clock.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903
  1. /*
  2. * (C) Copyright 2007
  3. * Sascha Hauer, Pengutronix
  4. *
  5. * (C) Copyright 2009 Freescale Semiconductor, Inc.
  6. *
  7. * See file CREDITS for list of people who contributed to this
  8. * project.
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of
  13. * the License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  23. * MA 02111-1307 USA
  24. */
  25. #include <common.h>
  26. #include <asm/io.h>
  27. #include <asm/errno.h>
  28. #include <asm/arch/imx-regs.h>
  29. #include <asm/arch/crm_regs.h>
  30. #include <asm/arch/clock.h>
  31. #include <div64.h>
  32. #include <asm/arch/sys_proto.h>
  33. enum pll_clocks {
  34. PLL1_CLOCK = 0,
  35. PLL2_CLOCK,
  36. PLL3_CLOCK,
  37. PLL4_CLOCK,
  38. PLL_CLOCKS,
  39. };
  40. struct mxc_pll_reg *mxc_plls[PLL_CLOCKS] = {
  41. [PLL1_CLOCK] = (struct mxc_pll_reg *)PLL1_BASE_ADDR,
  42. [PLL2_CLOCK] = (struct mxc_pll_reg *)PLL2_BASE_ADDR,
  43. [PLL3_CLOCK] = (struct mxc_pll_reg *)PLL3_BASE_ADDR,
  44. #ifdef CONFIG_MX53
  45. [PLL4_CLOCK] = (struct mxc_pll_reg *)PLL4_BASE_ADDR,
  46. #endif
  47. };
  48. #define AHB_CLK_ROOT 133333333
  49. #define SZ_DEC_1M 1000000
  50. #define PLL_PD_MAX 16 /* Actual pd+1 */
  51. #define PLL_MFI_MAX 15
  52. #define PLL_MFI_MIN 5
  53. #define ARM_DIV_MAX 8
  54. #define IPG_DIV_MAX 4
  55. #define AHB_DIV_MAX 8
  56. #define EMI_DIV_MAX 8
  57. #define NFC_DIV_MAX 8
  58. #define MX5_CBCMR 0x00015154
  59. #define MX5_CBCDR 0x02888945
  60. struct fixed_pll_mfd {
  61. u32 ref_clk_hz;
  62. u32 mfd;
  63. };
  64. const struct fixed_pll_mfd fixed_mfd[] = {
  65. {CONFIG_SYS_MX5_HCLK, 24 * 16},
  66. };
  67. struct pll_param {
  68. u32 pd;
  69. u32 mfi;
  70. u32 mfn;
  71. u32 mfd;
  72. };
  73. #define PLL_FREQ_MAX(ref_clk) (4 * (ref_clk) * PLL_MFI_MAX)
  74. #define PLL_FREQ_MIN(ref_clk) \
  75. ((2 * (ref_clk) * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
  76. #define MAX_DDR_CLK 420000000
  77. #define NFC_CLK_MAX 34000000
  78. struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)MXC_CCM_BASE;
  79. void set_usboh3_clk(void)
  80. {
  81. unsigned int reg;
  82. reg = readl(&mxc_ccm->cscmr1) &
  83. ~MXC_CCM_CSCMR1_USBOH3_CLK_SEL_MASK;
  84. reg |= 1 << MXC_CCM_CSCMR1_USBOH3_CLK_SEL_OFFSET;
  85. writel(reg, &mxc_ccm->cscmr1);
  86. reg = readl(&mxc_ccm->cscdr1);
  87. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PODF_MASK;
  88. reg &= ~MXC_CCM_CSCDR1_USBOH3_CLK_PRED_MASK;
  89. reg |= 4 << MXC_CCM_CSCDR1_USBOH3_CLK_PRED_OFFSET;
  90. reg |= 1 << MXC_CCM_CSCDR1_USBOH3_CLK_PODF_OFFSET;
  91. writel(reg, &mxc_ccm->cscdr1);
  92. }
  93. void enable_usboh3_clk(unsigned char enable)
  94. {
  95. unsigned int reg;
  96. reg = readl(&mxc_ccm->CCGR2);
  97. if (enable)
  98. reg |= 1 << MXC_CCM_CCGR2_CG14_OFFSET;
  99. else
  100. reg &= ~(1 << MXC_CCM_CCGR2_CG14_OFFSET);
  101. writel(reg, &mxc_ccm->CCGR2);
  102. }
  103. #ifdef CONFIG_I2C_MXC
  104. /* i2c_num can be from 0 - 2 */
  105. int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
  106. {
  107. u32 reg;
  108. u32 mask;
  109. if (i2c_num > 2)
  110. return -EINVAL;
  111. mask = MXC_CCM_CCGR_CG_MASK << ((i2c_num + 9) << 1);
  112. reg = __raw_readl(&mxc_ccm->CCGR1);
  113. if (enable)
  114. reg |= mask;
  115. else
  116. reg &= ~mask;
  117. __raw_writel(reg, &mxc_ccm->CCGR1);
  118. return 0;
  119. }
  120. #endif
  121. void set_usb_phy1_clk(void)
  122. {
  123. unsigned int reg;
  124. reg = readl(&mxc_ccm->cscmr1);
  125. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  126. writel(reg, &mxc_ccm->cscmr1);
  127. }
  128. void enable_usb_phy1_clk(unsigned char enable)
  129. {
  130. unsigned int reg;
  131. reg = readl(&mxc_ccm->CCGR4);
  132. if (enable)
  133. reg |= 1 << MXC_CCM_CCGR4_CG5_OFFSET;
  134. else
  135. reg &= ~(1 << MXC_CCM_CCGR4_CG5_OFFSET);
  136. writel(reg, &mxc_ccm->CCGR4);
  137. }
  138. void set_usb_phy2_clk(void)
  139. {
  140. unsigned int reg;
  141. reg = readl(&mxc_ccm->cscmr1);
  142. reg &= ~MXC_CCM_CSCMR1_USB_PHY_CLK_SEL;
  143. writel(reg, &mxc_ccm->cscmr1);
  144. }
  145. void enable_usb_phy2_clk(unsigned char enable)
  146. {
  147. unsigned int reg;
  148. reg = readl(&mxc_ccm->CCGR4);
  149. if (enable)
  150. reg |= 1 << MXC_CCM_CCGR4_CG6_OFFSET;
  151. else
  152. reg &= ~(1 << MXC_CCM_CCGR4_CG6_OFFSET);
  153. writel(reg, &mxc_ccm->CCGR4);
  154. }
  155. /*
  156. * Calculate the frequency of PLLn.
  157. */
  158. static uint32_t decode_pll(struct mxc_pll_reg *pll, uint32_t infreq)
  159. {
  160. uint32_t ctrl, op, mfd, mfn, mfi, pdf, ret;
  161. uint64_t refclk, temp;
  162. int32_t mfn_abs;
  163. ctrl = readl(&pll->ctrl);
  164. if (ctrl & MXC_DPLLC_CTL_HFSM) {
  165. mfn = __raw_readl(&pll->hfs_mfn);
  166. mfd = __raw_readl(&pll->hfs_mfd);
  167. op = __raw_readl(&pll->hfs_op);
  168. } else {
  169. mfn = __raw_readl(&pll->mfn);
  170. mfd = __raw_readl(&pll->mfd);
  171. op = __raw_readl(&pll->op);
  172. }
  173. mfd &= MXC_DPLLC_MFD_MFD_MASK;
  174. mfn &= MXC_DPLLC_MFN_MFN_MASK;
  175. pdf = op & MXC_DPLLC_OP_PDF_MASK;
  176. mfi = (op & MXC_DPLLC_OP_MFI_MASK) >> MXC_DPLLC_OP_MFI_OFFSET;
  177. /* 21.2.3 */
  178. if (mfi < 5)
  179. mfi = 5;
  180. /* Sign extend */
  181. if (mfn >= 0x04000000) {
  182. mfn |= 0xfc000000;
  183. mfn_abs = -mfn;
  184. } else
  185. mfn_abs = mfn;
  186. refclk = infreq * 2;
  187. if (ctrl & MXC_DPLLC_CTL_DPDCK0_2_EN)
  188. refclk *= 2;
  189. do_div(refclk, pdf + 1);
  190. temp = refclk * mfn_abs;
  191. do_div(temp, mfd + 1);
  192. ret = refclk * mfi;
  193. if ((int)mfn < 0)
  194. ret -= temp;
  195. else
  196. ret += temp;
  197. return ret;
  198. }
  199. /*
  200. * Get mcu main rate
  201. */
  202. u32 get_mcu_main_clk(void)
  203. {
  204. u32 reg, freq;
  205. reg = (__raw_readl(&mxc_ccm->cacrr) & MXC_CCM_CACRR_ARM_PODF_MASK) >>
  206. MXC_CCM_CACRR_ARM_PODF_OFFSET;
  207. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  208. return freq / (reg + 1);
  209. }
  210. /*
  211. * Get the rate of peripheral's root clock.
  212. */
  213. u32 get_periph_clk(void)
  214. {
  215. u32 reg;
  216. reg = __raw_readl(&mxc_ccm->cbcdr);
  217. if (!(reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL))
  218. return decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  219. reg = __raw_readl(&mxc_ccm->cbcmr);
  220. switch ((reg & MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
  221. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  222. case 0:
  223. return decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  224. case 1:
  225. return decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  226. default:
  227. return 0;
  228. }
  229. /* NOTREACHED */
  230. }
  231. /*
  232. * Get the rate of ipg clock.
  233. */
  234. static u32 get_ipg_clk(void)
  235. {
  236. uint32_t freq, reg, div;
  237. freq = get_ahb_clk();
  238. reg = __raw_readl(&mxc_ccm->cbcdr);
  239. div = ((reg & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
  240. MXC_CCM_CBCDR_IPG_PODF_OFFSET) + 1;
  241. return freq / div;
  242. }
  243. /*
  244. * Get the rate of ipg_per clock.
  245. */
  246. static u32 get_ipg_per_clk(void)
  247. {
  248. u32 pred1, pred2, podf;
  249. if (__raw_readl(&mxc_ccm->cbcmr) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
  250. return get_ipg_clk();
  251. /* Fixme: not handle what about lpm*/
  252. podf = __raw_readl(&mxc_ccm->cbcdr);
  253. pred1 = (podf & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
  254. MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET;
  255. pred2 = (podf & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
  256. MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET;
  257. podf = (podf & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
  258. MXC_CCM_CBCDR_PERCLK_PODF_OFFSET;
  259. return get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
  260. }
  261. /*
  262. * Get the rate of uart clk.
  263. */
  264. static u32 get_uart_clk(void)
  265. {
  266. unsigned int freq, reg, pred, podf;
  267. reg = __raw_readl(&mxc_ccm->cscmr1);
  268. switch ((reg & MXC_CCM_CSCMR1_UART_CLK_SEL_MASK) >>
  269. MXC_CCM_CSCMR1_UART_CLK_SEL_OFFSET) {
  270. case 0x0:
  271. freq = decode_pll(mxc_plls[PLL1_CLOCK],
  272. CONFIG_SYS_MX5_HCLK);
  273. break;
  274. case 0x1:
  275. freq = decode_pll(mxc_plls[PLL2_CLOCK],
  276. CONFIG_SYS_MX5_HCLK);
  277. break;
  278. case 0x2:
  279. freq = decode_pll(mxc_plls[PLL3_CLOCK],
  280. CONFIG_SYS_MX5_HCLK);
  281. break;
  282. default:
  283. return 66500000;
  284. }
  285. reg = __raw_readl(&mxc_ccm->cscdr1);
  286. pred = (reg & MXC_CCM_CSCDR1_UART_CLK_PRED_MASK) >>
  287. MXC_CCM_CSCDR1_UART_CLK_PRED_OFFSET;
  288. podf = (reg & MXC_CCM_CSCDR1_UART_CLK_PODF_MASK) >>
  289. MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
  290. freq /= (pred + 1) * (podf + 1);
  291. return freq;
  292. }
  293. /*
  294. * This function returns the low power audio clock.
  295. */
  296. static u32 get_lp_apm(void)
  297. {
  298. u32 ret_val = 0;
  299. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  300. if (((ccsr >> 9) & 1) == 0)
  301. ret_val = CONFIG_SYS_MX5_HCLK;
  302. else
  303. ret_val = ((32768 * 1024));
  304. return ret_val;
  305. }
  306. /*
  307. * get cspi clock rate.
  308. */
  309. static u32 imx_get_cspiclk(void)
  310. {
  311. u32 ret_val = 0, pdf, pre_pdf, clk_sel;
  312. u32 cscmr1 = __raw_readl(&mxc_ccm->cscmr1);
  313. u32 cscdr2 = __raw_readl(&mxc_ccm->cscdr2);
  314. pre_pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PRED_MASK) \
  315. >> MXC_CCM_CSCDR2_CSPI_CLK_PRED_OFFSET;
  316. pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PODF_MASK) \
  317. >> MXC_CCM_CSCDR2_CSPI_CLK_PODF_OFFSET;
  318. clk_sel = (cscmr1 & MXC_CCM_CSCMR1_CSPI_CLK_SEL_MASK) \
  319. >> MXC_CCM_CSCMR1_CSPI_CLK_SEL_OFFSET;
  320. switch (clk_sel) {
  321. case 0:
  322. ret_val = decode_pll(mxc_plls[PLL1_CLOCK],
  323. CONFIG_SYS_MX5_HCLK) /
  324. ((pre_pdf + 1) * (pdf + 1));
  325. break;
  326. case 1:
  327. ret_val = decode_pll(mxc_plls[PLL2_CLOCK],
  328. CONFIG_SYS_MX5_HCLK) /
  329. ((pre_pdf + 1) * (pdf + 1));
  330. break;
  331. case 2:
  332. ret_val = decode_pll(mxc_plls[PLL3_CLOCK],
  333. CONFIG_SYS_MX5_HCLK) /
  334. ((pre_pdf + 1) * (pdf + 1));
  335. break;
  336. default:
  337. ret_val = get_lp_apm() / ((pre_pdf + 1) * (pdf + 1));
  338. break;
  339. }
  340. return ret_val;
  341. }
  342. static u32 get_axi_a_clk(void)
  343. {
  344. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  345. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_A_PODF_MASK) \
  346. >> MXC_CCM_CBCDR_AXI_A_PODF_OFFSET;
  347. return get_periph_clk() / (pdf + 1);
  348. }
  349. static u32 get_axi_b_clk(void)
  350. {
  351. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  352. u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_B_PODF_MASK) \
  353. >> MXC_CCM_CBCDR_AXI_B_PODF_OFFSET;
  354. return get_periph_clk() / (pdf + 1);
  355. }
  356. static u32 get_emi_slow_clk(void)
  357. {
  358. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  359. u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
  360. u32 pdf = (cbcdr & MXC_CCM_CBCDR_EMI_PODF_MASK) \
  361. >> MXC_CCM_CBCDR_EMI_PODF_OFFSET;
  362. if (emi_clk_sel)
  363. return get_ahb_clk() / (pdf + 1);
  364. return get_periph_clk() / (pdf + 1);
  365. }
  366. static u32 get_ddr_clk(void)
  367. {
  368. u32 ret_val = 0;
  369. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  370. u32 ddr_clk_sel = (cbcmr & MXC_CCM_CBCMR_DDR_CLK_SEL_MASK) \
  371. >> MXC_CCM_CBCMR_DDR_CLK_SEL_OFFSET;
  372. #ifdef CONFIG_MX51
  373. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  374. if (cbcdr & MXC_CCM_CBCDR_DDR_HIFREQ_SEL) {
  375. u32 ddr_clk_podf = (cbcdr & MXC_CCM_CBCDR_DDR_PODF_MASK) >> \
  376. MXC_CCM_CBCDR_DDR_PODF_OFFSET;
  377. ret_val = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  378. ret_val /= ddr_clk_podf + 1;
  379. return ret_val;
  380. }
  381. #endif
  382. switch (ddr_clk_sel) {
  383. case 0:
  384. ret_val = get_axi_a_clk();
  385. break;
  386. case 1:
  387. ret_val = get_axi_b_clk();
  388. break;
  389. case 2:
  390. ret_val = get_emi_slow_clk();
  391. break;
  392. case 3:
  393. ret_val = get_ahb_clk();
  394. break;
  395. default:
  396. break;
  397. }
  398. return ret_val;
  399. }
  400. /*
  401. * The API of get mxc clocks.
  402. */
  403. unsigned int mxc_get_clock(enum mxc_clock clk)
  404. {
  405. switch (clk) {
  406. case MXC_ARM_CLK:
  407. return get_mcu_main_clk();
  408. case MXC_AHB_CLK:
  409. return get_ahb_clk();
  410. case MXC_IPG_CLK:
  411. return get_ipg_clk();
  412. case MXC_IPG_PERCLK:
  413. return get_ipg_per_clk();
  414. case MXC_UART_CLK:
  415. return get_uart_clk();
  416. case MXC_CSPI_CLK:
  417. return imx_get_cspiclk();
  418. case MXC_FEC_CLK:
  419. return decode_pll(mxc_plls[PLL1_CLOCK],
  420. CONFIG_SYS_MX5_HCLK);
  421. case MXC_SATA_CLK:
  422. return get_ahb_clk();
  423. case MXC_DDR_CLK:
  424. return get_ddr_clk();
  425. default:
  426. break;
  427. }
  428. return -EINVAL;
  429. }
  430. u32 imx_get_uartclk(void)
  431. {
  432. return get_uart_clk();
  433. }
  434. u32 imx_get_fecclk(void)
  435. {
  436. return mxc_get_clock(MXC_IPG_CLK);
  437. }
  438. static int gcd(int m, int n)
  439. {
  440. int t;
  441. while (m > 0) {
  442. if (n > m) {
  443. t = m;
  444. m = n;
  445. n = t;
  446. } /* swap */
  447. m -= n;
  448. }
  449. return n;
  450. }
  451. /*
  452. * This is to calculate various parameters based on reference clock and
  453. * targeted clock based on the equation:
  454. * t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
  455. * This calculation is based on a fixed MFD value for simplicity.
  456. */
  457. static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
  458. {
  459. u64 pd, mfi = 1, mfn, mfd, t1;
  460. u32 n_target = target;
  461. u32 n_ref = ref, i;
  462. /*
  463. * Make sure targeted freq is in the valid range.
  464. * Otherwise the following calculation might be wrong!!!
  465. */
  466. if (n_target < PLL_FREQ_MIN(ref) ||
  467. n_target > PLL_FREQ_MAX(ref)) {
  468. printf("Targeted peripheral clock should be"
  469. "within [%d - %d]\n",
  470. PLL_FREQ_MIN(ref) / SZ_DEC_1M,
  471. PLL_FREQ_MAX(ref) / SZ_DEC_1M);
  472. return -EINVAL;
  473. }
  474. for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
  475. if (fixed_mfd[i].ref_clk_hz == ref) {
  476. mfd = fixed_mfd[i].mfd;
  477. break;
  478. }
  479. }
  480. if (i == ARRAY_SIZE(fixed_mfd))
  481. return -EINVAL;
  482. /* Use n_target and n_ref to avoid overflow */
  483. for (pd = 1; pd <= PLL_PD_MAX; pd++) {
  484. t1 = n_target * pd;
  485. do_div(t1, (4 * n_ref));
  486. mfi = t1;
  487. if (mfi > PLL_MFI_MAX)
  488. return -EINVAL;
  489. else if (mfi < 5)
  490. continue;
  491. break;
  492. }
  493. /*
  494. * Now got pd and mfi already
  495. *
  496. * mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
  497. */
  498. t1 = n_target * pd;
  499. do_div(t1, 4);
  500. t1 -= n_ref * mfi;
  501. t1 *= mfd;
  502. do_div(t1, n_ref);
  503. mfn = t1;
  504. debug("ref=%d, target=%d, pd=%d," "mfi=%d,mfn=%d, mfd=%d\n",
  505. ref, n_target, (u32)pd, (u32)mfi, (u32)mfn, (u32)mfd);
  506. i = 1;
  507. if (mfn != 0)
  508. i = gcd(mfd, mfn);
  509. pll->pd = (u32)pd;
  510. pll->mfi = (u32)mfi;
  511. do_div(mfn, i);
  512. pll->mfn = (u32)mfn;
  513. do_div(mfd, i);
  514. pll->mfd = (u32)mfd;
  515. return 0;
  516. }
  517. #define calc_div(tgt_clk, src_clk, limit) ({ \
  518. u32 v = 0; \
  519. if (((src_clk) % (tgt_clk)) <= 100) \
  520. v = (src_clk) / (tgt_clk); \
  521. else \
  522. v = ((src_clk) / (tgt_clk)) + 1;\
  523. if (v > limit) \
  524. v = limit; \
  525. (v - 1); \
  526. })
  527. #define CHANGE_PLL_SETTINGS(pll, pd, fi, fn, fd) \
  528. { \
  529. __raw_writel(0x1232, &pll->ctrl); \
  530. __raw_writel(0x2, &pll->config); \
  531. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  532. &pll->op); \
  533. __raw_writel(fn, &(pll->mfn)); \
  534. __raw_writel((fd) - 1, &pll->mfd); \
  535. __raw_writel((((pd) - 1) << 0) | ((fi) << 4), \
  536. &pll->hfs_op); \
  537. __raw_writel(fn, &pll->hfs_mfn); \
  538. __raw_writel((fd) - 1, &pll->hfs_mfd); \
  539. __raw_writel(0x1232, &pll->ctrl); \
  540. while (!__raw_readl(&pll->ctrl) & 0x1) \
  541. ;\
  542. }
  543. static int config_pll_clk(enum pll_clocks index, struct pll_param *pll_param)
  544. {
  545. u32 ccsr = __raw_readl(&mxc_ccm->ccsr);
  546. struct mxc_pll_reg *pll = mxc_plls[index];
  547. switch (index) {
  548. case PLL1_CLOCK:
  549. /* Switch ARM to PLL2 clock */
  550. __raw_writel(ccsr | 0x4, &mxc_ccm->ccsr);
  551. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  552. pll_param->mfi, pll_param->mfn,
  553. pll_param->mfd);
  554. /* Switch back */
  555. __raw_writel(ccsr & ~0x4, &mxc_ccm->ccsr);
  556. break;
  557. case PLL2_CLOCK:
  558. /* Switch to pll2 bypass clock */
  559. __raw_writel(ccsr | 0x2, &mxc_ccm->ccsr);
  560. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  561. pll_param->mfi, pll_param->mfn,
  562. pll_param->mfd);
  563. /* Switch back */
  564. __raw_writel(ccsr & ~0x2, &mxc_ccm->ccsr);
  565. break;
  566. case PLL3_CLOCK:
  567. /* Switch to pll3 bypass clock */
  568. __raw_writel(ccsr | 0x1, &mxc_ccm->ccsr);
  569. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  570. pll_param->mfi, pll_param->mfn,
  571. pll_param->mfd);
  572. /* Switch back */
  573. __raw_writel(ccsr & ~0x1, &mxc_ccm->ccsr);
  574. break;
  575. case PLL4_CLOCK:
  576. /* Switch to pll4 bypass clock */
  577. __raw_writel(ccsr | 0x20, &mxc_ccm->ccsr);
  578. CHANGE_PLL_SETTINGS(pll, pll_param->pd,
  579. pll_param->mfi, pll_param->mfn,
  580. pll_param->mfd);
  581. /* Switch back */
  582. __raw_writel(ccsr & ~0x20, &mxc_ccm->ccsr);
  583. break;
  584. default:
  585. return -EINVAL;
  586. }
  587. return 0;
  588. }
  589. /* Config CPU clock */
  590. static int config_core_clk(u32 ref, u32 freq)
  591. {
  592. int ret = 0;
  593. struct pll_param pll_param;
  594. memset(&pll_param, 0, sizeof(struct pll_param));
  595. /* The case that periph uses PLL1 is not considered here */
  596. ret = calc_pll_params(ref, freq, &pll_param);
  597. if (ret != 0) {
  598. printf("Error:Can't find pll parameters: %d\n", ret);
  599. return ret;
  600. }
  601. return config_pll_clk(PLL1_CLOCK, &pll_param);
  602. }
  603. static int config_nfc_clk(u32 nfc_clk)
  604. {
  605. u32 reg;
  606. u32 parent_rate = get_emi_slow_clk();
  607. u32 div = parent_rate / nfc_clk;
  608. if (nfc_clk <= 0)
  609. return -EINVAL;
  610. if (div == 0)
  611. div++;
  612. if (parent_rate / div > NFC_CLK_MAX)
  613. div++;
  614. reg = __raw_readl(&mxc_ccm->cbcdr);
  615. reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
  616. reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
  617. __raw_writel(reg, &mxc_ccm->cbcdr);
  618. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  619. ;
  620. return 0;
  621. }
  622. /* Config main_bus_clock for periphs */
  623. static int config_periph_clk(u32 ref, u32 freq)
  624. {
  625. int ret = 0;
  626. struct pll_param pll_param;
  627. memset(&pll_param, 0, sizeof(struct pll_param));
  628. if (__raw_readl(&mxc_ccm->cbcdr) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
  629. ret = calc_pll_params(ref, freq, &pll_param);
  630. if (ret != 0) {
  631. printf("Error:Can't find pll parameters: %d\n",
  632. ret);
  633. return ret;
  634. }
  635. switch ((__raw_readl(&mxc_ccm->cbcmr) & \
  636. MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >> \
  637. MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
  638. case 0:
  639. return config_pll_clk(PLL1_CLOCK, &pll_param);
  640. break;
  641. case 1:
  642. return config_pll_clk(PLL3_CLOCK, &pll_param);
  643. break;
  644. default:
  645. return -EINVAL;
  646. }
  647. }
  648. return 0;
  649. }
  650. static int config_ddr_clk(u32 emi_clk)
  651. {
  652. u32 clk_src;
  653. s32 shift = 0, clk_sel, div = 1;
  654. u32 cbcmr = __raw_readl(&mxc_ccm->cbcmr);
  655. u32 cbcdr = __raw_readl(&mxc_ccm->cbcdr);
  656. if (emi_clk > MAX_DDR_CLK) {
  657. printf("Warning:DDR clock should not exceed %d MHz\n",
  658. MAX_DDR_CLK / SZ_DEC_1M);
  659. emi_clk = MAX_DDR_CLK;
  660. }
  661. clk_src = get_periph_clk();
  662. /* Find DDR clock input */
  663. clk_sel = (cbcmr >> 10) & 0x3;
  664. switch (clk_sel) {
  665. case 0:
  666. shift = 16;
  667. break;
  668. case 1:
  669. shift = 19;
  670. break;
  671. case 2:
  672. shift = 22;
  673. break;
  674. case 3:
  675. shift = 10;
  676. break;
  677. default:
  678. return -EINVAL;
  679. }
  680. if ((clk_src % emi_clk) < 10000000)
  681. div = clk_src / emi_clk;
  682. else
  683. div = (clk_src / emi_clk) + 1;
  684. if (div > 8)
  685. div = 8;
  686. cbcdr = cbcdr & ~(0x7 << shift);
  687. cbcdr |= ((div - 1) << shift);
  688. __raw_writel(cbcdr, &mxc_ccm->cbcdr);
  689. while (__raw_readl(&mxc_ccm->cdhipr) != 0)
  690. ;
  691. __raw_writel(0x0, &mxc_ccm->ccdr);
  692. return 0;
  693. }
  694. /*
  695. * This function assumes the expected core clock has to be changed by
  696. * modifying the PLL. This is NOT true always but for most of the times,
  697. * it is. So it assumes the PLL output freq is the same as the expected
  698. * core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
  699. * In the latter case, it will try to increase the presc value until
  700. * (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
  701. * calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
  702. * on the targeted PLL and reference input clock to the PLL. Lastly,
  703. * it sets the register based on these values along with the dividers.
  704. * Note 1) There is no value checking for the passed-in divider values
  705. * so the caller has to make sure those values are sensible.
  706. * 2) Also adjust the NFC divider such that the NFC clock doesn't
  707. * exceed NFC_CLK_MAX.
  708. * 3) IPU HSP clock is independent of AHB clock. Even it can go up to
  709. * 177MHz for higher voltage, this function fixes the max to 133MHz.
  710. * 4) This function should not have allowed diag_printf() calls since
  711. * the serial driver has been stoped. But leave then here to allow
  712. * easy debugging by NOT calling the cyg_hal_plf_serial_stop().
  713. */
  714. int mxc_set_clock(u32 ref, u32 freq, enum mxc_clock clk)
  715. {
  716. freq *= SZ_DEC_1M;
  717. switch (clk) {
  718. case MXC_ARM_CLK:
  719. if (config_core_clk(ref, freq))
  720. return -EINVAL;
  721. break;
  722. case MXC_PERIPH_CLK:
  723. if (config_periph_clk(ref, freq))
  724. return -EINVAL;
  725. break;
  726. case MXC_DDR_CLK:
  727. if (config_ddr_clk(freq))
  728. return -EINVAL;
  729. break;
  730. case MXC_NFC_CLK:
  731. if (config_nfc_clk(freq))
  732. return -EINVAL;
  733. break;
  734. default:
  735. printf("Warning:Unsupported or invalid clock type\n");
  736. }
  737. return 0;
  738. }
  739. #ifdef CONFIG_MX53
  740. /*
  741. * The clock for the external interface can be set to use internal clock
  742. * if fuse bank 4, row 3, bit 2 is set.
  743. * This is an undocumented feature and it was confirmed by Freescale's support:
  744. * Fuses (but not pins) may be used to configure SATA clocks.
  745. * Particularly the i.MX53 Fuse_Map contains the next information
  746. * about configuring SATA clocks : SATA_ALT_REF_CLK[1:0] (offset 0x180C)
  747. * '00' - 100MHz (External)
  748. * '01' - 50MHz (External)
  749. * '10' - 120MHz, internal (USB PHY)
  750. * '11' - Reserved
  751. */
  752. void mxc_set_sata_internal_clock(void)
  753. {
  754. u32 *tmp_base =
  755. (u32 *)(IIM_BASE_ADDR + 0x180c);
  756. set_usb_phy1_clk();
  757. writel((readl(tmp_base) & (~0x6)) | 0x4, tmp_base);
  758. }
  759. #endif
  760. /*
  761. * Dump some core clockes.
  762. */
  763. int do_mx5_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  764. {
  765. u32 freq;
  766. freq = decode_pll(mxc_plls[PLL1_CLOCK], CONFIG_SYS_MX5_HCLK);
  767. printf("PLL1 %8d MHz\n", freq / 1000000);
  768. freq = decode_pll(mxc_plls[PLL2_CLOCK], CONFIG_SYS_MX5_HCLK);
  769. printf("PLL2 %8d MHz\n", freq / 1000000);
  770. freq = decode_pll(mxc_plls[PLL3_CLOCK], CONFIG_SYS_MX5_HCLK);
  771. printf("PLL3 %8d MHz\n", freq / 1000000);
  772. #ifdef CONFIG_MX53
  773. freq = decode_pll(mxc_plls[PLL4_CLOCK], CONFIG_SYS_MX5_HCLK);
  774. printf("PLL4 %8d MHz\n", freq / 1000000);
  775. #endif
  776. printf("\n");
  777. printf("AHB %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
  778. printf("IPG %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
  779. printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
  780. printf("DDR %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
  781. return 0;
  782. }
  783. /***************************************************/
  784. U_BOOT_CMD(
  785. clocks, CONFIG_SYS_MAXARGS, 1, do_mx5_showclocks,
  786. "display clocks",
  787. ""
  788. );