44x_spd_ddr2.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035
  1. /*
  2. * cpu/ppc4xx/44x_spd_ddr2.c
  3. * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
  4. * DDR2 controller (non Denali Core). Those are 440SP/SPe.
  5. *
  6. * (C) Copyright 2007-2008
  7. * Stefan Roese, DENX Software Engineering, sr@denx.de.
  8. *
  9. * COPYRIGHT AMCC CORPORATION 2004
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. *
  29. */
  30. /* define DEBUG for debugging output (obviously ;-)) */
  31. #if 0
  32. #define DEBUG
  33. #endif
  34. #include <common.h>
  35. #include <command.h>
  36. #include <ppc4xx.h>
  37. #include <i2c.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/mmu.h>
  41. #if defined(CONFIG_SPD_EEPROM) && \
  42. (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
  43. /*-----------------------------------------------------------------------------+
  44. * Defines
  45. *-----------------------------------------------------------------------------*/
  46. #ifndef TRUE
  47. #define TRUE 1
  48. #endif
  49. #ifndef FALSE
  50. #define FALSE 0
  51. #endif
  52. #define SDRAM_DDR1 1
  53. #define SDRAM_DDR2 2
  54. #define SDRAM_NONE 0
  55. #define MAXDIMMS 2
  56. #define MAXRANKS 4
  57. #define MAXBXCF 4
  58. #define MAX_SPD_BYTES 256 /* Max number of bytes on the DIMM's SPD EEPROM */
  59. #define ONE_BILLION 1000000000
  60. #define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
  61. #define CMD_NOP (7 << 19)
  62. #define CMD_PRECHARGE (2 << 19)
  63. #define CMD_REFRESH (1 << 19)
  64. #define CMD_EMR (0 << 19)
  65. #define CMD_READ (5 << 19)
  66. #define CMD_WRITE (4 << 19)
  67. #define SELECT_MR (0 << 16)
  68. #define SELECT_EMR (1 << 16)
  69. #define SELECT_EMR2 (2 << 16)
  70. #define SELECT_EMR3 (3 << 16)
  71. /* MR */
  72. #define DLL_RESET 0x00000100
  73. #define WRITE_RECOV_2 (1 << 9)
  74. #define WRITE_RECOV_3 (2 << 9)
  75. #define WRITE_RECOV_4 (3 << 9)
  76. #define WRITE_RECOV_5 (4 << 9)
  77. #define WRITE_RECOV_6 (5 << 9)
  78. #define BURST_LEN_4 0x00000002
  79. /* EMR */
  80. #define ODT_0_OHM 0x00000000
  81. #define ODT_50_OHM 0x00000044
  82. #define ODT_75_OHM 0x00000004
  83. #define ODT_150_OHM 0x00000040
  84. #define ODS_FULL 0x00000000
  85. #define ODS_REDUCED 0x00000002
  86. /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
  87. #define ODT_EB0R (0x80000000 >> 8)
  88. #define ODT_EB0W (0x80000000 >> 7)
  89. #define CALC_ODT_R(n) (ODT_EB0R << (n << 1))
  90. #define CALC_ODT_W(n) (ODT_EB0W << (n << 1))
  91. #define CALC_ODT_RW(n) (CALC_ODT_R(n) | CALC_ODT_W(n))
  92. /* Defines for the Read Cycle Delay test */
  93. #define NUMMEMTESTS 8
  94. #define NUMMEMWORDS 8
  95. #define NUMLOOPS 64 /* memory test loops */
  96. /*
  97. * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
  98. * region. Right now the cache should still be disabled in U-Boot because of the
  99. * EMAC driver, that need it's buffer descriptor to be located in non cached
  100. * memory.
  101. *
  102. * If at some time this restriction doesn't apply anymore, just define
  103. * CONFIG_4xx_DCACHE in the board config file and this code should setup
  104. * everything correctly.
  105. */
  106. #ifdef CONFIG_4xx_DCACHE
  107. #define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
  108. #else
  109. #define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
  110. #endif
  111. /*
  112. * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
  113. */
  114. void __spd_ddr_init_hang (void)
  115. {
  116. hang ();
  117. }
  118. void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang")));
  119. /*
  120. * To provide an interface for board specific config values in this common
  121. * DDR setup code, we implement he "weak" default functions here. They return
  122. * the default value back to the caller.
  123. *
  124. * Please see include/configs/yucca.h for an example fora board specific
  125. * implementation.
  126. */
  127. u32 __ddr_wrdtr(u32 default_val)
  128. {
  129. return default_val;
  130. }
  131. u32 ddr_wrdtr(u32) __attribute__((weak, alias("__ddr_wrdtr")));
  132. u32 __ddr_clktr(u32 default_val)
  133. {
  134. return default_val;
  135. }
  136. u32 ddr_clktr(u32) __attribute__((weak, alias("__ddr_clktr")));
  137. /* Private Structure Definitions */
  138. /* enum only to ease code for cas latency setting */
  139. typedef enum ddr_cas_id {
  140. DDR_CAS_2 = 20,
  141. DDR_CAS_2_5 = 25,
  142. DDR_CAS_3 = 30,
  143. DDR_CAS_4 = 40,
  144. DDR_CAS_5 = 50
  145. } ddr_cas_id_t;
  146. /*-----------------------------------------------------------------------------+
  147. * Prototypes
  148. *-----------------------------------------------------------------------------*/
  149. static unsigned long sdram_memsize(void);
  150. static void get_spd_info(unsigned long *dimm_populated,
  151. unsigned char *iic0_dimm_addr,
  152. unsigned long num_dimm_banks);
  153. static void check_mem_type(unsigned long *dimm_populated,
  154. unsigned char *iic0_dimm_addr,
  155. unsigned long num_dimm_banks);
  156. static void check_frequency(unsigned long *dimm_populated,
  157. unsigned char *iic0_dimm_addr,
  158. unsigned long num_dimm_banks);
  159. static void check_rank_number(unsigned long *dimm_populated,
  160. unsigned char *iic0_dimm_addr,
  161. unsigned long num_dimm_banks);
  162. static void check_voltage_type(unsigned long *dimm_populated,
  163. unsigned char *iic0_dimm_addr,
  164. unsigned long num_dimm_banks);
  165. static void program_memory_queue(unsigned long *dimm_populated,
  166. unsigned char *iic0_dimm_addr,
  167. unsigned long num_dimm_banks);
  168. static void program_codt(unsigned long *dimm_populated,
  169. unsigned char *iic0_dimm_addr,
  170. unsigned long num_dimm_banks);
  171. static void program_mode(unsigned long *dimm_populated,
  172. unsigned char *iic0_dimm_addr,
  173. unsigned long num_dimm_banks,
  174. ddr_cas_id_t *selected_cas,
  175. int *write_recovery);
  176. static void program_tr(unsigned long *dimm_populated,
  177. unsigned char *iic0_dimm_addr,
  178. unsigned long num_dimm_banks);
  179. static void program_rtr(unsigned long *dimm_populated,
  180. unsigned char *iic0_dimm_addr,
  181. unsigned long num_dimm_banks);
  182. static void program_bxcf(unsigned long *dimm_populated,
  183. unsigned char *iic0_dimm_addr,
  184. unsigned long num_dimm_banks);
  185. static void program_copt1(unsigned long *dimm_populated,
  186. unsigned char *iic0_dimm_addr,
  187. unsigned long num_dimm_banks);
  188. static void program_initplr(unsigned long *dimm_populated,
  189. unsigned char *iic0_dimm_addr,
  190. unsigned long num_dimm_banks,
  191. ddr_cas_id_t selected_cas,
  192. int write_recovery);
  193. static unsigned long is_ecc_enabled(void);
  194. #ifdef CONFIG_DDR_ECC
  195. static void program_ecc(unsigned long *dimm_populated,
  196. unsigned char *iic0_dimm_addr,
  197. unsigned long num_dimm_banks,
  198. unsigned long tlb_word2_i_value);
  199. static void program_ecc_addr(unsigned long start_address,
  200. unsigned long num_bytes,
  201. unsigned long tlb_word2_i_value);
  202. #endif
  203. static void program_DQS_calibration(unsigned long *dimm_populated,
  204. unsigned char *iic0_dimm_addr,
  205. unsigned long num_dimm_banks);
  206. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  207. static void test(void);
  208. #else
  209. static void DQS_calibration_process(void);
  210. #endif
  211. static void ppc440sp_sdram_register_dump(void);
  212. int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
  213. void dcbz_area(u32 start_address, u32 num_bytes);
  214. void dflush(void);
  215. static u32 mfdcr_any(u32 dcr)
  216. {
  217. u32 val;
  218. switch (dcr) {
  219. case SDRAM_R0BAS + 0:
  220. val = mfdcr(SDRAM_R0BAS + 0);
  221. break;
  222. case SDRAM_R0BAS + 1:
  223. val = mfdcr(SDRAM_R0BAS + 1);
  224. break;
  225. case SDRAM_R0BAS + 2:
  226. val = mfdcr(SDRAM_R0BAS + 2);
  227. break;
  228. case SDRAM_R0BAS + 3:
  229. val = mfdcr(SDRAM_R0BAS + 3);
  230. break;
  231. default:
  232. printf("DCR %d not defined in case statement!!!\n", dcr);
  233. val = 0; /* just to satisfy the compiler */
  234. }
  235. return val;
  236. }
  237. static void mtdcr_any(u32 dcr, u32 val)
  238. {
  239. switch (dcr) {
  240. case SDRAM_R0BAS + 0:
  241. mtdcr(SDRAM_R0BAS + 0, val);
  242. break;
  243. case SDRAM_R0BAS + 1:
  244. mtdcr(SDRAM_R0BAS + 1, val);
  245. break;
  246. case SDRAM_R0BAS + 2:
  247. mtdcr(SDRAM_R0BAS + 2, val);
  248. break;
  249. case SDRAM_R0BAS + 3:
  250. mtdcr(SDRAM_R0BAS + 3, val);
  251. break;
  252. default:
  253. printf("DCR %d not defined in case statement!!!\n", dcr);
  254. }
  255. }
  256. static unsigned char spd_read(uchar chip, uint addr)
  257. {
  258. unsigned char data[2];
  259. if (i2c_probe(chip) == 0)
  260. if (i2c_read(chip, addr, 1, data, 1) == 0)
  261. return data[0];
  262. return 0;
  263. }
  264. /*-----------------------------------------------------------------------------+
  265. * sdram_memsize
  266. *-----------------------------------------------------------------------------*/
  267. static unsigned long sdram_memsize(void)
  268. {
  269. unsigned long mem_size;
  270. unsigned long mcopt2;
  271. unsigned long mcstat;
  272. unsigned long mb0cf;
  273. unsigned long sdsz;
  274. unsigned long i;
  275. mem_size = 0;
  276. mfsdram(SDRAM_MCOPT2, mcopt2);
  277. mfsdram(SDRAM_MCSTAT, mcstat);
  278. /* DDR controller must be enabled and not in self-refresh. */
  279. /* Otherwise memsize is zero. */
  280. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  281. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  282. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  283. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  284. for (i = 0; i < MAXBXCF; i++) {
  285. mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
  286. /* Banks enabled */
  287. if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  288. sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
  289. switch(sdsz) {
  290. case SDRAM_RXBAS_SDSZ_8:
  291. mem_size+=8;
  292. break;
  293. case SDRAM_RXBAS_SDSZ_16:
  294. mem_size+=16;
  295. break;
  296. case SDRAM_RXBAS_SDSZ_32:
  297. mem_size+=32;
  298. break;
  299. case SDRAM_RXBAS_SDSZ_64:
  300. mem_size+=64;
  301. break;
  302. case SDRAM_RXBAS_SDSZ_128:
  303. mem_size+=128;
  304. break;
  305. case SDRAM_RXBAS_SDSZ_256:
  306. mem_size+=256;
  307. break;
  308. case SDRAM_RXBAS_SDSZ_512:
  309. mem_size+=512;
  310. break;
  311. case SDRAM_RXBAS_SDSZ_1024:
  312. mem_size+=1024;
  313. break;
  314. case SDRAM_RXBAS_SDSZ_2048:
  315. mem_size+=2048;
  316. break;
  317. case SDRAM_RXBAS_SDSZ_4096:
  318. mem_size+=4096;
  319. break;
  320. default:
  321. mem_size=0;
  322. break;
  323. }
  324. }
  325. }
  326. }
  327. mem_size *= 1024 * 1024;
  328. return(mem_size);
  329. }
  330. /*-----------------------------------------------------------------------------+
  331. * initdram. Initializes the 440SP Memory Queue and DDR SDRAM controller.
  332. * Note: This routine runs from flash with a stack set up in the chip's
  333. * sram space. It is important that the routine does not require .sbss, .bss or
  334. * .data sections. It also cannot call routines that require these sections.
  335. *-----------------------------------------------------------------------------*/
  336. /*-----------------------------------------------------------------------------
  337. * Function: initdram
  338. * Description: Configures SDRAM memory banks for DDR operation.
  339. * Auto Memory Configuration option reads the DDR SDRAM EEPROMs
  340. * via the IIC bus and then configures the DDR SDRAM memory
  341. * banks appropriately. If Auto Memory Configuration is
  342. * not used, it is assumed that no DIMM is plugged
  343. *-----------------------------------------------------------------------------*/
  344. long int initdram(int board_type)
  345. {
  346. unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
  347. unsigned char spd0[MAX_SPD_BYTES];
  348. unsigned char spd1[MAX_SPD_BYTES];
  349. unsigned char *dimm_spd[MAXDIMMS];
  350. unsigned long dimm_populated[MAXDIMMS];
  351. unsigned long num_dimm_banks; /* on board dimm banks */
  352. unsigned long val;
  353. ddr_cas_id_t selected_cas = DDR_CAS_5; /* preset to silence compiler */
  354. int write_recovery;
  355. unsigned long dram_size = 0;
  356. num_dimm_banks = sizeof(iic0_dimm_addr);
  357. /*------------------------------------------------------------------
  358. * Set up an array of SPD matrixes.
  359. *-----------------------------------------------------------------*/
  360. dimm_spd[0] = spd0;
  361. dimm_spd[1] = spd1;
  362. /*------------------------------------------------------------------
  363. * Reset the DDR-SDRAM controller.
  364. *-----------------------------------------------------------------*/
  365. mtsdr(SDR0_SRST, (0x80000000 >> 10));
  366. mtsdr(SDR0_SRST, 0x00000000);
  367. /*
  368. * Make sure I2C controller is initialized
  369. * before continuing.
  370. */
  371. /* switch to correct I2C bus */
  372. I2C_SET_BUS(CFG_SPD_BUS_NUM);
  373. i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
  374. /*------------------------------------------------------------------
  375. * Clear out the serial presence detect buffers.
  376. * Perform IIC reads from the dimm. Fill in the spds.
  377. * Check to see if the dimm slots are populated
  378. *-----------------------------------------------------------------*/
  379. get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  380. /*------------------------------------------------------------------
  381. * Check the memory type for the dimms plugged.
  382. *-----------------------------------------------------------------*/
  383. check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  384. /*------------------------------------------------------------------
  385. * Check the frequency supported for the dimms plugged.
  386. *-----------------------------------------------------------------*/
  387. check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  388. /*------------------------------------------------------------------
  389. * Check the total rank number.
  390. *-----------------------------------------------------------------*/
  391. check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  392. /*------------------------------------------------------------------
  393. * Check the voltage type for the dimms plugged.
  394. *-----------------------------------------------------------------*/
  395. check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  396. /*------------------------------------------------------------------
  397. * Program SDRAM controller options 2 register
  398. * Except Enabling of the memory controller.
  399. *-----------------------------------------------------------------*/
  400. mfsdram(SDRAM_MCOPT2, val);
  401. mtsdram(SDRAM_MCOPT2,
  402. (val &
  403. ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
  404. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
  405. SDRAM_MCOPT2_ISIE_MASK))
  406. | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
  407. SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
  408. SDRAM_MCOPT2_ISIE_ENABLE));
  409. /*------------------------------------------------------------------
  410. * Program SDRAM controller options 1 register
  411. * Note: Does not enable the memory controller.
  412. *-----------------------------------------------------------------*/
  413. program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  414. /*------------------------------------------------------------------
  415. * Set the SDRAM Controller On Die Termination Register
  416. *-----------------------------------------------------------------*/
  417. program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  418. /*------------------------------------------------------------------
  419. * Program SDRAM refresh register.
  420. *-----------------------------------------------------------------*/
  421. program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  422. /*------------------------------------------------------------------
  423. * Program SDRAM mode register.
  424. *-----------------------------------------------------------------*/
  425. program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  426. &selected_cas, &write_recovery);
  427. /*------------------------------------------------------------------
  428. * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
  429. *-----------------------------------------------------------------*/
  430. mfsdram(SDRAM_WRDTR, val);
  431. mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
  432. ddr_wrdtr(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
  433. /*------------------------------------------------------------------
  434. * Set the SDRAM Clock Timing Register
  435. *-----------------------------------------------------------------*/
  436. mfsdram(SDRAM_CLKTR, val);
  437. mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) |
  438. ddr_clktr(SDRAM_CLKTR_CLKP_0_DEG));
  439. /*------------------------------------------------------------------
  440. * Program the BxCF registers.
  441. *-----------------------------------------------------------------*/
  442. program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  443. /*------------------------------------------------------------------
  444. * Program SDRAM timing registers.
  445. *-----------------------------------------------------------------*/
  446. program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  447. /*------------------------------------------------------------------
  448. * Set the Extended Mode register
  449. *-----------------------------------------------------------------*/
  450. mfsdram(SDRAM_MEMODE, val);
  451. mtsdram(SDRAM_MEMODE,
  452. (val & ~(SDRAM_MEMODE_DIC_MASK | SDRAM_MEMODE_DLL_MASK |
  453. SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
  454. (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
  455. | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
  456. /*------------------------------------------------------------------
  457. * Program Initialization preload registers.
  458. *-----------------------------------------------------------------*/
  459. program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
  460. selected_cas, write_recovery);
  461. /*------------------------------------------------------------------
  462. * Delay to ensure 200usec have elapsed since reset.
  463. *-----------------------------------------------------------------*/
  464. udelay(400);
  465. /*------------------------------------------------------------------
  466. * Set the memory queue core base addr.
  467. *-----------------------------------------------------------------*/
  468. program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  469. /*------------------------------------------------------------------
  470. * Program SDRAM controller options 2 register
  471. * Enable the memory controller.
  472. *-----------------------------------------------------------------*/
  473. mfsdram(SDRAM_MCOPT2, val);
  474. mtsdram(SDRAM_MCOPT2,
  475. (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
  476. SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
  477. (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
  478. /*------------------------------------------------------------------
  479. * Wait for SDRAM_CFG0_DC_EN to complete.
  480. *-----------------------------------------------------------------*/
  481. do {
  482. mfsdram(SDRAM_MCSTAT, val);
  483. } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
  484. /* get installed memory size */
  485. dram_size = sdram_memsize();
  486. /* and program tlb entries for this size (dynamic) */
  487. /*
  488. * Program TLB entries with caches enabled, for best performace
  489. * while auto-calibrating and ECC generation
  490. */
  491. program_tlb(0, 0, dram_size, 0);
  492. /*------------------------------------------------------------------
  493. * DQS calibration.
  494. *-----------------------------------------------------------------*/
  495. program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
  496. #ifdef CONFIG_DDR_ECC
  497. /*------------------------------------------------------------------
  498. * If ecc is enabled, initialize the parity bits.
  499. *-----------------------------------------------------------------*/
  500. program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, 0);
  501. #endif
  502. /*
  503. * Now after initialization (auto-calibration and ECC generation)
  504. * remove the TLB entries with caches enabled and program again with
  505. * desired cache functionality
  506. */
  507. remove_tlb(0, dram_size);
  508. program_tlb(0, 0, dram_size, MY_TLB_WORD2_I_ENABLE);
  509. ppc440sp_sdram_register_dump();
  510. return dram_size;
  511. }
  512. static void get_spd_info(unsigned long *dimm_populated,
  513. unsigned char *iic0_dimm_addr,
  514. unsigned long num_dimm_banks)
  515. {
  516. unsigned long dimm_num;
  517. unsigned long dimm_found;
  518. unsigned char num_of_bytes;
  519. unsigned char total_size;
  520. dimm_found = FALSE;
  521. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  522. num_of_bytes = 0;
  523. total_size = 0;
  524. num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
  525. debug("\nspd_read(0x%x) returned %d\n",
  526. iic0_dimm_addr[dimm_num], num_of_bytes);
  527. total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
  528. debug("spd_read(0x%x) returned %d\n",
  529. iic0_dimm_addr[dimm_num], total_size);
  530. if ((num_of_bytes != 0) && (total_size != 0)) {
  531. dimm_populated[dimm_num] = TRUE;
  532. dimm_found = TRUE;
  533. debug("DIMM slot %lu: populated\n", dimm_num);
  534. } else {
  535. dimm_populated[dimm_num] = FALSE;
  536. debug("DIMM slot %lu: Not populated\n", dimm_num);
  537. }
  538. }
  539. if (dimm_found == FALSE) {
  540. printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
  541. spd_ddr_init_hang ();
  542. }
  543. }
  544. void board_add_ram_info(int use_default)
  545. {
  546. PPC4xx_SYS_INFO board_cfg;
  547. u32 val;
  548. if (is_ecc_enabled())
  549. puts(" (ECC");
  550. else
  551. puts(" (ECC not");
  552. get_sys_info(&board_cfg);
  553. mfsdr(SDR0_DDR0, val);
  554. val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
  555. printf(" enabled, %d MHz", (val * 2) / 1000000);
  556. mfsdram(SDRAM_MMODE, val);
  557. val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
  558. printf(", CL%d)", val);
  559. }
  560. /*------------------------------------------------------------------
  561. * For the memory DIMMs installed, this routine verifies that they
  562. * really are DDR specific DIMMs.
  563. *-----------------------------------------------------------------*/
  564. static void check_mem_type(unsigned long *dimm_populated,
  565. unsigned char *iic0_dimm_addr,
  566. unsigned long num_dimm_banks)
  567. {
  568. unsigned long dimm_num;
  569. unsigned long dimm_type;
  570. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  571. if (dimm_populated[dimm_num] == TRUE) {
  572. dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
  573. switch (dimm_type) {
  574. case 1:
  575. printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
  576. "slot %d.\n", (unsigned int)dimm_num);
  577. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  578. printf("Replace the DIMM module with a supported DIMM.\n\n");
  579. spd_ddr_init_hang ();
  580. break;
  581. case 2:
  582. printf("ERROR: EDO DIMM detected in slot %d.\n",
  583. (unsigned int)dimm_num);
  584. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  585. printf("Replace the DIMM module with a supported DIMM.\n\n");
  586. spd_ddr_init_hang ();
  587. break;
  588. case 3:
  589. printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
  590. (unsigned int)dimm_num);
  591. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  592. printf("Replace the DIMM module with a supported DIMM.\n\n");
  593. spd_ddr_init_hang ();
  594. break;
  595. case 4:
  596. printf("ERROR: SDRAM DIMM detected in slot %d.\n",
  597. (unsigned int)dimm_num);
  598. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  599. printf("Replace the DIMM module with a supported DIMM.\n\n");
  600. spd_ddr_init_hang ();
  601. break;
  602. case 5:
  603. printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
  604. (unsigned int)dimm_num);
  605. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  606. printf("Replace the DIMM module with a supported DIMM.\n\n");
  607. spd_ddr_init_hang ();
  608. break;
  609. case 6:
  610. printf("ERROR: SGRAM DIMM detected in slot %d.\n",
  611. (unsigned int)dimm_num);
  612. printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
  613. printf("Replace the DIMM module with a supported DIMM.\n\n");
  614. spd_ddr_init_hang ();
  615. break;
  616. case 7:
  617. debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
  618. dimm_populated[dimm_num] = SDRAM_DDR1;
  619. break;
  620. case 8:
  621. debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
  622. dimm_populated[dimm_num] = SDRAM_DDR2;
  623. break;
  624. default:
  625. printf("ERROR: Unknown DIMM detected in slot %d.\n",
  626. (unsigned int)dimm_num);
  627. printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
  628. printf("Replace the DIMM module with a supported DIMM.\n\n");
  629. spd_ddr_init_hang ();
  630. break;
  631. }
  632. }
  633. }
  634. for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
  635. if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
  636. && (dimm_populated[dimm_num] != SDRAM_NONE)
  637. && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
  638. printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
  639. spd_ddr_init_hang ();
  640. }
  641. }
  642. }
  643. /*------------------------------------------------------------------
  644. * For the memory DIMMs installed, this routine verifies that
  645. * frequency previously calculated is supported.
  646. *-----------------------------------------------------------------*/
  647. static void check_frequency(unsigned long *dimm_populated,
  648. unsigned char *iic0_dimm_addr,
  649. unsigned long num_dimm_banks)
  650. {
  651. unsigned long dimm_num;
  652. unsigned long tcyc_reg;
  653. unsigned long cycle_time;
  654. unsigned long calc_cycle_time;
  655. unsigned long sdram_freq;
  656. unsigned long sdr_ddrpll;
  657. PPC4xx_SYS_INFO board_cfg;
  658. /*------------------------------------------------------------------
  659. * Get the board configuration info.
  660. *-----------------------------------------------------------------*/
  661. get_sys_info(&board_cfg);
  662. mfsdr(SDR0_DDR0, sdr_ddrpll);
  663. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  664. /*
  665. * calc_cycle_time is calculated from DDR frequency set by board/chip
  666. * and is expressed in multiple of 10 picoseconds
  667. * to match the way DIMM cycle time is calculated below.
  668. */
  669. calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
  670. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  671. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  672. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  673. /*
  674. * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
  675. * the higher order nibble (bits 4-7) designates the cycle time
  676. * to a granularity of 1ns;
  677. * the value presented by the lower order nibble (bits 0-3)
  678. * has a granularity of .1ns and is added to the value designated
  679. * by the higher nibble. In addition, four lines of the lower order
  680. * nibble are assigned to support +.25,+.33, +.66 and +.75.
  681. */
  682. /* Convert from hex to decimal */
  683. if ((tcyc_reg & 0x0F) == 0x0D)
  684. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  685. else if ((tcyc_reg & 0x0F) == 0x0C)
  686. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
  687. else if ((tcyc_reg & 0x0F) == 0x0B)
  688. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
  689. else if ((tcyc_reg & 0x0F) == 0x0A)
  690. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
  691. else
  692. cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
  693. ((tcyc_reg & 0x0F)*10);
  694. debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
  695. if (cycle_time > (calc_cycle_time + 10)) {
  696. /*
  697. * the provided sdram cycle_time is too small
  698. * for the available DIMM cycle_time.
  699. * The additionnal 100ps is here to accept a small incertainty.
  700. */
  701. printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
  702. "slot %d \n while calculated cycle time is %d ps.\n",
  703. (unsigned int)(cycle_time*10),
  704. (unsigned int)dimm_num,
  705. (unsigned int)(calc_cycle_time*10));
  706. printf("Replace the DIMM, or change DDR frequency via "
  707. "strapping bits.\n\n");
  708. spd_ddr_init_hang ();
  709. }
  710. }
  711. }
  712. }
  713. /*------------------------------------------------------------------
  714. * For the memory DIMMs installed, this routine verifies two
  715. * ranks/banks maximum are availables.
  716. *-----------------------------------------------------------------*/
  717. static void check_rank_number(unsigned long *dimm_populated,
  718. unsigned char *iic0_dimm_addr,
  719. unsigned long num_dimm_banks)
  720. {
  721. unsigned long dimm_num;
  722. unsigned long dimm_rank;
  723. unsigned long total_rank = 0;
  724. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  725. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  726. dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
  727. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  728. dimm_rank = (dimm_rank & 0x0F) +1;
  729. else
  730. dimm_rank = dimm_rank & 0x0F;
  731. if (dimm_rank > MAXRANKS) {
  732. printf("ERROR: DRAM DIMM detected with %d ranks in "
  733. "slot %d is not supported.\n", dimm_rank, dimm_num);
  734. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  735. printf("Replace the DIMM module with a supported DIMM.\n\n");
  736. spd_ddr_init_hang ();
  737. } else
  738. total_rank += dimm_rank;
  739. }
  740. if (total_rank > MAXRANKS) {
  741. printf("ERROR: DRAM DIMM detected with a total of %d ranks "
  742. "for all slots.\n", (unsigned int)total_rank);
  743. printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
  744. printf("Remove one of the DIMM modules.\n\n");
  745. spd_ddr_init_hang ();
  746. }
  747. }
  748. }
  749. /*------------------------------------------------------------------
  750. * only support 2.5V modules.
  751. * This routine verifies this.
  752. *-----------------------------------------------------------------*/
  753. static void check_voltage_type(unsigned long *dimm_populated,
  754. unsigned char *iic0_dimm_addr,
  755. unsigned long num_dimm_banks)
  756. {
  757. unsigned long dimm_num;
  758. unsigned long voltage_type;
  759. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  760. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  761. voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
  762. switch (voltage_type) {
  763. case 0x00:
  764. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  765. printf("This DIMM is 5.0 Volt/TTL.\n");
  766. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  767. (unsigned int)dimm_num);
  768. spd_ddr_init_hang ();
  769. break;
  770. case 0x01:
  771. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  772. printf("This DIMM is LVTTL.\n");
  773. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  774. (unsigned int)dimm_num);
  775. spd_ddr_init_hang ();
  776. break;
  777. case 0x02:
  778. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  779. printf("This DIMM is 1.5 Volt.\n");
  780. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  781. (unsigned int)dimm_num);
  782. spd_ddr_init_hang ();
  783. break;
  784. case 0x03:
  785. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  786. printf("This DIMM is 3.3 Volt/TTL.\n");
  787. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  788. (unsigned int)dimm_num);
  789. spd_ddr_init_hang ();
  790. break;
  791. case 0x04:
  792. /* 2.5 Voltage only for DDR1 */
  793. break;
  794. case 0x05:
  795. /* 1.8 Voltage only for DDR2 */
  796. break;
  797. default:
  798. printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
  799. printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
  800. (unsigned int)dimm_num);
  801. spd_ddr_init_hang ();
  802. break;
  803. }
  804. }
  805. }
  806. }
  807. /*-----------------------------------------------------------------------------+
  808. * program_copt1.
  809. *-----------------------------------------------------------------------------*/
  810. static void program_copt1(unsigned long *dimm_populated,
  811. unsigned char *iic0_dimm_addr,
  812. unsigned long num_dimm_banks)
  813. {
  814. unsigned long dimm_num;
  815. unsigned long mcopt1;
  816. unsigned long ecc_enabled;
  817. unsigned long ecc = 0;
  818. unsigned long data_width = 0;
  819. unsigned long dimm_32bit;
  820. unsigned long dimm_64bit;
  821. unsigned long registered = 0;
  822. unsigned long attribute = 0;
  823. unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  824. unsigned long bankcount;
  825. unsigned long ddrtype;
  826. unsigned long val;
  827. #ifdef CONFIG_DDR_ECC
  828. ecc_enabled = TRUE;
  829. #else
  830. ecc_enabled = FALSE;
  831. #endif
  832. dimm_32bit = FALSE;
  833. dimm_64bit = FALSE;
  834. buf0 = FALSE;
  835. buf1 = FALSE;
  836. /*------------------------------------------------------------------
  837. * Set memory controller options reg 1, SDRAM_MCOPT1.
  838. *-----------------------------------------------------------------*/
  839. mfsdram(SDRAM_MCOPT1, val);
  840. mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
  841. SDRAM_MCOPT1_PMU_MASK | SDRAM_MCOPT1_DMWD_MASK |
  842. SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
  843. SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
  844. SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
  845. SDRAM_MCOPT1_DREF_MASK);
  846. mcopt1 |= SDRAM_MCOPT1_QDEP;
  847. mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
  848. mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
  849. mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
  850. mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
  851. mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
  852. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  853. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  854. /* test ecc support */
  855. ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
  856. if (ecc != 0x02) /* ecc not supported */
  857. ecc_enabled = FALSE;
  858. /* test bank count */
  859. bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
  860. if (bankcount == 0x04) /* bank count = 4 */
  861. mcopt1 |= SDRAM_MCOPT1_4_BANKS;
  862. else /* bank count = 8 */
  863. mcopt1 |= SDRAM_MCOPT1_8_BANKS;
  864. /* test DDR type */
  865. ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
  866. /* test for buffered/unbuffered, registered, differential clocks */
  867. registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
  868. attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
  869. /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
  870. if (dimm_num == 0) {
  871. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  872. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  873. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  874. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  875. if (registered == 1) { /* DDR2 always buffered */
  876. /* TODO: what about above comments ? */
  877. mcopt1 |= SDRAM_MCOPT1_RDEN;
  878. buf0 = TRUE;
  879. } else {
  880. /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
  881. if ((attribute & 0x02) == 0x00) {
  882. /* buffered not supported */
  883. buf0 = FALSE;
  884. } else {
  885. mcopt1 |= SDRAM_MCOPT1_RDEN;
  886. buf0 = TRUE;
  887. }
  888. }
  889. }
  890. else if (dimm_num == 1) {
  891. if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
  892. mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
  893. if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
  894. mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
  895. if (registered == 1) {
  896. /* DDR2 always buffered */
  897. mcopt1 |= SDRAM_MCOPT1_RDEN;
  898. buf1 = TRUE;
  899. } else {
  900. if ((attribute & 0x02) == 0x00) {
  901. /* buffered not supported */
  902. buf1 = FALSE;
  903. } else {
  904. mcopt1 |= SDRAM_MCOPT1_RDEN;
  905. buf1 = TRUE;
  906. }
  907. }
  908. }
  909. /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
  910. data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
  911. (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
  912. switch (data_width) {
  913. case 72:
  914. case 64:
  915. dimm_64bit = TRUE;
  916. break;
  917. case 40:
  918. case 32:
  919. dimm_32bit = TRUE;
  920. break;
  921. default:
  922. printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
  923. data_width);
  924. printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
  925. break;
  926. }
  927. }
  928. }
  929. /* verify matching properties */
  930. if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
  931. if (buf0 != buf1) {
  932. printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
  933. spd_ddr_init_hang ();
  934. }
  935. }
  936. if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
  937. printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
  938. spd_ddr_init_hang ();
  939. }
  940. else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
  941. mcopt1 |= SDRAM_MCOPT1_DMWD_64;
  942. } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
  943. mcopt1 |= SDRAM_MCOPT1_DMWD_32;
  944. } else {
  945. printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
  946. spd_ddr_init_hang ();
  947. }
  948. if (ecc_enabled == TRUE)
  949. mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
  950. else
  951. mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
  952. mtsdram(SDRAM_MCOPT1, mcopt1);
  953. }
  954. /*-----------------------------------------------------------------------------+
  955. * program_codt.
  956. *-----------------------------------------------------------------------------*/
  957. static void program_codt(unsigned long *dimm_populated,
  958. unsigned char *iic0_dimm_addr,
  959. unsigned long num_dimm_banks)
  960. {
  961. unsigned long codt;
  962. unsigned long modt0 = 0;
  963. unsigned long modt1 = 0;
  964. unsigned long modt2 = 0;
  965. unsigned long modt3 = 0;
  966. unsigned char dimm_num;
  967. unsigned char dimm_rank;
  968. unsigned char total_rank = 0;
  969. unsigned char total_dimm = 0;
  970. unsigned char dimm_type = 0;
  971. unsigned char firstSlot = 0;
  972. /*------------------------------------------------------------------
  973. * Set the SDRAM Controller On Die Termination Register
  974. *-----------------------------------------------------------------*/
  975. mfsdram(SDRAM_CODT, codt);
  976. codt |= (SDRAM_CODT_IO_NMODE
  977. & (~SDRAM_CODT_DQS_SINGLE_END
  978. & ~SDRAM_CODT_CKSE_SINGLE_END
  979. & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
  980. & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
  981. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  982. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  983. dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
  984. if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
  985. dimm_rank = (dimm_rank & 0x0F) + 1;
  986. dimm_type = SDRAM_DDR2;
  987. } else {
  988. dimm_rank = dimm_rank & 0x0F;
  989. dimm_type = SDRAM_DDR1;
  990. }
  991. total_rank += dimm_rank;
  992. total_dimm++;
  993. if ((dimm_num == 0) && (total_dimm == 1))
  994. firstSlot = TRUE;
  995. else
  996. firstSlot = FALSE;
  997. }
  998. }
  999. if (dimm_type == SDRAM_DDR2) {
  1000. codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
  1001. if ((total_dimm == 1) && (firstSlot == TRUE)) {
  1002. if (total_rank == 1) {
  1003. codt |= CALC_ODT_R(0);
  1004. modt0 = CALC_ODT_W(0);
  1005. modt1 = 0x00000000;
  1006. modt2 = 0x00000000;
  1007. modt3 = 0x00000000;
  1008. }
  1009. if (total_rank == 2) {
  1010. codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
  1011. modt0 = CALC_ODT_W(0);
  1012. modt1 = CALC_ODT_W(0);
  1013. modt2 = 0x00000000;
  1014. modt3 = 0x00000000;
  1015. }
  1016. } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
  1017. if (total_rank == 1) {
  1018. codt |= CALC_ODT_R(2);
  1019. modt0 = 0x00000000;
  1020. modt1 = 0x00000000;
  1021. modt2 = CALC_ODT_W(2);
  1022. modt3 = 0x00000000;
  1023. }
  1024. if (total_rank == 2) {
  1025. codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
  1026. modt0 = 0x00000000;
  1027. modt1 = 0x00000000;
  1028. modt2 = CALC_ODT_W(2);
  1029. modt3 = CALC_ODT_W(2);
  1030. }
  1031. }
  1032. if (total_dimm == 2) {
  1033. if (total_rank == 2) {
  1034. codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
  1035. modt0 = CALC_ODT_RW(2);
  1036. modt1 = 0x00000000;
  1037. modt2 = CALC_ODT_RW(0);
  1038. modt3 = 0x00000000;
  1039. }
  1040. if (total_rank == 4) {
  1041. codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
  1042. CALC_ODT_R(2) | CALC_ODT_R(3);
  1043. modt0 = CALC_ODT_RW(2);
  1044. modt1 = 0x00000000;
  1045. modt2 = CALC_ODT_RW(0);
  1046. modt3 = 0x00000000;
  1047. }
  1048. }
  1049. } else {
  1050. codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
  1051. modt0 = 0x00000000;
  1052. modt1 = 0x00000000;
  1053. modt2 = 0x00000000;
  1054. modt3 = 0x00000000;
  1055. if (total_dimm == 1) {
  1056. if (total_rank == 1)
  1057. codt |= 0x00800000;
  1058. if (total_rank == 2)
  1059. codt |= 0x02800000;
  1060. }
  1061. if (total_dimm == 2) {
  1062. if (total_rank == 2)
  1063. codt |= 0x08800000;
  1064. if (total_rank == 4)
  1065. codt |= 0x2a800000;
  1066. }
  1067. }
  1068. debug("nb of dimm %d\n", total_dimm);
  1069. debug("nb of rank %d\n", total_rank);
  1070. if (total_dimm == 1)
  1071. debug("dimm in slot %d\n", firstSlot);
  1072. mtsdram(SDRAM_CODT, codt);
  1073. mtsdram(SDRAM_MODT0, modt0);
  1074. mtsdram(SDRAM_MODT1, modt1);
  1075. mtsdram(SDRAM_MODT2, modt2);
  1076. mtsdram(SDRAM_MODT3, modt3);
  1077. }
  1078. /*-----------------------------------------------------------------------------+
  1079. * program_initplr.
  1080. *-----------------------------------------------------------------------------*/
  1081. static void program_initplr(unsigned long *dimm_populated,
  1082. unsigned char *iic0_dimm_addr,
  1083. unsigned long num_dimm_banks,
  1084. ddr_cas_id_t selected_cas,
  1085. int write_recovery)
  1086. {
  1087. u32 cas = 0;
  1088. u32 odt = 0;
  1089. u32 ods = 0;
  1090. u32 mr;
  1091. u32 wr;
  1092. u32 emr;
  1093. u32 emr2;
  1094. u32 emr3;
  1095. int dimm_num;
  1096. int total_dimm = 0;
  1097. /******************************************************
  1098. ** Assumption: if more than one DIMM, all DIMMs are the same
  1099. ** as already checked in check_memory_type
  1100. ******************************************************/
  1101. if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
  1102. mtsdram(SDRAM_INITPLR0, 0x81B80000);
  1103. mtsdram(SDRAM_INITPLR1, 0x81900400);
  1104. mtsdram(SDRAM_INITPLR2, 0x81810000);
  1105. mtsdram(SDRAM_INITPLR3, 0xff800162);
  1106. mtsdram(SDRAM_INITPLR4, 0x81900400);
  1107. mtsdram(SDRAM_INITPLR5, 0x86080000);
  1108. mtsdram(SDRAM_INITPLR6, 0x86080000);
  1109. mtsdram(SDRAM_INITPLR7, 0x81000062);
  1110. } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
  1111. switch (selected_cas) {
  1112. case DDR_CAS_3:
  1113. cas = 3 << 4;
  1114. break;
  1115. case DDR_CAS_4:
  1116. cas = 4 << 4;
  1117. break;
  1118. case DDR_CAS_5:
  1119. cas = 5 << 4;
  1120. break;
  1121. default:
  1122. printf("ERROR: ucode error on selected_cas value %d", selected_cas);
  1123. spd_ddr_init_hang ();
  1124. break;
  1125. }
  1126. #if 0
  1127. /*
  1128. * ToDo - Still a problem with the write recovery:
  1129. * On the Corsair CM2X512-5400C4 module, setting write recovery
  1130. * in the INITPLR reg to the value calculated in program_mode()
  1131. * results in not correctly working DDR2 memory (crash after
  1132. * relocation).
  1133. *
  1134. * So for now, set the write recovery to 3. This seems to work
  1135. * on the Corair module too.
  1136. *
  1137. * 2007-03-01, sr
  1138. */
  1139. switch (write_recovery) {
  1140. case 3:
  1141. wr = WRITE_RECOV_3;
  1142. break;
  1143. case 4:
  1144. wr = WRITE_RECOV_4;
  1145. break;
  1146. case 5:
  1147. wr = WRITE_RECOV_5;
  1148. break;
  1149. case 6:
  1150. wr = WRITE_RECOV_6;
  1151. break;
  1152. default:
  1153. printf("ERROR: write recovery not support (%d)", write_recovery);
  1154. spd_ddr_init_hang ();
  1155. break;
  1156. }
  1157. #else
  1158. wr = WRITE_RECOV_3; /* test-only, see description above */
  1159. #endif
  1160. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
  1161. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1162. total_dimm++;
  1163. if (total_dimm == 1) {
  1164. odt = ODT_150_OHM;
  1165. ods = ODS_FULL;
  1166. } else if (total_dimm == 2) {
  1167. odt = ODT_75_OHM;
  1168. ods = ODS_REDUCED;
  1169. } else {
  1170. printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
  1171. spd_ddr_init_hang ();
  1172. }
  1173. mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
  1174. emr = CMD_EMR | SELECT_EMR | odt | ods;
  1175. emr2 = CMD_EMR | SELECT_EMR2;
  1176. emr3 = CMD_EMR | SELECT_EMR3;
  1177. mtsdram(SDRAM_INITPLR0, 0xB5000000 | CMD_NOP); /* NOP */
  1178. udelay(1000);
  1179. mtsdram(SDRAM_INITPLR1, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1180. mtsdram(SDRAM_INITPLR2, 0x80800000 | emr2); /* EMR2 */
  1181. mtsdram(SDRAM_INITPLR3, 0x80800000 | emr3); /* EMR3 */
  1182. mtsdram(SDRAM_INITPLR4, 0x80800000 | emr); /* EMR DLL ENABLE */
  1183. mtsdram(SDRAM_INITPLR5, 0x80800000 | mr | DLL_RESET); /* MR w/ DLL reset */
  1184. udelay(1000);
  1185. mtsdram(SDRAM_INITPLR6, 0x82000400 | CMD_PRECHARGE); /* precharge 8 DDR clock cycle */
  1186. mtsdram(SDRAM_INITPLR7, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1187. mtsdram(SDRAM_INITPLR8, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1188. mtsdram(SDRAM_INITPLR9, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1189. mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH); /* Refresh 50 DDR clock cycle */
  1190. mtsdram(SDRAM_INITPLR11, 0x80000000 | mr); /* MR w/o DLL reset */
  1191. mtsdram(SDRAM_INITPLR12, 0x80800380 | emr); /* EMR OCD Default */
  1192. mtsdram(SDRAM_INITPLR13, 0x80800000 | emr); /* EMR OCD Exit */
  1193. } else {
  1194. printf("ERROR: ucode error as unknown DDR type in program_initplr");
  1195. spd_ddr_init_hang ();
  1196. }
  1197. }
  1198. /*------------------------------------------------------------------
  1199. * This routine programs the SDRAM_MMODE register.
  1200. * the selected_cas is an output parameter, that will be passed
  1201. * by caller to call the above program_initplr( )
  1202. *-----------------------------------------------------------------*/
  1203. static void program_mode(unsigned long *dimm_populated,
  1204. unsigned char *iic0_dimm_addr,
  1205. unsigned long num_dimm_banks,
  1206. ddr_cas_id_t *selected_cas,
  1207. int *write_recovery)
  1208. {
  1209. unsigned long dimm_num;
  1210. unsigned long sdram_ddr1;
  1211. unsigned long t_wr_ns;
  1212. unsigned long t_wr_clk;
  1213. unsigned long cas_bit;
  1214. unsigned long cas_index;
  1215. unsigned long sdram_freq;
  1216. unsigned long ddr_check;
  1217. unsigned long mmode;
  1218. unsigned long tcyc_reg;
  1219. unsigned long cycle_2_0_clk;
  1220. unsigned long cycle_2_5_clk;
  1221. unsigned long cycle_3_0_clk;
  1222. unsigned long cycle_4_0_clk;
  1223. unsigned long cycle_5_0_clk;
  1224. unsigned long max_2_0_tcyc_ns_x_100;
  1225. unsigned long max_2_5_tcyc_ns_x_100;
  1226. unsigned long max_3_0_tcyc_ns_x_100;
  1227. unsigned long max_4_0_tcyc_ns_x_100;
  1228. unsigned long max_5_0_tcyc_ns_x_100;
  1229. unsigned long cycle_time_ns_x_100[3];
  1230. PPC4xx_SYS_INFO board_cfg;
  1231. unsigned char cas_2_0_available;
  1232. unsigned char cas_2_5_available;
  1233. unsigned char cas_3_0_available;
  1234. unsigned char cas_4_0_available;
  1235. unsigned char cas_5_0_available;
  1236. unsigned long sdr_ddrpll;
  1237. /*------------------------------------------------------------------
  1238. * Get the board configuration info.
  1239. *-----------------------------------------------------------------*/
  1240. get_sys_info(&board_cfg);
  1241. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1242. sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
  1243. debug("sdram_freq=%d\n", sdram_freq);
  1244. /*------------------------------------------------------------------
  1245. * Handle the timing. We need to find the worst case timing of all
  1246. * the dimm modules installed.
  1247. *-----------------------------------------------------------------*/
  1248. t_wr_ns = 0;
  1249. cas_2_0_available = TRUE;
  1250. cas_2_5_available = TRUE;
  1251. cas_3_0_available = TRUE;
  1252. cas_4_0_available = TRUE;
  1253. cas_5_0_available = TRUE;
  1254. max_2_0_tcyc_ns_x_100 = 10;
  1255. max_2_5_tcyc_ns_x_100 = 10;
  1256. max_3_0_tcyc_ns_x_100 = 10;
  1257. max_4_0_tcyc_ns_x_100 = 10;
  1258. max_5_0_tcyc_ns_x_100 = 10;
  1259. sdram_ddr1 = TRUE;
  1260. /* loop through all the DIMM slots on the board */
  1261. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1262. /* If a dimm is installed in a particular slot ... */
  1263. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1264. if (dimm_populated[dimm_num] == SDRAM_DDR1)
  1265. sdram_ddr1 = TRUE;
  1266. else
  1267. sdram_ddr1 = FALSE;
  1268. /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /* not used in this loop. */
  1269. cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
  1270. debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
  1271. /* For a particular DIMM, grab the three CAS values it supports */
  1272. for (cas_index = 0; cas_index < 3; cas_index++) {
  1273. switch (cas_index) {
  1274. case 0:
  1275. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
  1276. break;
  1277. case 1:
  1278. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
  1279. break;
  1280. default:
  1281. tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
  1282. break;
  1283. }
  1284. if ((tcyc_reg & 0x0F) >= 10) {
  1285. if ((tcyc_reg & 0x0F) == 0x0D) {
  1286. /* Convert from hex to decimal */
  1287. cycle_time_ns_x_100[cas_index] =
  1288. (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
  1289. } else {
  1290. printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
  1291. "in slot %d\n", (unsigned int)dimm_num);
  1292. spd_ddr_init_hang ();
  1293. }
  1294. } else {
  1295. /* Convert from hex to decimal */
  1296. cycle_time_ns_x_100[cas_index] =
  1297. (((tcyc_reg & 0xF0) >> 4) * 100) +
  1298. ((tcyc_reg & 0x0F)*10);
  1299. }
  1300. debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
  1301. cycle_time_ns_x_100[cas_index]);
  1302. }
  1303. /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
  1304. /* supported for a particular DIMM. */
  1305. cas_index = 0;
  1306. if (sdram_ddr1) {
  1307. /*
  1308. * DDR devices use the following bitmask for CAS latency:
  1309. * Bit 7 6 5 4 3 2 1 0
  1310. * TBD 4.0 3.5 3.0 2.5 2.0 1.5 1.0
  1311. */
  1312. if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
  1313. (cycle_time_ns_x_100[cas_index] != 0)) {
  1314. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1315. cycle_time_ns_x_100[cas_index]);
  1316. cas_index++;
  1317. } else {
  1318. if (cas_index != 0)
  1319. cas_index++;
  1320. cas_4_0_available = FALSE;
  1321. }
  1322. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1323. (cycle_time_ns_x_100[cas_index] != 0)) {
  1324. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1325. cycle_time_ns_x_100[cas_index]);
  1326. cas_index++;
  1327. } else {
  1328. if (cas_index != 0)
  1329. cas_index++;
  1330. cas_3_0_available = FALSE;
  1331. }
  1332. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1333. (cycle_time_ns_x_100[cas_index] != 0)) {
  1334. max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
  1335. cycle_time_ns_x_100[cas_index]);
  1336. cas_index++;
  1337. } else {
  1338. if (cas_index != 0)
  1339. cas_index++;
  1340. cas_2_5_available = FALSE;
  1341. }
  1342. if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
  1343. (cycle_time_ns_x_100[cas_index] != 0)) {
  1344. max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
  1345. cycle_time_ns_x_100[cas_index]);
  1346. cas_index++;
  1347. } else {
  1348. if (cas_index != 0)
  1349. cas_index++;
  1350. cas_2_0_available = FALSE;
  1351. }
  1352. } else {
  1353. /*
  1354. * DDR2 devices use the following bitmask for CAS latency:
  1355. * Bit 7 6 5 4 3 2 1 0
  1356. * TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
  1357. */
  1358. if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
  1359. (cycle_time_ns_x_100[cas_index] != 0)) {
  1360. max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
  1361. cycle_time_ns_x_100[cas_index]);
  1362. cas_index++;
  1363. } else {
  1364. if (cas_index != 0)
  1365. cas_index++;
  1366. cas_5_0_available = FALSE;
  1367. }
  1368. if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
  1369. (cycle_time_ns_x_100[cas_index] != 0)) {
  1370. max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
  1371. cycle_time_ns_x_100[cas_index]);
  1372. cas_index++;
  1373. } else {
  1374. if (cas_index != 0)
  1375. cas_index++;
  1376. cas_4_0_available = FALSE;
  1377. }
  1378. if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
  1379. (cycle_time_ns_x_100[cas_index] != 0)) {
  1380. max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
  1381. cycle_time_ns_x_100[cas_index]);
  1382. cas_index++;
  1383. } else {
  1384. if (cas_index != 0)
  1385. cas_index++;
  1386. cas_3_0_available = FALSE;
  1387. }
  1388. }
  1389. }
  1390. }
  1391. /*------------------------------------------------------------------
  1392. * Set the SDRAM mode, SDRAM_MMODE
  1393. *-----------------------------------------------------------------*/
  1394. mfsdram(SDRAM_MMODE, mmode);
  1395. mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
  1396. /* add 10 here because of rounding problems */
  1397. cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
  1398. cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
  1399. cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
  1400. cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
  1401. cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
  1402. debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
  1403. debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
  1404. debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
  1405. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1406. if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
  1407. mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
  1408. *selected_cas = DDR_CAS_2;
  1409. } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
  1410. mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
  1411. *selected_cas = DDR_CAS_2_5;
  1412. } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1413. mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
  1414. *selected_cas = DDR_CAS_3;
  1415. } else {
  1416. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1417. printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
  1418. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
  1419. spd_ddr_init_hang ();
  1420. }
  1421. } else { /* DDR2 */
  1422. debug("cas_3_0_available=%d\n", cas_3_0_available);
  1423. debug("cas_4_0_available=%d\n", cas_4_0_available);
  1424. debug("cas_5_0_available=%d\n", cas_5_0_available);
  1425. if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
  1426. mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
  1427. *selected_cas = DDR_CAS_3;
  1428. } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
  1429. mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
  1430. *selected_cas = DDR_CAS_4;
  1431. } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
  1432. mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
  1433. *selected_cas = DDR_CAS_5;
  1434. } else {
  1435. printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
  1436. printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
  1437. printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
  1438. printf("cas3=%d cas4=%d cas5=%d\n",
  1439. cas_3_0_available, cas_4_0_available, cas_5_0_available);
  1440. printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
  1441. sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
  1442. spd_ddr_init_hang ();
  1443. }
  1444. }
  1445. if (sdram_ddr1 == TRUE)
  1446. mmode |= SDRAM_MMODE_WR_DDR1;
  1447. else {
  1448. /* loop through all the DIMM slots on the board */
  1449. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1450. /* If a dimm is installed in a particular slot ... */
  1451. if (dimm_populated[dimm_num] != SDRAM_NONE)
  1452. t_wr_ns = max(t_wr_ns,
  1453. spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1454. }
  1455. /*
  1456. * convert from nanoseconds to ddr clocks
  1457. * round up if necessary
  1458. */
  1459. t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
  1460. ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
  1461. if (sdram_freq != ddr_check)
  1462. t_wr_clk++;
  1463. switch (t_wr_clk) {
  1464. case 0:
  1465. case 1:
  1466. case 2:
  1467. case 3:
  1468. mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
  1469. break;
  1470. case 4:
  1471. mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
  1472. break;
  1473. case 5:
  1474. mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
  1475. break;
  1476. default:
  1477. mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
  1478. break;
  1479. }
  1480. *write_recovery = t_wr_clk;
  1481. }
  1482. debug("CAS latency = %d\n", *selected_cas);
  1483. debug("Write recovery = %d\n", *write_recovery);
  1484. mtsdram(SDRAM_MMODE, mmode);
  1485. }
  1486. /*-----------------------------------------------------------------------------+
  1487. * program_rtr.
  1488. *-----------------------------------------------------------------------------*/
  1489. static void program_rtr(unsigned long *dimm_populated,
  1490. unsigned char *iic0_dimm_addr,
  1491. unsigned long num_dimm_banks)
  1492. {
  1493. PPC4xx_SYS_INFO board_cfg;
  1494. unsigned long max_refresh_rate;
  1495. unsigned long dimm_num;
  1496. unsigned long refresh_rate_type;
  1497. unsigned long refresh_rate;
  1498. unsigned long rint;
  1499. unsigned long sdram_freq;
  1500. unsigned long sdr_ddrpll;
  1501. unsigned long val;
  1502. /*------------------------------------------------------------------
  1503. * Get the board configuration info.
  1504. *-----------------------------------------------------------------*/
  1505. get_sys_info(&board_cfg);
  1506. /*------------------------------------------------------------------
  1507. * Set the SDRAM Refresh Timing Register, SDRAM_RTR
  1508. *-----------------------------------------------------------------*/
  1509. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1510. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1511. max_refresh_rate = 0;
  1512. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1513. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1514. refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
  1515. refresh_rate_type &= 0x7F;
  1516. switch (refresh_rate_type) {
  1517. case 0:
  1518. refresh_rate = 15625;
  1519. break;
  1520. case 1:
  1521. refresh_rate = 3906;
  1522. break;
  1523. case 2:
  1524. refresh_rate = 7812;
  1525. break;
  1526. case 3:
  1527. refresh_rate = 31250;
  1528. break;
  1529. case 4:
  1530. refresh_rate = 62500;
  1531. break;
  1532. case 5:
  1533. refresh_rate = 125000;
  1534. break;
  1535. default:
  1536. refresh_rate = 0;
  1537. printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
  1538. (unsigned int)dimm_num);
  1539. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1540. spd_ddr_init_hang ();
  1541. break;
  1542. }
  1543. max_refresh_rate = max(max_refresh_rate, refresh_rate);
  1544. }
  1545. }
  1546. rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
  1547. mfsdram(SDRAM_RTR, val);
  1548. mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
  1549. (SDRAM_RTR_RINT_ENCODE(rint)));
  1550. }
  1551. /*------------------------------------------------------------------
  1552. * This routine programs the SDRAM_TRx registers.
  1553. *-----------------------------------------------------------------*/
  1554. static void program_tr(unsigned long *dimm_populated,
  1555. unsigned char *iic0_dimm_addr,
  1556. unsigned long num_dimm_banks)
  1557. {
  1558. unsigned long dimm_num;
  1559. unsigned long sdram_ddr1;
  1560. unsigned long t_rp_ns;
  1561. unsigned long t_rcd_ns;
  1562. unsigned long t_rrd_ns;
  1563. unsigned long t_ras_ns;
  1564. unsigned long t_rc_ns;
  1565. unsigned long t_rfc_ns;
  1566. unsigned long t_wpc_ns;
  1567. unsigned long t_wtr_ns;
  1568. unsigned long t_rpc_ns;
  1569. unsigned long t_rp_clk;
  1570. unsigned long t_rcd_clk;
  1571. unsigned long t_rrd_clk;
  1572. unsigned long t_ras_clk;
  1573. unsigned long t_rc_clk;
  1574. unsigned long t_rfc_clk;
  1575. unsigned long t_wpc_clk;
  1576. unsigned long t_wtr_clk;
  1577. unsigned long t_rpc_clk;
  1578. unsigned long sdtr1, sdtr2, sdtr3;
  1579. unsigned long ddr_check;
  1580. unsigned long sdram_freq;
  1581. unsigned long sdr_ddrpll;
  1582. PPC4xx_SYS_INFO board_cfg;
  1583. /*------------------------------------------------------------------
  1584. * Get the board configuration info.
  1585. *-----------------------------------------------------------------*/
  1586. get_sys_info(&board_cfg);
  1587. mfsdr(SDR0_DDR0, sdr_ddrpll);
  1588. sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
  1589. /*------------------------------------------------------------------
  1590. * Handle the timing. We need to find the worst case timing of all
  1591. * the dimm modules installed.
  1592. *-----------------------------------------------------------------*/
  1593. t_rp_ns = 0;
  1594. t_rrd_ns = 0;
  1595. t_rcd_ns = 0;
  1596. t_ras_ns = 0;
  1597. t_rc_ns = 0;
  1598. t_rfc_ns = 0;
  1599. t_wpc_ns = 0;
  1600. t_wtr_ns = 0;
  1601. t_rpc_ns = 0;
  1602. sdram_ddr1 = TRUE;
  1603. /* loop through all the DIMM slots on the board */
  1604. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1605. /* If a dimm is installed in a particular slot ... */
  1606. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1607. if (dimm_populated[dimm_num] == SDRAM_DDR2)
  1608. sdram_ddr1 = TRUE;
  1609. else
  1610. sdram_ddr1 = FALSE;
  1611. t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
  1612. t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
  1613. t_rp_ns = max(t_rp_ns, spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
  1614. t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
  1615. t_rc_ns = max(t_rc_ns, spd_read(iic0_dimm_addr[dimm_num], 41));
  1616. t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
  1617. }
  1618. }
  1619. /*------------------------------------------------------------------
  1620. * Set the SDRAM Timing Reg 1, SDRAM_TR1
  1621. *-----------------------------------------------------------------*/
  1622. mfsdram(SDRAM_SDTR1, sdtr1);
  1623. sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
  1624. SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
  1625. /* default values */
  1626. sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
  1627. sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
  1628. /* normal operations */
  1629. sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
  1630. sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
  1631. mtsdram(SDRAM_SDTR1, sdtr1);
  1632. /*------------------------------------------------------------------
  1633. * Set the SDRAM Timing Reg 2, SDRAM_TR2
  1634. *-----------------------------------------------------------------*/
  1635. mfsdram(SDRAM_SDTR2, sdtr2);
  1636. sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK | SDRAM_SDTR2_WTR_MASK |
  1637. SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
  1638. SDRAM_SDTR2_RPC_MASK | SDRAM_SDTR2_RP_MASK |
  1639. SDRAM_SDTR2_RRD_MASK);
  1640. /*
  1641. * convert t_rcd from nanoseconds to ddr clocks
  1642. * round up if necessary
  1643. */
  1644. t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
  1645. ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
  1646. if (sdram_freq != ddr_check)
  1647. t_rcd_clk++;
  1648. switch (t_rcd_clk) {
  1649. case 0:
  1650. case 1:
  1651. sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
  1652. break;
  1653. case 2:
  1654. sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
  1655. break;
  1656. case 3:
  1657. sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
  1658. break;
  1659. case 4:
  1660. sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
  1661. break;
  1662. default:
  1663. sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
  1664. break;
  1665. }
  1666. if (sdram_ddr1 == TRUE) { /* DDR1 */
  1667. if (sdram_freq < 200000000) {
  1668. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1669. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1670. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1671. } else {
  1672. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1673. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1674. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1675. }
  1676. } else { /* DDR2 */
  1677. /* loop through all the DIMM slots on the board */
  1678. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1679. /* If a dimm is installed in a particular slot ... */
  1680. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1681. t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
  1682. t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
  1683. t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
  1684. }
  1685. }
  1686. /*
  1687. * convert from nanoseconds to ddr clocks
  1688. * round up if necessary
  1689. */
  1690. t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
  1691. ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
  1692. if (sdram_freq != ddr_check)
  1693. t_wpc_clk++;
  1694. switch (t_wpc_clk) {
  1695. case 0:
  1696. case 1:
  1697. case 2:
  1698. sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
  1699. break;
  1700. case 3:
  1701. sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
  1702. break;
  1703. case 4:
  1704. sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
  1705. break;
  1706. case 5:
  1707. sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
  1708. break;
  1709. default:
  1710. sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
  1711. break;
  1712. }
  1713. /*
  1714. * convert from nanoseconds to ddr clocks
  1715. * round up if necessary
  1716. */
  1717. t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
  1718. ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
  1719. if (sdram_freq != ddr_check)
  1720. t_wtr_clk++;
  1721. switch (t_wtr_clk) {
  1722. case 0:
  1723. case 1:
  1724. sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
  1725. break;
  1726. case 2:
  1727. sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
  1728. break;
  1729. case 3:
  1730. sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
  1731. break;
  1732. default:
  1733. sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
  1734. break;
  1735. }
  1736. /*
  1737. * convert from nanoseconds to ddr clocks
  1738. * round up if necessary
  1739. */
  1740. t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
  1741. ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
  1742. if (sdram_freq != ddr_check)
  1743. t_rpc_clk++;
  1744. switch (t_rpc_clk) {
  1745. case 0:
  1746. case 1:
  1747. case 2:
  1748. sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
  1749. break;
  1750. case 3:
  1751. sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
  1752. break;
  1753. default:
  1754. sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
  1755. break;
  1756. }
  1757. }
  1758. /* default value */
  1759. sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
  1760. /*
  1761. * convert t_rrd from nanoseconds to ddr clocks
  1762. * round up if necessary
  1763. */
  1764. t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
  1765. ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
  1766. if (sdram_freq != ddr_check)
  1767. t_rrd_clk++;
  1768. if (t_rrd_clk == 3)
  1769. sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
  1770. else
  1771. sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
  1772. /*
  1773. * convert t_rp from nanoseconds to ddr clocks
  1774. * round up if necessary
  1775. */
  1776. t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
  1777. ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
  1778. if (sdram_freq != ddr_check)
  1779. t_rp_clk++;
  1780. switch (t_rp_clk) {
  1781. case 0:
  1782. case 1:
  1783. case 2:
  1784. case 3:
  1785. sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
  1786. break;
  1787. case 4:
  1788. sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
  1789. break;
  1790. case 5:
  1791. sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
  1792. break;
  1793. case 6:
  1794. sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
  1795. break;
  1796. default:
  1797. sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
  1798. break;
  1799. }
  1800. mtsdram(SDRAM_SDTR2, sdtr2);
  1801. /*------------------------------------------------------------------
  1802. * Set the SDRAM Timing Reg 3, SDRAM_TR3
  1803. *-----------------------------------------------------------------*/
  1804. mfsdram(SDRAM_SDTR3, sdtr3);
  1805. sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK | SDRAM_SDTR3_RC_MASK |
  1806. SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
  1807. /*
  1808. * convert t_ras from nanoseconds to ddr clocks
  1809. * round up if necessary
  1810. */
  1811. t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
  1812. ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
  1813. if (sdram_freq != ddr_check)
  1814. t_ras_clk++;
  1815. sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
  1816. /*
  1817. * convert t_rc from nanoseconds to ddr clocks
  1818. * round up if necessary
  1819. */
  1820. t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
  1821. ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
  1822. if (sdram_freq != ddr_check)
  1823. t_rc_clk++;
  1824. sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
  1825. /* default xcs value */
  1826. sdtr3 |= SDRAM_SDTR3_XCS;
  1827. /*
  1828. * convert t_rfc from nanoseconds to ddr clocks
  1829. * round up if necessary
  1830. */
  1831. t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
  1832. ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
  1833. if (sdram_freq != ddr_check)
  1834. t_rfc_clk++;
  1835. sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
  1836. mtsdram(SDRAM_SDTR3, sdtr3);
  1837. }
  1838. /*-----------------------------------------------------------------------------+
  1839. * program_bxcf.
  1840. *-----------------------------------------------------------------------------*/
  1841. static void program_bxcf(unsigned long *dimm_populated,
  1842. unsigned char *iic0_dimm_addr,
  1843. unsigned long num_dimm_banks)
  1844. {
  1845. unsigned long dimm_num;
  1846. unsigned long num_col_addr;
  1847. unsigned long num_ranks;
  1848. unsigned long num_banks;
  1849. unsigned long mode;
  1850. unsigned long ind_rank;
  1851. unsigned long ind;
  1852. unsigned long ind_bank;
  1853. unsigned long bank_0_populated;
  1854. /*------------------------------------------------------------------
  1855. * Set the BxCF regs. First, wipe out the bank config registers.
  1856. *-----------------------------------------------------------------*/
  1857. mtsdram(SDRAM_MB0CF, 0x00000000);
  1858. mtsdram(SDRAM_MB1CF, 0x00000000);
  1859. mtsdram(SDRAM_MB2CF, 0x00000000);
  1860. mtsdram(SDRAM_MB3CF, 0x00000000);
  1861. mode = SDRAM_BXCF_M_BE_ENABLE;
  1862. bank_0_populated = 0;
  1863. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1864. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1865. num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
  1866. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1867. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1868. num_ranks = (num_ranks & 0x0F) +1;
  1869. else
  1870. num_ranks = num_ranks & 0x0F;
  1871. num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
  1872. for (ind_bank = 0; ind_bank < 2; ind_bank++) {
  1873. if (num_banks == 4)
  1874. ind = 0;
  1875. else
  1876. ind = 5;
  1877. switch (num_col_addr) {
  1878. case 0x08:
  1879. mode |= (SDRAM_BXCF_M_AM_0 + ind);
  1880. break;
  1881. case 0x09:
  1882. mode |= (SDRAM_BXCF_M_AM_1 + ind);
  1883. break;
  1884. case 0x0A:
  1885. mode |= (SDRAM_BXCF_M_AM_2 + ind);
  1886. break;
  1887. case 0x0B:
  1888. mode |= (SDRAM_BXCF_M_AM_3 + ind);
  1889. break;
  1890. case 0x0C:
  1891. mode |= (SDRAM_BXCF_M_AM_4 + ind);
  1892. break;
  1893. default:
  1894. printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
  1895. (unsigned int)dimm_num);
  1896. printf("ERROR: Unsupported value for number of "
  1897. "column addresses: %d.\n", (unsigned int)num_col_addr);
  1898. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1899. spd_ddr_init_hang ();
  1900. }
  1901. }
  1902. if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
  1903. bank_0_populated = 1;
  1904. for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
  1905. mtsdram(SDRAM_MB0CF +
  1906. ((dimm_num + bank_0_populated + ind_rank) << 2),
  1907. mode);
  1908. }
  1909. }
  1910. }
  1911. }
  1912. /*------------------------------------------------------------------
  1913. * program memory queue.
  1914. *-----------------------------------------------------------------*/
  1915. static void program_memory_queue(unsigned long *dimm_populated,
  1916. unsigned char *iic0_dimm_addr,
  1917. unsigned long num_dimm_banks)
  1918. {
  1919. unsigned long dimm_num;
  1920. unsigned long rank_base_addr;
  1921. unsigned long rank_reg;
  1922. unsigned long rank_size_bytes;
  1923. unsigned long rank_size_id;
  1924. unsigned long num_ranks;
  1925. unsigned long baseadd_size;
  1926. unsigned long i;
  1927. unsigned long bank_0_populated = 0;
  1928. /*------------------------------------------------------------------
  1929. * Reset the rank_base_address.
  1930. *-----------------------------------------------------------------*/
  1931. rank_reg = SDRAM_R0BAS;
  1932. rank_base_addr = 0x00000000;
  1933. for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
  1934. if (dimm_populated[dimm_num] != SDRAM_NONE) {
  1935. num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
  1936. if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
  1937. num_ranks = (num_ranks & 0x0F) + 1;
  1938. else
  1939. num_ranks = num_ranks & 0x0F;
  1940. rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
  1941. /*------------------------------------------------------------------
  1942. * Set the sizes
  1943. *-----------------------------------------------------------------*/
  1944. baseadd_size = 0;
  1945. rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
  1946. switch (rank_size_id) {
  1947. case 0x02:
  1948. baseadd_size |= SDRAM_RXBAS_SDSZ_8;
  1949. break;
  1950. case 0x04:
  1951. baseadd_size |= SDRAM_RXBAS_SDSZ_16;
  1952. break;
  1953. case 0x08:
  1954. baseadd_size |= SDRAM_RXBAS_SDSZ_32;
  1955. break;
  1956. case 0x10:
  1957. baseadd_size |= SDRAM_RXBAS_SDSZ_64;
  1958. break;
  1959. case 0x20:
  1960. baseadd_size |= SDRAM_RXBAS_SDSZ_128;
  1961. break;
  1962. case 0x40:
  1963. baseadd_size |= SDRAM_RXBAS_SDSZ_256;
  1964. break;
  1965. case 0x80:
  1966. baseadd_size |= SDRAM_RXBAS_SDSZ_512;
  1967. break;
  1968. default:
  1969. printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
  1970. (unsigned int)dimm_num);
  1971. printf("ERROR: Unsupported value for the banksize: %d.\n",
  1972. (unsigned int)rank_size_id);
  1973. printf("Replace the DIMM module with a supported DIMM.\n\n");
  1974. spd_ddr_init_hang ();
  1975. }
  1976. if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
  1977. bank_0_populated = 1;
  1978. for (i = 0; i < num_ranks; i++) {
  1979. mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
  1980. (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
  1981. baseadd_size));
  1982. rank_base_addr += rank_size_bytes;
  1983. }
  1984. }
  1985. }
  1986. }
  1987. /*-----------------------------------------------------------------------------+
  1988. * is_ecc_enabled.
  1989. *-----------------------------------------------------------------------------*/
  1990. static unsigned long is_ecc_enabled(void)
  1991. {
  1992. unsigned long dimm_num;
  1993. unsigned long ecc;
  1994. unsigned long val;
  1995. ecc = 0;
  1996. /* loop through all the DIMM slots on the board */
  1997. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  1998. mfsdram(SDRAM_MCOPT1, val);
  1999. ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
  2000. }
  2001. return ecc;
  2002. }
  2003. static void blank_string(int size)
  2004. {
  2005. int i;
  2006. for (i=0; i<size; i++)
  2007. putc('\b');
  2008. for (i=0; i<size; i++)
  2009. putc(' ');
  2010. for (i=0; i<size; i++)
  2011. putc('\b');
  2012. }
  2013. #ifdef CONFIG_DDR_ECC
  2014. /*-----------------------------------------------------------------------------+
  2015. * program_ecc.
  2016. *-----------------------------------------------------------------------------*/
  2017. static void program_ecc(unsigned long *dimm_populated,
  2018. unsigned char *iic0_dimm_addr,
  2019. unsigned long num_dimm_banks,
  2020. unsigned long tlb_word2_i_value)
  2021. {
  2022. unsigned long mcopt1;
  2023. unsigned long mcopt2;
  2024. unsigned long mcstat;
  2025. unsigned long dimm_num;
  2026. unsigned long ecc;
  2027. ecc = 0;
  2028. /* loop through all the DIMM slots on the board */
  2029. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2030. /* If a dimm is installed in a particular slot ... */
  2031. if (dimm_populated[dimm_num] != SDRAM_NONE)
  2032. ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
  2033. }
  2034. if (ecc == 0)
  2035. return;
  2036. mfsdram(SDRAM_MCOPT1, mcopt1);
  2037. mfsdram(SDRAM_MCOPT2, mcopt2);
  2038. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2039. /* DDR controller must be enabled and not in self-refresh. */
  2040. mfsdram(SDRAM_MCSTAT, mcstat);
  2041. if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
  2042. && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
  2043. && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
  2044. == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
  2045. program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
  2046. }
  2047. }
  2048. return;
  2049. }
  2050. static void wait_ddr_idle(void)
  2051. {
  2052. u32 val;
  2053. do {
  2054. mfsdram(SDRAM_MCSTAT, val);
  2055. } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
  2056. }
  2057. /*-----------------------------------------------------------------------------+
  2058. * program_ecc_addr.
  2059. *-----------------------------------------------------------------------------*/
  2060. static void program_ecc_addr(unsigned long start_address,
  2061. unsigned long num_bytes,
  2062. unsigned long tlb_word2_i_value)
  2063. {
  2064. unsigned long current_address;
  2065. unsigned long end_address;
  2066. unsigned long address_increment;
  2067. unsigned long mcopt1;
  2068. char str[] = "ECC generation -";
  2069. char slash[] = "\\|/-\\|/-";
  2070. int loop = 0;
  2071. int loopi = 0;
  2072. current_address = start_address;
  2073. mfsdram(SDRAM_MCOPT1, mcopt1);
  2074. if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
  2075. mtsdram(SDRAM_MCOPT1,
  2076. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
  2077. sync();
  2078. eieio();
  2079. wait_ddr_idle();
  2080. puts(str);
  2081. if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
  2082. /* ECC bit set method for non-cached memory */
  2083. if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
  2084. address_increment = 4;
  2085. else
  2086. address_increment = 8;
  2087. end_address = current_address + num_bytes;
  2088. while (current_address < end_address) {
  2089. *((unsigned long *)current_address) = 0x00000000;
  2090. current_address += address_increment;
  2091. if ((loop++ % (2 << 20)) == 0) {
  2092. putc('\b');
  2093. putc(slash[loopi++ % 8]);
  2094. }
  2095. }
  2096. } else {
  2097. /* ECC bit set method for cached memory */
  2098. dcbz_area(start_address, num_bytes);
  2099. dflush();
  2100. }
  2101. blank_string(strlen(str));
  2102. sync();
  2103. eieio();
  2104. wait_ddr_idle();
  2105. /* clear ECC error repoting registers */
  2106. mtsdram(SDRAM_ECCCR, 0xffffffff);
  2107. mtdcr(0x4c, 0xffffffff);
  2108. mtsdram(SDRAM_MCOPT1,
  2109. (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
  2110. sync();
  2111. eieio();
  2112. wait_ddr_idle();
  2113. }
  2114. }
  2115. #endif
  2116. /*-----------------------------------------------------------------------------+
  2117. * program_DQS_calibration.
  2118. *-----------------------------------------------------------------------------*/
  2119. static void program_DQS_calibration(unsigned long *dimm_populated,
  2120. unsigned char *iic0_dimm_addr,
  2121. unsigned long num_dimm_banks)
  2122. {
  2123. unsigned long val;
  2124. #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
  2125. mtsdram(SDRAM_RQDC, 0x80000037);
  2126. mtsdram(SDRAM_RDCC, 0x40000000);
  2127. mtsdram(SDRAM_RFDC, 0x000001DF);
  2128. test();
  2129. #else
  2130. /*------------------------------------------------------------------
  2131. * Program RDCC register
  2132. * Read sample cycle auto-update enable
  2133. *-----------------------------------------------------------------*/
  2134. mfsdram(SDRAM_RDCC, val);
  2135. mtsdram(SDRAM_RDCC,
  2136. (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
  2137. | SDRAM_RDCC_RSAE_ENABLE);
  2138. /*------------------------------------------------------------------
  2139. * Program RQDC register
  2140. * Internal DQS delay mechanism enable
  2141. *-----------------------------------------------------------------*/
  2142. mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
  2143. /*------------------------------------------------------------------
  2144. * Program RFDC register
  2145. * Set Feedback Fractional Oversample
  2146. * Auto-detect read sample cycle enable
  2147. *-----------------------------------------------------------------*/
  2148. mfsdram(SDRAM_RFDC, val);
  2149. mtsdram(SDRAM_RFDC,
  2150. (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
  2151. SDRAM_RFDC_RFFD_MASK))
  2152. | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
  2153. SDRAM_RFDC_RFFD_ENCODE(0)));
  2154. DQS_calibration_process();
  2155. #endif
  2156. }
  2157. static int short_mem_test(void)
  2158. {
  2159. u32 *membase;
  2160. u32 bxcr_num;
  2161. u32 bxcf;
  2162. int i;
  2163. int j;
  2164. u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
  2165. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2166. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2167. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2168. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2169. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2170. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2171. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2172. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2173. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2174. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2175. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2176. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2177. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2178. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2179. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2180. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2181. int l;
  2182. for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
  2183. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
  2184. /* Banks enabled */
  2185. if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2186. /* Bank is enabled */
  2187. /*------------------------------------------------------------------
  2188. * Run the short memory test.
  2189. *-----------------------------------------------------------------*/
  2190. membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
  2191. for (i = 0; i < NUMMEMTESTS; i++) {
  2192. for (j = 0; j < NUMMEMWORDS; j++) {
  2193. membase[j] = test[i][j];
  2194. ppcDcbf((u32)&(membase[j]));
  2195. }
  2196. sync();
  2197. for (l=0; l<NUMLOOPS; l++) {
  2198. for (j = 0; j < NUMMEMWORDS; j++) {
  2199. if (membase[j] != test[i][j]) {
  2200. ppcDcbf((u32)&(membase[j]));
  2201. return 0;
  2202. }
  2203. ppcDcbf((u32)&(membase[j]));
  2204. }
  2205. sync();
  2206. }
  2207. }
  2208. } /* if bank enabled */
  2209. } /* for bxcf_num */
  2210. return 1;
  2211. }
  2212. #ifndef HARD_CODED_DQS
  2213. /*-----------------------------------------------------------------------------+
  2214. * DQS_calibration_process.
  2215. *-----------------------------------------------------------------------------*/
  2216. static void DQS_calibration_process(void)
  2217. {
  2218. unsigned long rfdc_reg;
  2219. unsigned long rffd;
  2220. unsigned long val;
  2221. long rffd_average;
  2222. long max_start;
  2223. long min_end;
  2224. unsigned long begin_rqfd[MAXRANKS];
  2225. unsigned long begin_rffd[MAXRANKS];
  2226. unsigned long end_rqfd[MAXRANKS];
  2227. unsigned long end_rffd[MAXRANKS];
  2228. char window_found;
  2229. unsigned long dlycal;
  2230. unsigned long dly_val;
  2231. unsigned long max_pass_length;
  2232. unsigned long current_pass_length;
  2233. unsigned long current_fail_length;
  2234. unsigned long current_start;
  2235. long max_end;
  2236. unsigned char fail_found;
  2237. unsigned char pass_found;
  2238. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2239. u32 rqdc_reg;
  2240. u32 rqfd;
  2241. u32 rqfd_start;
  2242. u32 rqfd_average;
  2243. int loopi = 0;
  2244. char str[] = "Auto calibration -";
  2245. char slash[] = "\\|/-\\|/-";
  2246. /*------------------------------------------------------------------
  2247. * Test to determine the best read clock delay tuning bits.
  2248. *
  2249. * Before the DDR controller can be used, the read clock delay needs to be
  2250. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2251. * This value cannot be hardcoded into the program because it changes
  2252. * depending on the board's setup and environment.
  2253. * To do this, all delay values are tested to see if they
  2254. * work or not. By doing this, you get groups of fails with groups of
  2255. * passing values. The idea is to find the start and end of a passing
  2256. * window and take the center of it to use as the read clock delay.
  2257. *
  2258. * A failure has to be seen first so that when we hit a pass, we know
  2259. * that it is truely the start of the window. If we get passing values
  2260. * to start off with, we don't know if we are at the start of the window.
  2261. *
  2262. * The code assumes that a failure will always be found.
  2263. * If a failure is not found, there is no easy way to get the middle
  2264. * of the passing window. I guess we can pretty much pick any value
  2265. * but some values will be better than others. Since the lowest speed
  2266. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2267. * from experimentation it is safe to say you will always have a failure.
  2268. *-----------------------------------------------------------------*/
  2269. /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
  2270. rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
  2271. puts(str);
  2272. calibration_loop:
  2273. mfsdram(SDRAM_RQDC, rqdc_reg);
  2274. mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2275. SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
  2276. #else /* CONFIG_DDR_RQDC_FIXED */
  2277. /*
  2278. * On Katmai the complete auto-calibration somehow doesn't seem to
  2279. * produce the best results, meaning optimal values for RQFD/RFFD.
  2280. * This was discovered by GDA using a high bandwidth scope,
  2281. * analyzing the DDR2 signals. GDA provided a fixed value for RQFD,
  2282. * so now on Katmai "only" RFFD is auto-calibrated.
  2283. */
  2284. mtsdram(SDRAM_RQDC, CONFIG_DDR_RQDC_FIXED);
  2285. #endif /* CONFIG_DDR_RQDC_FIXED */
  2286. max_start = 0;
  2287. min_end = 0;
  2288. begin_rqfd[0] = 0;
  2289. begin_rffd[0] = 0;
  2290. begin_rqfd[1] = 0;
  2291. begin_rffd[1] = 0;
  2292. end_rqfd[0] = 0;
  2293. end_rffd[0] = 0;
  2294. end_rqfd[1] = 0;
  2295. end_rffd[1] = 0;
  2296. window_found = FALSE;
  2297. max_pass_length = 0;
  2298. max_start = 0;
  2299. max_end = 0;
  2300. current_pass_length = 0;
  2301. current_fail_length = 0;
  2302. current_start = 0;
  2303. window_found = FALSE;
  2304. fail_found = FALSE;
  2305. pass_found = FALSE;
  2306. /*
  2307. * get the delay line calibration register value
  2308. */
  2309. mfsdram(SDRAM_DLCR, dlycal);
  2310. dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
  2311. for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
  2312. mfsdram(SDRAM_RFDC, rfdc_reg);
  2313. rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
  2314. /*------------------------------------------------------------------
  2315. * Set the timing reg for the test.
  2316. *-----------------------------------------------------------------*/
  2317. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
  2318. /*------------------------------------------------------------------
  2319. * See if the rffd value passed.
  2320. *-----------------------------------------------------------------*/
  2321. if (short_mem_test()) {
  2322. if (fail_found == TRUE) {
  2323. pass_found = TRUE;
  2324. if (current_pass_length == 0)
  2325. current_start = rffd;
  2326. current_fail_length = 0;
  2327. current_pass_length++;
  2328. if (current_pass_length > max_pass_length) {
  2329. max_pass_length = current_pass_length;
  2330. max_start = current_start;
  2331. max_end = rffd;
  2332. }
  2333. }
  2334. } else {
  2335. current_pass_length = 0;
  2336. current_fail_length++;
  2337. if (current_fail_length >= (dly_val >> 2)) {
  2338. if (fail_found == FALSE) {
  2339. fail_found = TRUE;
  2340. } else if (pass_found == TRUE) {
  2341. window_found = TRUE;
  2342. break;
  2343. }
  2344. }
  2345. }
  2346. } /* for rffd */
  2347. /*------------------------------------------------------------------
  2348. * Set the average RFFD value
  2349. *-----------------------------------------------------------------*/
  2350. rffd_average = ((max_start + max_end) >> 1);
  2351. if (rffd_average < 0)
  2352. rffd_average = 0;
  2353. if (rffd_average > SDRAM_RFDC_RFFD_MAX)
  2354. rffd_average = SDRAM_RFDC_RFFD_MAX;
  2355. /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
  2356. mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
  2357. #if !defined(CONFIG_DDR_RQDC_FIXED)
  2358. max_pass_length = 0;
  2359. max_start = 0;
  2360. max_end = 0;
  2361. current_pass_length = 0;
  2362. current_fail_length = 0;
  2363. current_start = 0;
  2364. window_found = FALSE;
  2365. fail_found = FALSE;
  2366. pass_found = FALSE;
  2367. for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
  2368. mfsdram(SDRAM_RQDC, rqdc_reg);
  2369. rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
  2370. /*------------------------------------------------------------------
  2371. * Set the timing reg for the test.
  2372. *-----------------------------------------------------------------*/
  2373. mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
  2374. /*------------------------------------------------------------------
  2375. * See if the rffd value passed.
  2376. *-----------------------------------------------------------------*/
  2377. if (short_mem_test()) {
  2378. if (fail_found == TRUE) {
  2379. pass_found = TRUE;
  2380. if (current_pass_length == 0)
  2381. current_start = rqfd;
  2382. current_fail_length = 0;
  2383. current_pass_length++;
  2384. if (current_pass_length > max_pass_length) {
  2385. max_pass_length = current_pass_length;
  2386. max_start = current_start;
  2387. max_end = rqfd;
  2388. }
  2389. }
  2390. } else {
  2391. current_pass_length = 0;
  2392. current_fail_length++;
  2393. if (fail_found == FALSE) {
  2394. fail_found = TRUE;
  2395. } else if (pass_found == TRUE) {
  2396. window_found = TRUE;
  2397. break;
  2398. }
  2399. }
  2400. }
  2401. rqfd_average = ((max_start + max_end) >> 1);
  2402. /*------------------------------------------------------------------
  2403. * Make sure we found the valid read passing window. Halt if not
  2404. *-----------------------------------------------------------------*/
  2405. if (window_found == FALSE) {
  2406. if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
  2407. putc('\b');
  2408. putc(slash[loopi++ % 8]);
  2409. /* try again from with a different RQFD start value */
  2410. rqfd_start++;
  2411. goto calibration_loop;
  2412. }
  2413. printf("\nERROR: Cannot determine a common read delay for the "
  2414. "DIMM(s) installed.\n");
  2415. debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
  2416. ppc440sp_sdram_register_dump();
  2417. spd_ddr_init_hang ();
  2418. }
  2419. if (rqfd_average < 0)
  2420. rqfd_average = 0;
  2421. if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
  2422. rqfd_average = SDRAM_RQDC_RQFD_MAX;
  2423. mtsdram(SDRAM_RQDC,
  2424. (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
  2425. SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
  2426. blank_string(strlen(str));
  2427. #endif /* CONFIG_DDR_RQDC_FIXED */
  2428. /*
  2429. * Now complete RDSS configuration as mentioned on page 7 of the AMCC
  2430. * PowerPC440SP/SPe DDR2 application note:
  2431. * "DDR1/DDR2 Initialization Sequence and Dynamic Tuning"
  2432. */
  2433. mfsdram(SDRAM_RTSR, val);
  2434. if ((val & SDRAM_RTSR_TRK1SM_MASK) == SDRAM_RTSR_TRK1SM_ATPLS1) {
  2435. mfsdram(SDRAM_RDCC, val);
  2436. if ((val & SDRAM_RDCC_RDSS_MASK) != SDRAM_RDCC_RDSS_T4) {
  2437. val += 0x40000000;
  2438. mtsdram(SDRAM_RDCC, val);
  2439. }
  2440. }
  2441. mfsdram(SDRAM_DLCR, val);
  2442. debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2443. mfsdram(SDRAM_RQDC, val);
  2444. debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2445. mfsdram(SDRAM_RFDC, val);
  2446. debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2447. mfsdram(SDRAM_RDCC, val);
  2448. debug("%s[%d] RDCC: 0x%08X\n", __FUNCTION__, __LINE__, val);
  2449. }
  2450. #else /* calibration test with hardvalues */
  2451. /*-----------------------------------------------------------------------------+
  2452. * DQS_calibration_process.
  2453. *-----------------------------------------------------------------------------*/
  2454. static void test(void)
  2455. {
  2456. unsigned long dimm_num;
  2457. unsigned long ecc_temp;
  2458. unsigned long i, j;
  2459. unsigned long *membase;
  2460. unsigned long bxcf[MAXRANKS];
  2461. unsigned long val;
  2462. char window_found;
  2463. char begin_found[MAXDIMMS];
  2464. char end_found[MAXDIMMS];
  2465. char search_end[MAXDIMMS];
  2466. unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
  2467. {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
  2468. 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
  2469. {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
  2470. 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
  2471. {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
  2472. 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
  2473. {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
  2474. 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
  2475. {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
  2476. 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
  2477. {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
  2478. 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
  2479. {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
  2480. 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
  2481. {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
  2482. 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
  2483. /*------------------------------------------------------------------
  2484. * Test to determine the best read clock delay tuning bits.
  2485. *
  2486. * Before the DDR controller can be used, the read clock delay needs to be
  2487. * set. This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
  2488. * This value cannot be hardcoded into the program because it changes
  2489. * depending on the board's setup and environment.
  2490. * To do this, all delay values are tested to see if they
  2491. * work or not. By doing this, you get groups of fails with groups of
  2492. * passing values. The idea is to find the start and end of a passing
  2493. * window and take the center of it to use as the read clock delay.
  2494. *
  2495. * A failure has to be seen first so that when we hit a pass, we know
  2496. * that it is truely the start of the window. If we get passing values
  2497. * to start off with, we don't know if we are at the start of the window.
  2498. *
  2499. * The code assumes that a failure will always be found.
  2500. * If a failure is not found, there is no easy way to get the middle
  2501. * of the passing window. I guess we can pretty much pick any value
  2502. * but some values will be better than others. Since the lowest speed
  2503. * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
  2504. * from experimentation it is safe to say you will always have a failure.
  2505. *-----------------------------------------------------------------*/
  2506. mfsdram(SDRAM_MCOPT1, ecc_temp);
  2507. ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
  2508. mfsdram(SDRAM_MCOPT1, val);
  2509. mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
  2510. SDRAM_MCOPT1_MCHK_NON);
  2511. window_found = FALSE;
  2512. begin_found[0] = FALSE;
  2513. end_found[0] = FALSE;
  2514. search_end[0] = FALSE;
  2515. begin_found[1] = FALSE;
  2516. end_found[1] = FALSE;
  2517. search_end[1] = FALSE;
  2518. for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
  2519. mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
  2520. /* Banks enabled */
  2521. if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
  2522. /* Bank is enabled */
  2523. membase =
  2524. (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
  2525. /*------------------------------------------------------------------
  2526. * Run the short memory test.
  2527. *-----------------------------------------------------------------*/
  2528. for (i = 0; i < NUMMEMTESTS; i++) {
  2529. for (j = 0; j < NUMMEMWORDS; j++) {
  2530. membase[j] = test[i][j];
  2531. ppcDcbf((u32)&(membase[j]));
  2532. }
  2533. sync();
  2534. for (j = 0; j < NUMMEMWORDS; j++) {
  2535. if (membase[j] != test[i][j]) {
  2536. ppcDcbf((u32)&(membase[j]));
  2537. break;
  2538. }
  2539. ppcDcbf((u32)&(membase[j]));
  2540. }
  2541. sync();
  2542. if (j < NUMMEMWORDS)
  2543. break;
  2544. }
  2545. /*------------------------------------------------------------------
  2546. * See if the rffd value passed.
  2547. *-----------------------------------------------------------------*/
  2548. if (i < NUMMEMTESTS) {
  2549. if ((end_found[dimm_num] == FALSE) &&
  2550. (search_end[dimm_num] == TRUE)) {
  2551. end_found[dimm_num] = TRUE;
  2552. }
  2553. if ((end_found[0] == TRUE) &&
  2554. (end_found[1] == TRUE))
  2555. break;
  2556. } else {
  2557. if (begin_found[dimm_num] == FALSE) {
  2558. begin_found[dimm_num] = TRUE;
  2559. search_end[dimm_num] = TRUE;
  2560. }
  2561. }
  2562. } else {
  2563. begin_found[dimm_num] = TRUE;
  2564. end_found[dimm_num] = TRUE;
  2565. }
  2566. }
  2567. if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
  2568. window_found = TRUE;
  2569. /*------------------------------------------------------------------
  2570. * Make sure we found the valid read passing window. Halt if not
  2571. *-----------------------------------------------------------------*/
  2572. if (window_found == FALSE) {
  2573. printf("ERROR: Cannot determine a common read delay for the "
  2574. "DIMM(s) installed.\n");
  2575. spd_ddr_init_hang ();
  2576. }
  2577. /*------------------------------------------------------------------
  2578. * Restore the ECC variable to what it originally was
  2579. *-----------------------------------------------------------------*/
  2580. mtsdram(SDRAM_MCOPT1,
  2581. (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
  2582. | ecc_temp);
  2583. }
  2584. #endif
  2585. #if defined(DEBUG)
  2586. static void ppc440sp_sdram_register_dump(void)
  2587. {
  2588. unsigned int sdram_reg;
  2589. unsigned int sdram_data;
  2590. unsigned int dcr_data;
  2591. printf("\n Register Dump:\n");
  2592. sdram_reg = SDRAM_MCSTAT;
  2593. mfsdram(sdram_reg, sdram_data);
  2594. printf(" SDRAM_MCSTAT = 0x%08X", sdram_data);
  2595. sdram_reg = SDRAM_MCOPT1;
  2596. mfsdram(sdram_reg, sdram_data);
  2597. printf(" SDRAM_MCOPT1 = 0x%08X\n", sdram_data);
  2598. sdram_reg = SDRAM_MCOPT2;
  2599. mfsdram(sdram_reg, sdram_data);
  2600. printf(" SDRAM_MCOPT2 = 0x%08X", sdram_data);
  2601. sdram_reg = SDRAM_MODT0;
  2602. mfsdram(sdram_reg, sdram_data);
  2603. printf(" SDRAM_MODT0 = 0x%08X\n", sdram_data);
  2604. sdram_reg = SDRAM_MODT1;
  2605. mfsdram(sdram_reg, sdram_data);
  2606. printf(" SDRAM_MODT1 = 0x%08X", sdram_data);
  2607. sdram_reg = SDRAM_MODT2;
  2608. mfsdram(sdram_reg, sdram_data);
  2609. printf(" SDRAM_MODT2 = 0x%08X\n", sdram_data);
  2610. sdram_reg = SDRAM_MODT3;
  2611. mfsdram(sdram_reg, sdram_data);
  2612. printf(" SDRAM_MODT3 = 0x%08X", sdram_data);
  2613. sdram_reg = SDRAM_CODT;
  2614. mfsdram(sdram_reg, sdram_data);
  2615. printf(" SDRAM_CODT = 0x%08X\n", sdram_data);
  2616. sdram_reg = SDRAM_VVPR;
  2617. mfsdram(sdram_reg, sdram_data);
  2618. printf(" SDRAM_VVPR = 0x%08X", sdram_data);
  2619. sdram_reg = SDRAM_OPARS;
  2620. mfsdram(sdram_reg, sdram_data);
  2621. printf(" SDRAM_OPARS = 0x%08X\n", sdram_data);
  2622. /*
  2623. * OPAR2 is only used as a trigger register.
  2624. * No data is contained in this register, and reading or writing
  2625. * to is can cause bad things to happen (hangs). Just skip it
  2626. * and report NA
  2627. * sdram_reg = SDRAM_OPAR2;
  2628. * mfsdram(sdram_reg, sdram_data);
  2629. * printf(" SDRAM_OPAR2 = 0x%08X\n", sdram_data);
  2630. */
  2631. printf(" SDRAM_OPART = N/A ");
  2632. sdram_reg = SDRAM_RTR;
  2633. mfsdram(sdram_reg, sdram_data);
  2634. printf(" SDRAM_RTR = 0x%08X\n", sdram_data);
  2635. sdram_reg = SDRAM_MB0CF;
  2636. mfsdram(sdram_reg, sdram_data);
  2637. printf(" SDRAM_MB0CF = 0x%08X", sdram_data);
  2638. sdram_reg = SDRAM_MB1CF;
  2639. mfsdram(sdram_reg, sdram_data);
  2640. printf(" SDRAM_MB1CF = 0x%08X\n", sdram_data);
  2641. sdram_reg = SDRAM_MB2CF;
  2642. mfsdram(sdram_reg, sdram_data);
  2643. printf(" SDRAM_MB2CF = 0x%08X", sdram_data);
  2644. sdram_reg = SDRAM_MB3CF;
  2645. mfsdram(sdram_reg, sdram_data);
  2646. printf(" SDRAM_MB3CF = 0x%08X\n", sdram_data);
  2647. sdram_reg = SDRAM_INITPLR0;
  2648. mfsdram(sdram_reg, sdram_data);
  2649. printf(" SDRAM_INITPLR0 = 0x%08X", sdram_data);
  2650. sdram_reg = SDRAM_INITPLR1;
  2651. mfsdram(sdram_reg, sdram_data);
  2652. printf(" SDRAM_INITPLR1 = 0x%08X\n", sdram_data);
  2653. sdram_reg = SDRAM_INITPLR2;
  2654. mfsdram(sdram_reg, sdram_data);
  2655. printf(" SDRAM_INITPLR2 = 0x%08X", sdram_data);
  2656. sdram_reg = SDRAM_INITPLR3;
  2657. mfsdram(sdram_reg, sdram_data);
  2658. printf(" SDRAM_INITPLR3 = 0x%08X\n", sdram_data);
  2659. sdram_reg = SDRAM_INITPLR4;
  2660. mfsdram(sdram_reg, sdram_data);
  2661. printf(" SDRAM_INITPLR4 = 0x%08X", sdram_data);
  2662. sdram_reg = SDRAM_INITPLR5;
  2663. mfsdram(sdram_reg, sdram_data);
  2664. printf(" SDRAM_INITPLR5 = 0x%08X\n", sdram_data);
  2665. sdram_reg = SDRAM_INITPLR6;
  2666. mfsdram(sdram_reg, sdram_data);
  2667. printf(" SDRAM_INITPLR6 = 0x%08X", sdram_data);
  2668. sdram_reg = SDRAM_INITPLR7;
  2669. mfsdram(sdram_reg, sdram_data);
  2670. printf(" SDRAM_INITPLR7 = 0x%08X\n", sdram_data);
  2671. sdram_reg = SDRAM_INITPLR8;
  2672. mfsdram(sdram_reg, sdram_data);
  2673. printf(" SDRAM_INITPLR8 = 0x%08X", sdram_data);
  2674. sdram_reg = SDRAM_INITPLR9;
  2675. mfsdram(sdram_reg, sdram_data);
  2676. printf(" SDRAM_INITPLR9 = 0x%08X\n", sdram_data);
  2677. sdram_reg = SDRAM_INITPLR10;
  2678. mfsdram(sdram_reg, sdram_data);
  2679. printf(" SDRAM_INITPLR10 = 0x%08X", sdram_data);
  2680. sdram_reg = SDRAM_INITPLR11;
  2681. mfsdram(sdram_reg, sdram_data);
  2682. printf(" SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
  2683. sdram_reg = SDRAM_INITPLR12;
  2684. mfsdram(sdram_reg, sdram_data);
  2685. printf(" SDRAM_INITPLR12 = 0x%08X", sdram_data);
  2686. sdram_reg = SDRAM_INITPLR13;
  2687. mfsdram(sdram_reg, sdram_data);
  2688. printf(" SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
  2689. sdram_reg = SDRAM_INITPLR14;
  2690. mfsdram(sdram_reg, sdram_data);
  2691. printf(" SDRAM_INITPLR14 = 0x%08X", sdram_data);
  2692. sdram_reg = SDRAM_INITPLR15;
  2693. mfsdram(sdram_reg, sdram_data);
  2694. printf(" SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
  2695. sdram_reg = SDRAM_RQDC;
  2696. mfsdram(sdram_reg, sdram_data);
  2697. printf(" SDRAM_RQDC = 0x%08X", sdram_data);
  2698. sdram_reg = SDRAM_RFDC;
  2699. mfsdram(sdram_reg, sdram_data);
  2700. printf(" SDRAM_RFDC = 0x%08X\n", sdram_data);
  2701. sdram_reg = SDRAM_RDCC;
  2702. mfsdram(sdram_reg, sdram_data);
  2703. printf(" SDRAM_RDCC = 0x%08X", sdram_data);
  2704. sdram_reg = SDRAM_DLCR;
  2705. mfsdram(sdram_reg, sdram_data);
  2706. printf(" SDRAM_DLCR = 0x%08X\n", sdram_data);
  2707. sdram_reg = SDRAM_CLKTR;
  2708. mfsdram(sdram_reg, sdram_data);
  2709. printf(" SDRAM_CLKTR = 0x%08X", sdram_data);
  2710. sdram_reg = SDRAM_WRDTR;
  2711. mfsdram(sdram_reg, sdram_data);
  2712. printf(" SDRAM_WRDTR = 0x%08X\n", sdram_data);
  2713. sdram_reg = SDRAM_SDTR1;
  2714. mfsdram(sdram_reg, sdram_data);
  2715. printf(" SDRAM_SDTR1 = 0x%08X", sdram_data);
  2716. sdram_reg = SDRAM_SDTR2;
  2717. mfsdram(sdram_reg, sdram_data);
  2718. printf(" SDRAM_SDTR2 = 0x%08X\n", sdram_data);
  2719. sdram_reg = SDRAM_SDTR3;
  2720. mfsdram(sdram_reg, sdram_data);
  2721. printf(" SDRAM_SDTR3 = 0x%08X", sdram_data);
  2722. sdram_reg = SDRAM_MMODE;
  2723. mfsdram(sdram_reg, sdram_data);
  2724. printf(" SDRAM_MMODE = 0x%08X\n", sdram_data);
  2725. sdram_reg = SDRAM_MEMODE;
  2726. mfsdram(sdram_reg, sdram_data);
  2727. printf(" SDRAM_MEMODE = 0x%08X", sdram_data);
  2728. sdram_reg = SDRAM_ECCCR;
  2729. mfsdram(sdram_reg, sdram_data);
  2730. printf(" SDRAM_ECCCR = 0x%08X\n\n", sdram_data);
  2731. dcr_data = mfdcr(SDRAM_R0BAS);
  2732. printf(" MQ0_B0BAS = 0x%08X", dcr_data);
  2733. dcr_data = mfdcr(SDRAM_R1BAS);
  2734. printf(" MQ1_B0BAS = 0x%08X\n", dcr_data);
  2735. dcr_data = mfdcr(SDRAM_R2BAS);
  2736. printf(" MQ2_B0BAS = 0x%08X", dcr_data);
  2737. dcr_data = mfdcr(SDRAM_R3BAS);
  2738. printf(" MQ3_B0BAS = 0x%08X\n", dcr_data);
  2739. }
  2740. #else
  2741. static void ppc440sp_sdram_register_dump(void)
  2742. {
  2743. }
  2744. #endif
  2745. #endif /* CONFIG_SPD_EEPROM */