mtdpart.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * (C) 2000 Nicolas Pitre <nico@cam.org>
  5. *
  6. * This code is GPL
  7. *
  8. * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
  9. * added support for read_oob, write_oob
  10. */
  11. #include <common.h>
  12. #include <malloc.h>
  13. #include <asm/errno.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/mtd/mtd.h>
  17. #include <linux/mtd/partitions.h>
  18. #include <linux/mtd/compat.h>
  19. /* Our partition linked list */
  20. struct list_head mtd_partitions;
  21. /* Our partition node structure */
  22. struct mtd_part {
  23. struct mtd_info mtd;
  24. struct mtd_info *master;
  25. uint64_t offset;
  26. int index;
  27. struct list_head list;
  28. int registered;
  29. };
  30. /*
  31. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  32. * the pointer to that structure with this macro.
  33. */
  34. #define PART(x) ((struct mtd_part *)(x))
  35. /*
  36. * MTD methods which simply translate the effective address and pass through
  37. * to the _real_ device.
  38. */
  39. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  40. size_t *retlen, u_char *buf)
  41. {
  42. struct mtd_part *part = PART(mtd);
  43. struct mtd_ecc_stats stats;
  44. int res;
  45. stats = part->master->ecc_stats;
  46. if (from >= mtd->size)
  47. len = 0;
  48. else if (from + len > mtd->size)
  49. len = mtd->size - from;
  50. res = part->master->read(part->master, from + part->offset,
  51. len, retlen, buf);
  52. if (unlikely(res)) {
  53. if (res == -EUCLEAN)
  54. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  55. if (res == -EBADMSG)
  56. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  57. }
  58. return res;
  59. }
  60. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  61. struct mtd_oob_ops *ops)
  62. {
  63. struct mtd_part *part = PART(mtd);
  64. int res;
  65. if (from >= mtd->size)
  66. return -EINVAL;
  67. if (ops->datbuf && from + ops->len > mtd->size)
  68. return -EINVAL;
  69. res = part->master->read_oob(part->master, from + part->offset, ops);
  70. if (unlikely(res)) {
  71. if (res == -EUCLEAN)
  72. mtd->ecc_stats.corrected++;
  73. if (res == -EBADMSG)
  74. mtd->ecc_stats.failed++;
  75. }
  76. return res;
  77. }
  78. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  79. size_t len, size_t *retlen, u_char *buf)
  80. {
  81. struct mtd_part *part = PART(mtd);
  82. return part->master->read_user_prot_reg(part->master, from,
  83. len, retlen, buf);
  84. }
  85. static int part_get_user_prot_info(struct mtd_info *mtd,
  86. struct otp_info *buf, size_t len)
  87. {
  88. struct mtd_part *part = PART(mtd);
  89. return part->master->get_user_prot_info(part->master, buf, len);
  90. }
  91. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  92. size_t len, size_t *retlen, u_char *buf)
  93. {
  94. struct mtd_part *part = PART(mtd);
  95. return part->master->read_fact_prot_reg(part->master, from,
  96. len, retlen, buf);
  97. }
  98. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  99. size_t len)
  100. {
  101. struct mtd_part *part = PART(mtd);
  102. return part->master->get_fact_prot_info(part->master, buf, len);
  103. }
  104. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  105. size_t *retlen, const u_char *buf)
  106. {
  107. struct mtd_part *part = PART(mtd);
  108. if (!(mtd->flags & MTD_WRITEABLE))
  109. return -EROFS;
  110. if (to >= mtd->size)
  111. len = 0;
  112. else if (to + len > mtd->size)
  113. len = mtd->size - to;
  114. return part->master->write(part->master, to + part->offset,
  115. len, retlen, buf);
  116. }
  117. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  118. size_t *retlen, const u_char *buf)
  119. {
  120. struct mtd_part *part = PART(mtd);
  121. if (!(mtd->flags & MTD_WRITEABLE))
  122. return -EROFS;
  123. if (to >= mtd->size)
  124. len = 0;
  125. else if (to + len > mtd->size)
  126. len = mtd->size - to;
  127. return part->master->panic_write(part->master, to + part->offset,
  128. len, retlen, buf);
  129. }
  130. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  131. struct mtd_oob_ops *ops)
  132. {
  133. struct mtd_part *part = PART(mtd);
  134. if (!(mtd->flags & MTD_WRITEABLE))
  135. return -EROFS;
  136. if (to >= mtd->size)
  137. return -EINVAL;
  138. if (ops->datbuf && to + ops->len > mtd->size)
  139. return -EINVAL;
  140. return part->master->write_oob(part->master, to + part->offset, ops);
  141. }
  142. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  143. size_t len, size_t *retlen, u_char *buf)
  144. {
  145. struct mtd_part *part = PART(mtd);
  146. return part->master->write_user_prot_reg(part->master, from,
  147. len, retlen, buf);
  148. }
  149. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  150. size_t len)
  151. {
  152. struct mtd_part *part = PART(mtd);
  153. return part->master->lock_user_prot_reg(part->master, from, len);
  154. }
  155. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  156. {
  157. struct mtd_part *part = PART(mtd);
  158. int ret;
  159. if (!(mtd->flags & MTD_WRITEABLE))
  160. return -EROFS;
  161. if (instr->addr >= mtd->size)
  162. return -EINVAL;
  163. instr->addr += part->offset;
  164. ret = part->master->erase(part->master, instr);
  165. if (ret) {
  166. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  167. instr->fail_addr -= part->offset;
  168. instr->addr -= part->offset;
  169. }
  170. return ret;
  171. }
  172. void mtd_erase_callback(struct erase_info *instr)
  173. {
  174. if (instr->mtd->erase == part_erase) {
  175. struct mtd_part *part = PART(instr->mtd);
  176. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  177. instr->fail_addr -= part->offset;
  178. instr->addr -= part->offset;
  179. }
  180. if (instr->callback)
  181. instr->callback(instr);
  182. }
  183. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  184. {
  185. struct mtd_part *part = PART(mtd);
  186. if ((len + ofs) > mtd->size)
  187. return -EINVAL;
  188. return part->master->lock(part->master, ofs + part->offset, len);
  189. }
  190. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  191. {
  192. struct mtd_part *part = PART(mtd);
  193. if ((len + ofs) > mtd->size)
  194. return -EINVAL;
  195. return part->master->unlock(part->master, ofs + part->offset, len);
  196. }
  197. static void part_sync(struct mtd_info *mtd)
  198. {
  199. struct mtd_part *part = PART(mtd);
  200. part->master->sync(part->master);
  201. }
  202. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  203. {
  204. struct mtd_part *part = PART(mtd);
  205. if (ofs >= mtd->size)
  206. return -EINVAL;
  207. ofs += part->offset;
  208. return part->master->block_isbad(part->master, ofs);
  209. }
  210. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  211. {
  212. struct mtd_part *part = PART(mtd);
  213. int res;
  214. if (!(mtd->flags & MTD_WRITEABLE))
  215. return -EROFS;
  216. if (ofs >= mtd->size)
  217. return -EINVAL;
  218. ofs += part->offset;
  219. res = part->master->block_markbad(part->master, ofs);
  220. if (!res)
  221. mtd->ecc_stats.badblocks++;
  222. return res;
  223. }
  224. /*
  225. * This function unregisters and destroy all slave MTD objects which are
  226. * attached to the given master MTD object.
  227. */
  228. int del_mtd_partitions(struct mtd_info *master)
  229. {
  230. struct mtd_part *slave, *next;
  231. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  232. if (slave->master == master) {
  233. list_del(&slave->list);
  234. if (slave->registered)
  235. del_mtd_device(&slave->mtd);
  236. kfree(slave);
  237. }
  238. return 0;
  239. }
  240. static struct mtd_part *add_one_partition(struct mtd_info *master,
  241. const struct mtd_partition *part, int partno,
  242. uint64_t cur_offset)
  243. {
  244. struct mtd_part *slave;
  245. /* allocate the partition structure */
  246. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  247. if (!slave) {
  248. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  249. master->name);
  250. del_mtd_partitions(master);
  251. return NULL;
  252. }
  253. list_add(&slave->list, &mtd_partitions);
  254. /* set up the MTD object for this partition */
  255. slave->mtd.type = master->type;
  256. slave->mtd.flags = master->flags & ~part->mask_flags;
  257. slave->mtd.size = part->size;
  258. slave->mtd.writesize = master->writesize;
  259. slave->mtd.oobsize = master->oobsize;
  260. slave->mtd.oobavail = master->oobavail;
  261. slave->mtd.subpage_sft = master->subpage_sft;
  262. slave->mtd.name = part->name;
  263. slave->mtd.owner = master->owner;
  264. slave->mtd.read = part_read;
  265. slave->mtd.write = part_write;
  266. if (master->panic_write)
  267. slave->mtd.panic_write = part_panic_write;
  268. if (master->read_oob)
  269. slave->mtd.read_oob = part_read_oob;
  270. if (master->write_oob)
  271. slave->mtd.write_oob = part_write_oob;
  272. if (master->read_user_prot_reg)
  273. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  274. if (master->read_fact_prot_reg)
  275. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  276. if (master->write_user_prot_reg)
  277. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  278. if (master->lock_user_prot_reg)
  279. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  280. if (master->get_user_prot_info)
  281. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  282. if (master->get_fact_prot_info)
  283. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  284. if (master->sync)
  285. slave->mtd.sync = part_sync;
  286. if (master->lock)
  287. slave->mtd.lock = part_lock;
  288. if (master->unlock)
  289. slave->mtd.unlock = part_unlock;
  290. if (master->block_isbad)
  291. slave->mtd.block_isbad = part_block_isbad;
  292. if (master->block_markbad)
  293. slave->mtd.block_markbad = part_block_markbad;
  294. slave->mtd.erase = part_erase;
  295. slave->master = master;
  296. slave->offset = part->offset;
  297. slave->index = partno;
  298. if (slave->offset == MTDPART_OFS_APPEND)
  299. slave->offset = cur_offset;
  300. if (slave->offset == MTDPART_OFS_NXTBLK) {
  301. slave->offset = cur_offset;
  302. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  303. /* Round up to next erasesize */
  304. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  305. printk(KERN_NOTICE "Moving partition %d: "
  306. "0x%012llx -> 0x%012llx\n", partno,
  307. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  308. }
  309. }
  310. if (slave->mtd.size == MTDPART_SIZ_FULL)
  311. slave->mtd.size = master->size - slave->offset;
  312. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  313. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  314. /* let's do some sanity checks */
  315. if (slave->offset >= master->size) {
  316. /* let's register it anyway to preserve ordering */
  317. slave->offset = 0;
  318. slave->mtd.size = 0;
  319. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  320. part->name);
  321. goto out_register;
  322. }
  323. if (slave->offset + slave->mtd.size > master->size) {
  324. slave->mtd.size = master->size - slave->offset;
  325. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  326. part->name, master->name, (unsigned long long)slave->mtd.size);
  327. }
  328. if (master->numeraseregions > 1) {
  329. /* Deal with variable erase size stuff */
  330. int i, max = master->numeraseregions;
  331. u64 end = slave->offset + slave->mtd.size;
  332. struct mtd_erase_region_info *regions = master->eraseregions;
  333. /* Find the first erase regions which is part of this
  334. * partition. */
  335. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  336. ;
  337. /* The loop searched for the region _behind_ the first one */
  338. i--;
  339. /* Pick biggest erasesize */
  340. for (; i < max && regions[i].offset < end; i++) {
  341. if (slave->mtd.erasesize < regions[i].erasesize) {
  342. slave->mtd.erasesize = regions[i].erasesize;
  343. }
  344. }
  345. BUG_ON(slave->mtd.erasesize == 0);
  346. } else {
  347. /* Single erase size */
  348. slave->mtd.erasesize = master->erasesize;
  349. }
  350. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  351. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  352. /* Doesn't start on a boundary of major erase size */
  353. /* FIXME: Let it be writable if it is on a boundary of
  354. * _minor_ erase size though */
  355. slave->mtd.flags &= ~MTD_WRITEABLE;
  356. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  357. part->name);
  358. }
  359. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  360. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  361. slave->mtd.flags &= ~MTD_WRITEABLE;
  362. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  363. part->name);
  364. }
  365. slave->mtd.ecclayout = master->ecclayout;
  366. if (master->block_isbad) {
  367. uint64_t offs = 0;
  368. while (offs < slave->mtd.size) {
  369. if (master->block_isbad(master,
  370. offs + slave->offset))
  371. slave->mtd.ecc_stats.badblocks++;
  372. offs += slave->mtd.erasesize;
  373. }
  374. }
  375. out_register:
  376. if (part->mtdp) {
  377. /* store the object pointer (caller may or may not register it*/
  378. *part->mtdp = &slave->mtd;
  379. slave->registered = 0;
  380. } else {
  381. /* register our partition */
  382. add_mtd_device(&slave->mtd);
  383. slave->registered = 1;
  384. }
  385. return slave;
  386. }
  387. /*
  388. * This function, given a master MTD object and a partition table, creates
  389. * and registers slave MTD objects which are bound to the master according to
  390. * the partition definitions.
  391. *
  392. * We don't register the master, or expect the caller to have done so,
  393. * for reasons of data integrity.
  394. */
  395. int add_mtd_partitions(struct mtd_info *master,
  396. const struct mtd_partition *parts,
  397. int nbparts)
  398. {
  399. struct mtd_part *slave;
  400. uint64_t cur_offset = 0;
  401. int i;
  402. /*
  403. * Need to init the list here, since LIST_INIT() does not
  404. * work on platforms where relocation has problems (like MIPS
  405. * & PPC).
  406. */
  407. if (mtd_partitions.next == NULL)
  408. INIT_LIST_HEAD(&mtd_partitions);
  409. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  410. for (i = 0; i < nbparts; i++) {
  411. slave = add_one_partition(master, parts + i, i, cur_offset);
  412. if (!slave)
  413. return -ENOMEM;
  414. cur_offset = slave->offset + slave->mtd.size;
  415. }
  416. return 0;
  417. }