dp); /* size check needed for text */
  628. /* without '\0' termination */
  629. debug("INSERT: free(data = %p)\n", data);
  630. free(data);
  631. debug("INSERT: done\n");
  632. return 1; /* everything OK */
  633. }