clock.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. /*
  2. * Copyright (C) 2010 Samsung Electronics
  3. * Minkyu Kang <mk7.kang@samsung.com>
  4. *
  5. * See file CREDITS for list of people who contributed to this
  6. * project.
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  21. * MA 02111-1307 USA
  22. */
  23. #include <common.h>
  24. #include <asm/io.h>
  25. #include <asm/arch/clock.h>
  26. #include <asm/arch/clk.h>
  27. #include <asm/arch/periph.h>
  28. /* Epll Clock division values to achive different frequency output */
  29. static struct set_epll_con_val exynos5_epll_div[] = {
  30. { 192000000, 0, 48, 3, 1, 0 },
  31. { 180000000, 0, 45, 3, 1, 0 },
  32. { 73728000, 1, 73, 3, 3, 47710 },
  33. { 67737600, 1, 90, 4, 3, 20762 },
  34. { 49152000, 0, 49, 3, 3, 9961 },
  35. { 45158400, 0, 45, 3, 3, 10381 },
  36. { 180633600, 0, 45, 3, 1, 10381 }
  37. };
  38. /* exynos: return pll clock frequency */
  39. static int exynos_get_pll_clk(int pllreg, unsigned int r, unsigned int k)
  40. {
  41. unsigned long m, p, s = 0, mask, fout;
  42. unsigned int freq;
  43. /*
  44. * APLL_CON: MIDV [25:16]
  45. * MPLL_CON: MIDV [25:16]
  46. * EPLL_CON: MIDV [24:16]
  47. * VPLL_CON: MIDV [24:16]
  48. * BPLL_CON: MIDV [25:16]: Exynos5
  49. */
  50. if (pllreg == APLL || pllreg == MPLL || pllreg == BPLL)
  51. mask = 0x3ff;
  52. else
  53. mask = 0x1ff;
  54. m = (r >> 16) & mask;
  55. /* PDIV [13:8] */
  56. p = (r >> 8) & 0x3f;
  57. /* SDIV [2:0] */
  58. s = r & 0x7;
  59. freq = CONFIG_SYS_CLK_FREQ;
  60. if (pllreg == EPLL) {
  61. k = k & 0xffff;
  62. /* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
  63. fout = (m + k / 65536) * (freq / (p * (1 << s)));
  64. } else if (pllreg == VPLL) {
  65. k = k & 0xfff;
  66. /* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
  67. fout = (m + k / 1024) * (freq / (p * (1 << s)));
  68. } else {
  69. if (s < 1)
  70. s = 1;
  71. /* FOUT = MDIV * FIN / (PDIV * 2^(SDIV - 1)) */
  72. fout = m * (freq / (p * (1 << (s - 1))));
  73. }
  74. return fout;
  75. }
  76. /* exynos4: return pll clock frequency */
  77. static unsigned long exynos4_get_pll_clk(int pllreg)
  78. {
  79. struct exynos4_clock *clk =
  80. (struct exynos4_clock *)samsung_get_base_clock();
  81. unsigned long r, k = 0;
  82. switch (pllreg) {
  83. case APLL:
  84. r = readl(&clk->apll_con0);
  85. break;
  86. case MPLL:
  87. r = readl(&clk->mpll_con0);
  88. break;
  89. case EPLL:
  90. r = readl(&clk->epll_con0);
  91. k = readl(&clk->epll_con1);
  92. break;
  93. case VPLL:
  94. r = readl(&clk->vpll_con0);
  95. k = readl(&clk->vpll_con1);
  96. break;
  97. default:
  98. printf("Unsupported PLL (%d)\n", pllreg);
  99. return 0;
  100. }
  101. return exynos_get_pll_clk(pllreg, r, k);
  102. }
  103. /* exynos5: return pll clock frequency */
  104. static unsigned long exynos5_get_pll_clk(int pllreg)
  105. {
  106. struct exynos5_clock *clk =
  107. (struct exynos5_clock *)samsung_get_base_clock();
  108. unsigned long r, k = 0, fout;
  109. unsigned int pll_div2_sel, fout_sel;
  110. switch (pllreg) {
  111. case APLL:
  112. r = readl(&clk->apll_con0);
  113. break;
  114. case MPLL:
  115. r = readl(&clk->mpll_con0);
  116. break;
  117. case EPLL:
  118. r = readl(&clk->epll_con0);
  119. k = readl(&clk->epll_con1);
  120. break;
  121. case VPLL:
  122. r = readl(&clk->vpll_con0);
  123. k = readl(&clk->vpll_con1);
  124. break;
  125. case BPLL:
  126. r = readl(&clk->bpll_con0);
  127. break;
  128. default:
  129. printf("Unsupported PLL (%d)\n", pllreg);
  130. return 0;
  131. }
  132. fout = exynos_get_pll_clk(pllreg, r, k);
  133. /* According to the user manual, in EVT1 MPLL and BPLL always gives
  134. * 1.6GHz clock, so divide by 2 to get 800MHz MPLL clock.*/
  135. if (pllreg == MPLL || pllreg == BPLL) {
  136. pll_div2_sel = readl(&clk->pll_div2_sel);
  137. switch (pllreg) {
  138. case MPLL:
  139. fout_sel = (pll_div2_sel >> MPLL_FOUT_SEL_SHIFT)
  140. & MPLL_FOUT_SEL_MASK;
  141. break;
  142. case BPLL:
  143. fout_sel = (pll_div2_sel >> BPLL_FOUT_SEL_SHIFT)
  144. & BPLL_FOUT_SEL_MASK;
  145. break;
  146. default:
  147. fout_sel = -1;
  148. break;
  149. }
  150. if (fout_sel == 0)
  151. fout /= 2;
  152. }
  153. return fout;
  154. }
  155. /* exynos4: return ARM clock frequency */
  156. static unsigned long exynos4_get_arm_clk(void)
  157. {
  158. struct exynos4_clock *clk =
  159. (struct exynos4_clock *)samsung_get_base_clock();
  160. unsigned long div;
  161. unsigned long armclk;
  162. unsigned int core_ratio;
  163. unsigned int core2_ratio;
  164. div = readl(&clk->div_cpu0);
  165. /* CORE_RATIO: [2:0], CORE2_RATIO: [30:28] */
  166. core_ratio = (div >> 0) & 0x7;
  167. core2_ratio = (div >> 28) & 0x7;
  168. armclk = get_pll_clk(APLL) / (core_ratio + 1);
  169. armclk /= (core2_ratio + 1);
  170. return armclk;
  171. }
  172. /* exynos5: return ARM clock frequency */
  173. static unsigned long exynos5_get_arm_clk(void)
  174. {
  175. struct exynos5_clock *clk =
  176. (struct exynos5_clock *)samsung_get_base_clock();
  177. unsigned long div;
  178. unsigned long armclk;
  179. unsigned int arm_ratio;
  180. unsigned int arm2_ratio;
  181. div = readl(&clk->div_cpu0);
  182. /* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
  183. arm_ratio = (div >> 0) & 0x7;
  184. arm2_ratio = (div >> 28) & 0x7;
  185. armclk = get_pll_clk(APLL) / (arm_ratio + 1);
  186. armclk /= (arm2_ratio + 1);
  187. return armclk;
  188. }
  189. /* exynos4: return pwm clock frequency */
  190. static unsigned long exynos4_get_pwm_clk(void)
  191. {
  192. struct exynos4_clock *clk =
  193. (struct exynos4_clock *)samsung_get_base_clock();
  194. unsigned long pclk, sclk;
  195. unsigned int sel;
  196. unsigned int ratio;
  197. if (s5p_get_cpu_rev() == 0) {
  198. /*
  199. * CLK_SRC_PERIL0
  200. * PWM_SEL [27:24]
  201. */
  202. sel = readl(&clk->src_peril0);
  203. sel = (sel >> 24) & 0xf;
  204. if (sel == 0x6)
  205. sclk = get_pll_clk(MPLL);
  206. else if (sel == 0x7)
  207. sclk = get_pll_clk(EPLL);
  208. else if (sel == 0x8)
  209. sclk = get_pll_clk(VPLL);
  210. else
  211. return 0;
  212. /*
  213. * CLK_DIV_PERIL3
  214. * PWM_RATIO [3:0]
  215. */
  216. ratio = readl(&clk->div_peril3);
  217. ratio = ratio & 0xf;
  218. } else if (s5p_get_cpu_rev() == 1) {
  219. sclk = get_pll_clk(MPLL);
  220. ratio = 8;
  221. } else
  222. return 0;
  223. pclk = sclk / (ratio + 1);
  224. return pclk;
  225. }
  226. /* exynos5: return pwm clock frequency */
  227. static unsigned long exynos5_get_pwm_clk(void)
  228. {
  229. struct exynos5_clock *clk =
  230. (struct exynos5_clock *)samsung_get_base_clock();
  231. unsigned long pclk, sclk;
  232. unsigned int ratio;
  233. /*
  234. * CLK_DIV_PERIC3
  235. * PWM_RATIO [3:0]
  236. */
  237. ratio = readl(&clk->div_peric3);
  238. ratio = ratio & 0xf;
  239. sclk = get_pll_clk(MPLL);
  240. pclk = sclk / (ratio + 1);
  241. return pclk;
  242. }
  243. /* exynos4: return uart clock frequency */
  244. static unsigned long exynos4_get_uart_clk(int dev_index)
  245. {
  246. struct exynos4_clock *clk =
  247. (struct exynos4_clock *)samsung_get_base_clock();
  248. unsigned long uclk, sclk;
  249. unsigned int sel;
  250. unsigned int ratio;
  251. /*
  252. * CLK_SRC_PERIL0
  253. * UART0_SEL [3:0]
  254. * UART1_SEL [7:4]
  255. * UART2_SEL [8:11]
  256. * UART3_SEL [12:15]
  257. * UART4_SEL [16:19]
  258. * UART5_SEL [23:20]
  259. */
  260. sel = readl(&clk->src_peril0);
  261. sel = (sel >> (dev_index << 2)) & 0xf;
  262. if (sel == 0x6)
  263. sclk = get_pll_clk(MPLL);
  264. else if (sel == 0x7)
  265. sclk = get_pll_clk(EPLL);
  266. else if (sel == 0x8)
  267. sclk = get_pll_clk(VPLL);
  268. else
  269. return 0;
  270. /*
  271. * CLK_DIV_PERIL0
  272. * UART0_RATIO [3:0]
  273. * UART1_RATIO [7:4]
  274. * UART2_RATIO [8:11]
  275. * UART3_RATIO [12:15]
  276. * UART4_RATIO [16:19]
  277. * UART5_RATIO [23:20]
  278. */
  279. ratio = readl(&clk->div_peril0);
  280. ratio = (ratio >> (dev_index << 2)) & 0xf;
  281. uclk = sclk / (ratio + 1);
  282. return uclk;
  283. }
  284. /* exynos5: return uart clock frequency */
  285. static unsigned long exynos5_get_uart_clk(int dev_index)
  286. {
  287. struct exynos5_clock *clk =
  288. (struct exynos5_clock *)samsung_get_base_clock();
  289. unsigned long uclk, sclk;
  290. unsigned int sel;
  291. unsigned int ratio;
  292. /*
  293. * CLK_SRC_PERIC0
  294. * UART0_SEL [3:0]
  295. * UART1_SEL [7:4]
  296. * UART2_SEL [8:11]
  297. * UART3_SEL [12:15]
  298. * UART4_SEL [16:19]
  299. * UART5_SEL [23:20]
  300. */
  301. sel = readl(&clk->src_peric0);
  302. sel = (sel >> (dev_index << 2)) & 0xf;
  303. if (sel == 0x6)
  304. sclk = get_pll_clk(MPLL);
  305. else if (sel == 0x7)
  306. sclk = get_pll_clk(EPLL);
  307. else if (sel == 0x8)
  308. sclk = get_pll_clk(VPLL);
  309. else
  310. return 0;
  311. /*
  312. * CLK_DIV_PERIC0
  313. * UART0_RATIO [3:0]
  314. * UART1_RATIO [7:4]
  315. * UART2_RATIO [8:11]
  316. * UART3_RATIO [12:15]
  317. * UART4_RATIO [16:19]
  318. * UART5_RATIO [23:20]
  319. */
  320. ratio = readl(&clk->div_peric0);
  321. ratio = (ratio >> (dev_index << 2)) & 0xf;
  322. uclk = sclk / (ratio + 1);
  323. return uclk;
  324. }
  325. /* exynos4: set the mmc clock */
  326. static void exynos4_set_mmc_clk(int dev_index, unsigned int div)
  327. {
  328. struct exynos4_clock *clk =
  329. (struct exynos4_clock *)samsung_get_base_clock();
  330. unsigned int addr;
  331. unsigned int val;
  332. /*
  333. * CLK_DIV_FSYS1
  334. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  335. * CLK_DIV_FSYS2
  336. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  337. */
  338. if (dev_index < 2) {
  339. addr = (unsigned int)&clk->div_fsys1;
  340. } else {
  341. addr = (unsigned int)&clk->div_fsys2;
  342. dev_index -= 2;
  343. }
  344. val = readl(addr);
  345. val &= ~(0xff << ((dev_index << 4) + 8));
  346. val |= (div & 0xff) << ((dev_index << 4) + 8);
  347. writel(val, addr);
  348. }
  349. /* exynos5: set the mmc clock */
  350. static void exynos5_set_mmc_clk(int dev_index, unsigned int div)
  351. {
  352. struct exynos5_clock *clk =
  353. (struct exynos5_clock *)samsung_get_base_clock();
  354. unsigned int addr;
  355. unsigned int val;
  356. /*
  357. * CLK_DIV_FSYS1
  358. * MMC0_PRE_RATIO [15:8], MMC1_PRE_RATIO [31:24]
  359. * CLK_DIV_FSYS2
  360. * MMC2_PRE_RATIO [15:8], MMC3_PRE_RATIO [31:24]
  361. */
  362. if (dev_index < 2) {
  363. addr = (unsigned int)&clk->div_fsys1;
  364. } else {
  365. addr = (unsigned int)&clk->div_fsys2;
  366. dev_index -= 2;
  367. }
  368. val = readl(addr);
  369. val &= ~(0xff << ((dev_index << 4) + 8));
  370. val |= (div & 0xff) << ((dev_index << 4) + 8);
  371. writel(val, addr);
  372. }
  373. /* get_lcd_clk: return lcd clock frequency */
  374. static unsigned long exynos4_get_lcd_clk(void)
  375. {
  376. struct exynos4_clock *clk =
  377. (struct exynos4_clock *)samsung_get_base_clock();
  378. unsigned long pclk, sclk;
  379. unsigned int sel;
  380. unsigned int ratio;
  381. /*
  382. * CLK_SRC_LCD0
  383. * FIMD0_SEL [3:0]
  384. */
  385. sel = readl(&clk->src_lcd0);
  386. sel = sel & 0xf;
  387. /*
  388. * 0x6: SCLK_MPLL
  389. * 0x7: SCLK_EPLL
  390. * 0x8: SCLK_VPLL
  391. */
  392. if (sel == 0x6)
  393. sclk = get_pll_clk(MPLL);
  394. else if (sel == 0x7)
  395. sclk = get_pll_clk(EPLL);
  396. else if (sel == 0x8)
  397. sclk = get_pll_clk(VPLL);
  398. else
  399. return 0;
  400. /*
  401. * CLK_DIV_LCD0
  402. * FIMD0_RATIO [3:0]
  403. */
  404. ratio = readl(&clk->div_lcd0);
  405. ratio = ratio & 0xf;
  406. pclk = sclk / (ratio + 1);
  407. return pclk;
  408. }
  409. /* get_lcd_clk: return lcd clock frequency */
  410. static unsigned long exynos5_get_lcd_clk(void)
  411. {
  412. struct exynos5_clock *clk =
  413. (struct exynos5_clock *)samsung_get_base_clock();
  414. unsigned long pclk, sclk;
  415. unsigned int sel;
  416. unsigned int ratio;
  417. /*
  418. * CLK_SRC_LCD0
  419. * FIMD0_SEL [3:0]
  420. */
  421. sel = readl(&clk->src_disp1_0);
  422. sel = sel & 0xf;
  423. /*
  424. * 0x6: SCLK_MPLL
  425. * 0x7: SCLK_EPLL
  426. * 0x8: SCLK_VPLL
  427. */
  428. if (sel == 0x6)
  429. sclk = get_pll_clk(MPLL);
  430. else if (sel == 0x7)
  431. sclk = get_pll_clk(EPLL);
  432. else if (sel == 0x8)
  433. sclk = get_pll_clk(VPLL);
  434. else
  435. return 0;
  436. /*
  437. * CLK_DIV_LCD0
  438. * FIMD0_RATIO [3:0]
  439. */
  440. ratio = readl(&clk->div_disp1_0);
  441. ratio = ratio & 0xf;
  442. pclk = sclk / (ratio + 1);
  443. return pclk;
  444. }
  445. void exynos4_set_lcd_clk(void)
  446. {
  447. struct exynos4_clock *clk =
  448. (struct exynos4_clock *)samsung_get_base_clock();
  449. unsigned int cfg = 0;
  450. /*
  451. * CLK_GATE_BLOCK
  452. * CLK_CAM [0]
  453. * CLK_TV [1]
  454. * CLK_MFC [2]
  455. * CLK_G3D [3]
  456. * CLK_LCD0 [4]
  457. * CLK_LCD1 [5]
  458. * CLK_GPS [7]
  459. */
  460. cfg = readl(&clk->gate_block);
  461. cfg |= 1 << 4;
  462. writel(cfg, &clk->gate_block);
  463. /*
  464. * CLK_SRC_LCD0
  465. * FIMD0_SEL [3:0]
  466. * MDNIE0_SEL [7:4]
  467. * MDNIE_PWM0_SEL [8:11]
  468. * MIPI0_SEL [12:15]
  469. * set lcd0 src clock 0x6: SCLK_MPLL
  470. */
  471. cfg = readl(&clk->src_lcd0);
  472. cfg &= ~(0xf);
  473. cfg |= 0x6;
  474. writel(cfg, &clk->src_lcd0);
  475. /*
  476. * CLK_GATE_IP_LCD0
  477. * CLK_FIMD0 [0]
  478. * CLK_MIE0 [1]
  479. * CLK_MDNIE0 [2]
  480. * CLK_DSIM0 [3]
  481. * CLK_SMMUFIMD0 [4]
  482. * CLK_PPMULCD0 [5]
  483. * Gating all clocks for FIMD0
  484. */
  485. cfg = readl(&clk->gate_ip_lcd0);
  486. cfg |= 1 << 0;
  487. writel(cfg, &clk->gate_ip_lcd0);
  488. /*
  489. * CLK_DIV_LCD0
  490. * FIMD0_RATIO [3:0]
  491. * MDNIE0_RATIO [7:4]
  492. * MDNIE_PWM0_RATIO [11:8]
  493. * MDNIE_PWM_PRE_RATIO [15:12]
  494. * MIPI0_RATIO [19:16]
  495. * MIPI0_PRE_RATIO [23:20]
  496. * set fimd ratio
  497. */
  498. cfg &= ~(0xf);
  499. cfg |= 0x1;
  500. writel(cfg, &clk->div_lcd0);
  501. }
  502. void exynos5_set_lcd_clk(void)
  503. {
  504. struct exynos5_clock *clk =
  505. (struct exynos5_clock *)samsung_get_base_clock();
  506. unsigned int cfg = 0;
  507. /*
  508. * CLK_GATE_BLOCK
  509. * CLK_CAM [0]
  510. * CLK_TV [1]
  511. * CLK_MFC [2]
  512. * CLK_G3D [3]
  513. * CLK_LCD0 [4]
  514. * CLK_LCD1 [5]
  515. * CLK_GPS [7]
  516. */
  517. cfg = readl(&clk->gate_block);
  518. cfg |= 1 << 4;
  519. writel(cfg, &clk->gate_block);
  520. /*
  521. * CLK_SRC_LCD0
  522. * FIMD0_SEL [3:0]
  523. * MDNIE0_SEL [7:4]
  524. * MDNIE_PWM0_SEL [8:11]
  525. * MIPI0_SEL [12:15]
  526. * set lcd0 src clock 0x6: SCLK_MPLL
  527. */
  528. cfg = readl(&clk->src_disp1_0);
  529. cfg &= ~(0xf);
  530. cfg |= 0x8;
  531. writel(cfg, &clk->src_disp1_0);
  532. /*
  533. * CLK_GATE_IP_LCD0
  534. * CLK_FIMD0 [0]
  535. * CLK_MIE0 [1]
  536. * CLK_MDNIE0 [2]
  537. * CLK_DSIM0 [3]
  538. * CLK_SMMUFIMD0 [4]
  539. * CLK_PPMULCD0 [5]
  540. * Gating all clocks for FIMD0
  541. */
  542. cfg = readl(&clk->gate_ip_disp1);
  543. cfg |= 1 << 0;
  544. writel(cfg, &clk->gate_ip_disp1);
  545. /*
  546. * CLK_DIV_LCD0
  547. * FIMD0_RATIO [3:0]
  548. * MDNIE0_RATIO [7:4]
  549. * MDNIE_PWM0_RATIO [11:8]
  550. * MDNIE_PWM_PRE_RATIO [15:12]
  551. * MIPI0_RATIO [19:16]
  552. * MIPI0_PRE_RATIO [23:20]
  553. * set fimd ratio
  554. */
  555. cfg &= ~(0xf);
  556. cfg |= 0x0;
  557. writel(cfg, &clk->div_disp1_0);
  558. }
  559. void exynos4_set_mipi_clk(void)
  560. {
  561. struct exynos4_clock *clk =
  562. (struct exynos4_clock *)samsung_get_base_clock();
  563. unsigned int cfg = 0;
  564. /*
  565. * CLK_SRC_LCD0
  566. * FIMD0_SEL [3:0]
  567. * MDNIE0_SEL [7:4]
  568. * MDNIE_PWM0_SEL [8:11]
  569. * MIPI0_SEL [12:15]
  570. * set mipi0 src clock 0x6: SCLK_MPLL
  571. */
  572. cfg = readl(&clk->src_lcd0);
  573. cfg &= ~(0xf << 12);
  574. cfg |= (0x6 << 12);
  575. writel(cfg, &clk->src_lcd0);
  576. /*
  577. * CLK_SRC_MASK_LCD0
  578. * FIMD0_MASK [0]
  579. * MDNIE0_MASK [4]
  580. * MDNIE_PWM0_MASK [8]
  581. * MIPI0_MASK [12]
  582. * set src mask mipi0 0x1: Unmask
  583. */
  584. cfg = readl(&clk->src_mask_lcd0);
  585. cfg |= (0x1 << 12);
  586. writel(cfg, &clk->src_mask_lcd0);
  587. /*
  588. * CLK_GATE_IP_LCD0
  589. * CLK_FIMD0 [0]
  590. * CLK_MIE0 [1]
  591. * CLK_MDNIE0 [2]
  592. * CLK_DSIM0 [3]
  593. * CLK_SMMUFIMD0 [4]
  594. * CLK_PPMULCD0 [5]
  595. * Gating all clocks for MIPI0
  596. */
  597. cfg = readl(&clk->gate_ip_lcd0);
  598. cfg |= 1 << 3;
  599. writel(cfg, &clk->gate_ip_lcd0);
  600. /*
  601. * CLK_DIV_LCD0
  602. * FIMD0_RATIO [3:0]
  603. * MDNIE0_RATIO [7:4]
  604. * MDNIE_PWM0_RATIO [11:8]
  605. * MDNIE_PWM_PRE_RATIO [15:12]
  606. * MIPI0_RATIO [19:16]
  607. * MIPI0_PRE_RATIO [23:20]
  608. * set mipi ratio
  609. */
  610. cfg &= ~(0xf << 16);
  611. cfg |= (0x1 << 16);
  612. writel(cfg, &clk->div_lcd0);
  613. }
  614. /*
  615. * I2C
  616. *
  617. * exynos5: obtaining the I2C clock
  618. */
  619. static unsigned long exynos5_get_i2c_clk(void)
  620. {
  621. struct exynos5_clock *clk =
  622. (struct exynos5_clock *)samsung_get_base_clock();
  623. unsigned long aclk_66, aclk_66_pre, sclk;
  624. unsigned int ratio;
  625. sclk = get_pll_clk(MPLL);
  626. ratio = (readl(&clk->div_top1)) >> 24;
  627. ratio &= 0x7;
  628. aclk_66_pre = sclk / (ratio + 1);
  629. ratio = readl(&clk->div_top0);
  630. ratio &= 0x7;
  631. aclk_66 = aclk_66_pre / (ratio + 1);
  632. return aclk_66;
  633. }
  634. int exynos5_set_epll_clk(unsigned long rate)
  635. {
  636. unsigned int epll_con, epll_con_k;
  637. unsigned int i;
  638. unsigned int lockcnt;
  639. unsigned int start;
  640. struct exynos5_clock *clk =
  641. (struct exynos5_clock *)samsung_get_base_clock();
  642. epll_con = readl(&clk->epll_con0);
  643. epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
  644. EPLL_CON0_LOCK_DET_EN_SHIFT) |
  645. EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
  646. EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
  647. EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
  648. for (i = 0; i < ARRAY_SIZE(exynos5_epll_div); i++) {
  649. if (exynos5_epll_div[i].freq_out == rate)
  650. break;
  651. }
  652. if (i == ARRAY_SIZE(exynos5_epll_div))
  653. return -1;
  654. epll_con_k = exynos5_epll_div[i].k_dsm << 0;
  655. epll_con |= exynos5_epll_div[i].en_lock_det <<
  656. EPLL_CON0_LOCK_DET_EN_SHIFT;
  657. epll_con |= exynos5_epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
  658. epll_con |= exynos5_epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
  659. epll_con |= exynos5_epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
  660. /*
  661. * Required period ( in cycles) to genarate a stable clock output.
  662. * The maximum clock time can be up to 3000 * PDIV cycles of PLLs
  663. * frequency input (as per spec)
  664. */
  665. lockcnt = 3000 * exynos5_epll_div[i].p_div;
  666. writel(lockcnt, &clk->epll_lock);
  667. writel(epll_con, &clk->epll_con0);
  668. writel(epll_con_k, &clk->epll_con1);
  669. start = get_timer(0);
  670. while (!(readl(&clk->epll_con0) &
  671. (0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
  672. if (get_timer(start) > TIMEOUT_EPLL_LOCK) {
  673. debug("%s: Timeout waiting for EPLL lock\n", __func__);
  674. return -1;
  675. }
  676. }
  677. return 0;
  678. }
  679. void exynos5_set_i2s_clk_source(void)
  680. {
  681. struct exynos5_clock *clk =
  682. (struct exynos5_clock *)samsung_get_base_clock();
  683. clrsetbits_le32(&clk->src_peric1, AUDIO1_SEL_MASK,
  684. (CLK_SRC_SCLK_EPLL));
  685. }
  686. int exynos5_set_i2s_clk_prescaler(unsigned int src_frq,
  687. unsigned int dst_frq)
  688. {
  689. struct exynos5_clock *clk =
  690. (struct exynos5_clock *)samsung_get_base_clock();
  691. unsigned int div;
  692. if ((dst_frq == 0) || (src_frq == 0)) {
  693. debug("%s: Invalid requency input for prescaler\n", __func__);
  694. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  695. return -1;
  696. }
  697. div = (src_frq / dst_frq);
  698. if (div > AUDIO_1_RATIO_MASK) {
  699. debug("%s: Frequency ratio is out of range\n", __func__);
  700. debug("src frq = %d des frq = %d ", src_frq, dst_frq);
  701. return -1;
  702. }
  703. clrsetbits_le32(&clk->div_peric4, AUDIO_1_RATIO_MASK,
  704. (div & AUDIO_1_RATIO_MASK));
  705. return 0;
  706. }
  707. /**
  708. * Linearly searches for the most accurate main and fine stage clock scalars
  709. * (divisors) for a specified target frequency and scalar bit sizes by checking
  710. * all multiples of main_scalar_bits values. Will always return scalars up to or
  711. * slower than target.
  712. *
  713. * @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
  714. * @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
  715. * @param input_freq Clock frequency to be scaled in Hz
  716. * @param target_freq Desired clock frequency in Hz
  717. * @param best_fine_scalar Pointer to store the fine stage divisor
  718. *
  719. * @return best_main_scalar Main scalar for desired frequency or -1 if none
  720. * found
  721. */
  722. static int clock_calc_best_scalar(unsigned int main_scaler_bits,
  723. unsigned int fine_scalar_bits, unsigned int input_rate,
  724. unsigned int target_rate, unsigned int *best_fine_scalar)
  725. {
  726. int i;
  727. int best_main_scalar = -1;
  728. unsigned int best_error = target_rate;
  729. const unsigned int cap = (1 << fine_scalar_bits) - 1;
  730. const unsigned int loops = 1 << main_scaler_bits;
  731. debug("Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
  732. target_rate, cap);
  733. assert(best_fine_scalar != NULL);
  734. assert(main_scaler_bits <= fine_scalar_bits);
  735. *best_fine_scalar = 1;
  736. if (input_rate == 0 || target_rate == 0)
  737. return -1;
  738. if (target_rate >= input_rate)
  739. return 1;
  740. for (i = 1; i <= loops; i++) {
  741. const unsigned int effective_div = max(min(input_rate / i /
  742. target_rate, cap), 1);
  743. const unsigned int effective_rate = input_rate / i /
  744. effective_div;
  745. const int error = target_rate - effective_rate;
  746. debug("%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
  747. effective_rate, error);
  748. if (error >= 0 && error <= best_error) {
  749. best_error = error;
  750. best_main_scalar = i;
  751. *best_fine_scalar = effective_div;
  752. }
  753. }
  754. return best_main_scalar;
  755. }
  756. static int exynos5_set_spi_clk(enum periph_id periph_id,
  757. unsigned int rate)
  758. {
  759. struct exynos5_clock *clk =
  760. (struct exynos5_clock *)samsung_get_base_clock();
  761. int main;
  762. unsigned int fine;
  763. unsigned shift, pre_shift;
  764. unsigned mask = 0xff;
  765. u32 *reg;
  766. main = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
  767. if (main < 0) {
  768. debug("%s: Cannot set clock rate for periph %d",
  769. __func__, periph_id);
  770. return -1;
  771. }
  772. main = main - 1;
  773. fine = fine - 1;
  774. switch (periph_id) {
  775. case PERIPH_ID_SPI0:
  776. reg = &clk->div_peric1;
  777. shift = 0;
  778. pre_shift = 8;
  779. break;
  780. case PERIPH_ID_SPI1:
  781. reg = &clk->div_peric1;
  782. shift = 16;
  783. pre_shift = 24;
  784. break;
  785. case PERIPH_ID_SPI2:
  786. reg = &clk->div_peric2;
  787. shift = 0;
  788. pre_shift = 8;
  789. break;
  790. case PERIPH_ID_SPI3:
  791. reg = &clk->sclk_div_isp;
  792. shift = 0;
  793. pre_shift = 4;
  794. break;
  795. case PERIPH_ID_SPI4:
  796. reg = &clk->sclk_div_isp;
  797. shift = 12;
  798. pre_shift = 16;
  799. break;
  800. default:
  801. debug("%s: Unsupported peripheral ID %d\n", __func__,
  802. periph_id);
  803. return -1;
  804. }
  805. clrsetbits_le32(reg, mask << shift, (main & mask) << shift);
  806. clrsetbits_le32(reg, mask << pre_shift, (fine & mask) << pre_shift);
  807. return 0;
  808. static unsigned long exynos4_get_i2c_clk(void)
  809. {
  810. struct exynos4_clock *clk =
  811. (struct exynos4_clock *)samsung_get_base_clock();
  812. unsigned long sclk, aclk_100;
  813. unsigned int ratio;
  814. sclk = get_pll_clk(APLL);
  815. ratio = (readl(&clk->div_top)) >> 4;
  816. ratio &= 0xf;
  817. aclk_100 = sclk / (ratio + 1);
  818. return aclk_100;
  819. }
  820. unsigned long get_pll_clk(int pllreg)
  821. {
  822. if (cpu_is_exynos5())
  823. return exynos5_get_pll_clk(pllreg);
  824. else
  825. return exynos4_get_pll_clk(pllreg);
  826. }
  827. unsigned long get_arm_clk(void)
  828. {
  829. if (cpu_is_exynos5())
  830. return exynos5_get_arm_clk();
  831. else
  832. return exynos4_get_arm_clk();
  833. }
  834. unsigned long get_i2c_clk(void)
  835. {
  836. if (cpu_is_exynos5()) {
  837. return exynos5_get_i2c_clk();
  838. } else if (cpu_is_exynos4()) {
  839. return exynos4_get_i2c_clk();
  840. } else {
  841. debug("I2C clock is not set for this CPU\n");
  842. return 0;
  843. }
  844. }
  845. unsigned long get_pwm_clk(void)
  846. {
  847. if (cpu_is_exynos5())
  848. return exynos5_get_pwm_clk();
  849. else
  850. return exynos4_get_pwm_clk();
  851. }
  852. unsigned long get_uart_clk(int dev_index)
  853. {
  854. if (cpu_is_exynos5())
  855. return exynos5_get_uart_clk(dev_index);
  856. else
  857. return exynos4_get_uart_clk(dev_index);
  858. }
  859. void set_mmc_clk(int dev_index, unsigned int div)
  860. {
  861. if (cpu_is_exynos5())
  862. exynos5_set_mmc_clk(dev_index, div);
  863. else
  864. exynos4_set_mmc_clk(dev_index, div);
  865. }
  866. unsigned long get_lcd_clk(void)
  867. {
  868. if (cpu_is_exynos4())
  869. return exynos4_get_lcd_clk();
  870. else
  871. return exynos5_get_lcd_clk();
  872. }
  873. void set_lcd_clk(void)
  874. {
  875. if (cpu_is_exynos4())
  876. exynos4_set_lcd_clk();
  877. else
  878. exynos5_set_lcd_clk();
  879. }
  880. void set_mipi_clk(void)
  881. {
  882. if (cpu_is_exynos4())
  883. exynos4_set_mipi_clk();
  884. }
  885. int set_spi_clk(int periph_id, unsigned int rate)
  886. {
  887. if (cpu_is_exynos5())
  888. return exynos5_set_spi_clk(periph_id, rate);
  889. else
  890. return 0;
  891. }
  892. int set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
  893. {
  894. if (cpu_is_exynos5())
  895. return exynos5_set_i2s_clk_prescaler(src_frq, dst_frq);
  896. else
  897. return 0;
  898. }
  899. void set_i2s_clk_source(void)
  900. {
  901. if (cpu_is_exynos5())
  902. exynos5_set_i2s_clk_source();
  903. }
  904. int set_epll_clk(unsigned long rate)
  905. {
  906. if (cpu_is_exynos5())
  907. return exynos5_set_epll_clk(rate);
  908. else
  909. return 0;
  910. }