tigon3.c 173 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696
  1. /******************************************************************************/
  2. /* */
  3. /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */
  4. /* Corporation. */
  5. /* All rights reserved. */
  6. /* */
  7. /* This program is free software; you can redistribute it and/or modify */
  8. /* it under the terms of the GNU General Public License as published by */
  9. /* the Free Software Foundation, located in the file LICENSE. */
  10. /* */
  11. /* History: */
  12. /******************************************************************************/
  13. #include <common.h>
  14. #include <asm/types.h>
  15. #ifdef CONFIG_BMW
  16. #include <mpc824x.h>
  17. #endif
  18. #include <malloc.h>
  19. #include <linux/byteorder/big_endian.h>
  20. #include "bcm570x_mm.h"
  21. #define EMBEDDED 1
  22. /******************************************************************************/
  23. /* Local functions. */
  24. /******************************************************************************/
  25. LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice);
  26. LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice);
  27. static LM_STATUS LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE
  28. RequestedMediaType,
  29. PLM_MEDIA_TYPE pMediaType,
  30. PLM_LINE_SPEED pLineSpeed,
  31. PLM_DUPLEX_MODE pDuplexMode);
  32. static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice);
  33. __inline static LM_VOID LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice);
  34. __inline static LM_VOID LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice);
  35. static LM_STATUS LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
  36. LM_REQUESTED_MEDIA_TYPE
  37. RequestedMediaType);
  38. static LM_STATUS LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
  39. LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
  40. static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice);
  41. STATIC LM_STATUS LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
  42. LM_UINT32 LocalPhyAd,
  43. LM_UINT32 RemotePhyAd);
  44. #if INCLUDE_TBI_SUPPORT
  45. STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice);
  46. STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice);
  47. #endif
  48. STATIC LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice);
  49. STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid,
  50. LM_UINT16 Ssid);
  51. STATIC LM_STATUS LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  52. LM_PHYSICAL_ADDRESS BufferPhy,
  53. LM_UINT32 BufferSize);
  54. STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number);
  55. STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice);
  56. STATIC LM_STATUS LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice,
  57. PLM_PACKET pPacket, PT3_SND_BD pSendBd);
  58. /******************************************************************************/
  59. /* External functions. */
  60. /******************************************************************************/
  61. LM_STATUS LM_LoadRlsFirmware (PLM_DEVICE_BLOCK pDevice);
  62. /******************************************************************************/
  63. /* Description: */
  64. /* */
  65. /* Return: */
  66. /******************************************************************************/
  67. LM_UINT32 LM_RegRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
  68. {
  69. LM_UINT32 Value32;
  70. #if PCIX_TARGET_WORKAROUND
  71. MM_ACQUIRE_UNDI_LOCK (pDevice);
  72. #endif
  73. MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
  74. MM_ReadConfig32 (pDevice, T3_PCI_REG_DATA_REG, &Value32);
  75. #if PCIX_TARGET_WORKAROUND
  76. MM_RELEASE_UNDI_LOCK (pDevice);
  77. #endif
  78. return Value32;
  79. } /* LM_RegRdInd */
  80. /******************************************************************************/
  81. /* Description: */
  82. /* */
  83. /* Return: */
  84. /******************************************************************************/
  85. LM_VOID
  86. LM_RegWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32)
  87. {
  88. #if PCIX_TARGET_WORKAROUND
  89. MM_ACQUIRE_UNDI_LOCK (pDevice);
  90. #endif
  91. MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
  92. MM_WriteConfig32 (pDevice, T3_PCI_REG_DATA_REG, Value32);
  93. #if PCIX_TARGET_WORKAROUND
  94. MM_RELEASE_UNDI_LOCK (pDevice);
  95. #endif
  96. } /* LM_RegWrInd */
  97. /******************************************************************************/
  98. /* Description: */
  99. /* */
  100. /* Return: */
  101. /******************************************************************************/
  102. LM_UINT32 LM_MemRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr)
  103. {
  104. LM_UINT32 Value32;
  105. MM_ACQUIRE_UNDI_LOCK (pDevice);
  106. #ifdef BIG_ENDIAN_HOST
  107. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  108. Value32 = REG_RD (pDevice, PciCfg.MemWindowData);
  109. /* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */
  110. #else
  111. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  112. MM_ReadConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
  113. #endif
  114. MM_RELEASE_UNDI_LOCK (pDevice);
  115. return Value32;
  116. } /* LM_MemRdInd */
  117. /******************************************************************************/
  118. /* Description: */
  119. /* */
  120. /* Return: */
  121. /******************************************************************************/
  122. LM_VOID
  123. LM_MemWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr, LM_UINT32 Value32)
  124. {
  125. MM_ACQUIRE_UNDI_LOCK (pDevice);
  126. #ifdef BIG_ENDIAN_HOST
  127. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, MemAddr);
  128. REG_WR (pDevice, uIntMem.Mbuf[(MemAddr & 0x7fff) / 4], Value32);
  129. #else
  130. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
  131. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32);
  132. #endif
  133. MM_RELEASE_UNDI_LOCK (pDevice);
  134. } /* LM_MemWrInd */
  135. /******************************************************************************/
  136. /* Description: */
  137. /* */
  138. /* Return: */
  139. /******************************************************************************/
  140. LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice)
  141. {
  142. LM_STATUS Lmstatus;
  143. PLM_PACKET pPacket;
  144. PT3_RCV_BD pRcvBd;
  145. LM_UINT32 StdBdAdded = 0;
  146. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  147. LM_UINT32 JumboBdAdded = 0;
  148. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  149. Lmstatus = LM_STATUS_SUCCESS;
  150. pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  151. while (pPacket) {
  152. switch (pPacket->u.Rx.RcvProdRing) {
  153. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  154. case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
  155. /* Initialize the buffer descriptor. */
  156. pRcvBd =
  157. &pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx];
  158. pRcvBd->Flags =
  159. RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING;
  160. pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize;
  161. /* Initialize the receive buffer pointer */
  162. #if 0 /* Jimmy, deleted in new */
  163. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  164. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  165. #endif
  166. MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
  167. /* The opaque field may point to an offset from a fix addr. */
  168. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
  169. MM_UINT_PTR (pDevice->
  170. pPacketDescBase));
  171. /* Update the producer index. */
  172. pDevice->RxJumboProdIdx =
  173. (pDevice->RxJumboProdIdx +
  174. 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  175. JumboBdAdded++;
  176. break;
  177. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  178. case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
  179. /* Initialize the buffer descriptor. */
  180. pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx];
  181. pRcvBd->Flags = RCV_BD_FLAG_END;
  182. pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE;
  183. /* Initialize the receive buffer pointer */
  184. #if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */
  185. pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
  186. pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
  187. #endif
  188. MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
  189. /* The opaque field may point to an offset from a fix addr. */
  190. pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
  191. MM_UINT_PTR (pDevice->
  192. pPacketDescBase));
  193. /* Update the producer index. */
  194. pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) &
  195. T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  196. StdBdAdded++;
  197. break;
  198. case T3_UNKNOWN_RCV_PROD_RING:
  199. default:
  200. Lmstatus = LM_STATUS_FAILURE;
  201. break;
  202. } /* switch */
  203. /* Bail out if there is any error. */
  204. if (Lmstatus != LM_STATUS_SUCCESS) {
  205. break;
  206. }
  207. pPacket =
  208. (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  209. } /* while */
  210. wmb ();
  211. /* Update the procedure index. */
  212. if (StdBdAdded) {
  213. MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low,
  214. pDevice->RxStdProdIdx);
  215. }
  216. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  217. if (JumboBdAdded) {
  218. MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low,
  219. pDevice->RxJumboProdIdx);
  220. }
  221. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  222. return Lmstatus;
  223. } /* LM_QueueRxPackets */
  224. /******************************************************************************/
  225. /* Description: */
  226. /* */
  227. /* Return: */
  228. /******************************************************************************/
  229. STATIC LM_VOID LM_NvramInit (PLM_DEVICE_BLOCK pDevice)
  230. {
  231. LM_UINT32 Value32;
  232. LM_UINT32 j;
  233. /* Intialize clock period and state machine. */
  234. Value32 = SEEPROM_ADDR_CLK_PERD (SEEPROM_CLOCK_PERIOD) |
  235. SEEPROM_ADDR_FSM_RESET;
  236. REG_WR (pDevice, Grc.EepromAddr, Value32);
  237. for (j = 0; j < 100; j++) {
  238. MM_Wait (10);
  239. }
  240. /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
  241. Value32 = REG_RD (pDevice, Grc.LocalCtrl);
  242. REG_WR (pDevice, Grc.LocalCtrl,
  243. Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
  244. /* Set the 5701 compatibility mode if we are using EEPROM. */
  245. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  246. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  247. Value32 = REG_RD (pDevice, Nvram.Config1);
  248. if ((Value32 & FLASH_INTERFACE_ENABLE) == 0) {
  249. /* Use the new interface to read EEPROM. */
  250. Value32 &= ~FLASH_COMPAT_BYPASS;
  251. REG_WR (pDevice, Nvram.Config1, Value32);
  252. }
  253. }
  254. } /* LM_NvRamInit */
  255. /******************************************************************************/
  256. /* Description: */
  257. /* */
  258. /* Return: */
  259. /******************************************************************************/
  260. STATIC LM_STATUS
  261. LM_EepromRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
  262. {
  263. LM_UINT32 Value32;
  264. LM_UINT32 Addr;
  265. LM_UINT32 Dev;
  266. LM_UINT32 j;
  267. if (Offset > SEEPROM_CHIP_SIZE) {
  268. return LM_STATUS_FAILURE;
  269. }
  270. Dev = Offset / SEEPROM_CHIP_SIZE;
  271. Addr = Offset % SEEPROM_CHIP_SIZE;
  272. Value32 = REG_RD (pDevice, Grc.EepromAddr);
  273. Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK |
  274. SEEPROM_ADDR_RW_MASK);
  275. REG_WR (pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID (Dev) |
  276. SEEPROM_ADDR_ADDRESS (Addr) | SEEPROM_ADDR_START |
  277. SEEPROM_ADDR_READ);
  278. for (j = 0; j < 1000; j++) {
  279. Value32 = REG_RD (pDevice, Grc.EepromAddr);
  280. if (Value32 & SEEPROM_ADDR_COMPLETE) {
  281. break;
  282. }
  283. MM_Wait (10);
  284. }
  285. if (Value32 & SEEPROM_ADDR_COMPLETE) {
  286. Value32 = REG_RD (pDevice, Grc.EepromData);
  287. *pData = Value32;
  288. return LM_STATUS_SUCCESS;
  289. }
  290. return LM_STATUS_FAILURE;
  291. } /* LM_EepromRead */
  292. /******************************************************************************/
  293. /* Description: */
  294. /* */
  295. /* Return: */
  296. /******************************************************************************/
  297. STATIC LM_STATUS
  298. LM_NvramRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
  299. {
  300. LM_UINT32 Value32;
  301. LM_STATUS Status;
  302. LM_UINT32 j;
  303. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  304. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  305. Status = LM_EepromRead (pDevice, Offset, pData);
  306. } else {
  307. /* Determine if we have flash or EEPROM. */
  308. Value32 = REG_RD (pDevice, Nvram.Config1);
  309. if (Value32 & FLASH_INTERFACE_ENABLE) {
  310. if (Value32 & FLASH_SSRAM_BUFFERRED_MODE) {
  311. Offset = ((Offset / BUFFERED_FLASH_PAGE_SIZE) <<
  312. BUFFERED_FLASH_PAGE_POS) +
  313. (Offset % BUFFERED_FLASH_PAGE_SIZE);
  314. }
  315. }
  316. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  317. for (j = 0; j < 1000; j++) {
  318. if (REG_RD (pDevice, Nvram.SwArb) & SW_ARB_GNT1) {
  319. break;
  320. }
  321. MM_Wait (20);
  322. }
  323. if (j == 1000) {
  324. return LM_STATUS_FAILURE;
  325. }
  326. /* Read from flash or EEPROM with the new 5703/02 interface. */
  327. REG_WR (pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK);
  328. REG_WR (pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT |
  329. NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
  330. /* Wait for the done bit to clear. */
  331. for (j = 0; j < 500; j++) {
  332. MM_Wait (10);
  333. Value32 = REG_RD (pDevice, Nvram.Cmd);
  334. if (!(Value32 & NVRAM_CMD_DONE)) {
  335. break;
  336. }
  337. }
  338. /* Wait for the done bit. */
  339. if (!(Value32 & NVRAM_CMD_DONE)) {
  340. for (j = 0; j < 500; j++) {
  341. MM_Wait (10);
  342. Value32 = REG_RD (pDevice, Nvram.Cmd);
  343. if (Value32 & NVRAM_CMD_DONE) {
  344. MM_Wait (10);
  345. *pData =
  346. REG_RD (pDevice, Nvram.ReadData);
  347. /* Change the endianess. */
  348. *pData =
  349. ((*pData & 0xff) << 24) |
  350. ((*pData & 0xff00) << 8) |
  351. ((*pData & 0xff0000) >> 8) |
  352. ((*pData >> 24) & 0xff);
  353. break;
  354. }
  355. }
  356. }
  357. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1);
  358. if (Value32 & NVRAM_CMD_DONE) {
  359. Status = LM_STATUS_SUCCESS;
  360. } else {
  361. Status = LM_STATUS_FAILURE;
  362. }
  363. }
  364. return Status;
  365. } /* LM_NvramRead */
  366. STATIC void LM_ReadVPD (PLM_DEVICE_BLOCK pDevice)
  367. {
  368. LM_UINT32 Vpd_arr[256 / 4];
  369. LM_UINT8 *Vpd = (LM_UINT8 *) & Vpd_arr[0];
  370. LM_UINT32 *Vpd_dptr = &Vpd_arr[0];
  371. LM_UINT32 Value32;
  372. unsigned int j;
  373. /* Read PN from VPD */
  374. for (j = 0; j < 256; j += 4, Vpd_dptr++) {
  375. if (LM_NvramRead (pDevice, 0x100 + j, &Value32) !=
  376. LM_STATUS_SUCCESS) {
  377. printf ("BCM570x: LM_ReadVPD: VPD read failed"
  378. " (no EEPROM onboard)\n");
  379. return;
  380. }
  381. *Vpd_dptr = cpu_to_le32 (Value32);
  382. }
  383. for (j = 0; j < 256;) {
  384. unsigned int Vpd_r_len;
  385. unsigned int Vpd_r_end;
  386. if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91)) {
  387. j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8);
  388. } else if (Vpd[j] == 0x90) {
  389. Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8);
  390. j += 3;
  391. Vpd_r_end = Vpd_r_len + j;
  392. while (j < Vpd_r_end) {
  393. if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N')) {
  394. unsigned int len = Vpd[j + 2];
  395. if (len <= 24) {
  396. memcpy (pDevice->PartNo,
  397. &Vpd[j + 3], len);
  398. }
  399. break;
  400. } else {
  401. if (Vpd[j + 2] == 0) {
  402. break;
  403. }
  404. j = j + Vpd[j + 2];
  405. }
  406. }
  407. break;
  408. } else {
  409. break;
  410. }
  411. }
  412. }
  413. STATIC void LM_ReadBootCodeVersion (PLM_DEVICE_BLOCK pDevice)
  414. {
  415. LM_UINT32 Value32, offset, ver_offset;
  416. int i;
  417. if (LM_NvramRead (pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS)
  418. return;
  419. if (Value32 != 0xaa559966)
  420. return;
  421. if (LM_NvramRead (pDevice, 0xc, &offset) != LM_STATUS_SUCCESS)
  422. return;
  423. offset = ((offset & 0xff) << 24) | ((offset & 0xff00) << 8) |
  424. ((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff);
  425. if (LM_NvramRead (pDevice, offset, &Value32) != LM_STATUS_SUCCESS)
  426. return;
  427. if ((Value32 == 0x0300000e) &&
  428. (LM_NvramRead (pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS)
  429. && (Value32 == 0)) {
  430. if (LM_NvramRead (pDevice, offset + 8, &ver_offset) !=
  431. LM_STATUS_SUCCESS)
  432. return;
  433. ver_offset = ((ver_offset & 0xff0000) >> 8) |
  434. ((ver_offset >> 24) & 0xff);
  435. for (i = 0; i < 16; i += 4) {
  436. if (LM_NvramRead
  437. (pDevice, offset + ver_offset + i,
  438. &Value32) != LM_STATUS_SUCCESS) {
  439. return;
  440. }
  441. *((LM_UINT32 *) & pDevice->BootCodeVer[i]) =
  442. cpu_to_le32 (Value32);
  443. }
  444. } else {
  445. char c;
  446. if (LM_NvramRead (pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS)
  447. return;
  448. i = 0;
  449. c = ((Value32 & 0xff0000) >> 16);
  450. if (c < 10) {
  451. pDevice->BootCodeVer[i++] = c + '0';
  452. } else {
  453. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  454. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  455. }
  456. pDevice->BootCodeVer[i++] = '.';
  457. c = (Value32 & 0xff000000) >> 24;
  458. if (c < 10) {
  459. pDevice->BootCodeVer[i++] = c + '0';
  460. } else {
  461. pDevice->BootCodeVer[i++] = (c / 10) + '0';
  462. pDevice->BootCodeVer[i++] = (c % 10) + '0';
  463. }
  464. pDevice->BootCodeVer[i] = 0;
  465. }
  466. }
  467. STATIC void LM_GetBusSpeed (PLM_DEVICE_BLOCK pDevice)
  468. {
  469. LM_UINT32 PciState = pDevice->PciState;
  470. LM_UINT32 ClockCtrl;
  471. char *SpeedStr = "";
  472. if (PciState & T3_PCI_STATE_32BIT_PCI_BUS) {
  473. strcpy (pDevice->BusSpeedStr, "32-bit ");
  474. } else {
  475. strcpy (pDevice->BusSpeedStr, "64-bit ");
  476. }
  477. if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) {
  478. strcat (pDevice->BusSpeedStr, "PCI ");
  479. if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED) {
  480. SpeedStr = "66MHz";
  481. } else {
  482. SpeedStr = "33MHz";
  483. }
  484. } else {
  485. strcat (pDevice->BusSpeedStr, "PCIX ");
  486. if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE) {
  487. SpeedStr = "133MHz";
  488. } else {
  489. ClockCtrl = REG_RD (pDevice, PciCfg.ClockCtrl) & 0x1f;
  490. switch (ClockCtrl) {
  491. case 0:
  492. SpeedStr = "33MHz";
  493. break;
  494. case 2:
  495. SpeedStr = "50MHz";
  496. break;
  497. case 4:
  498. SpeedStr = "66MHz";
  499. break;
  500. case 6:
  501. SpeedStr = "100MHz";
  502. break;
  503. case 7:
  504. SpeedStr = "133MHz";
  505. break;
  506. }
  507. }
  508. }
  509. strcat (pDevice->BusSpeedStr, SpeedStr);
  510. }
  511. /******************************************************************************/
  512. /* Description: */
  513. /* This routine initializes default parameters and reads the PCI */
  514. /* configurations. */
  515. /* */
  516. /* Return: */
  517. /* LM_STATUS_SUCCESS */
  518. /******************************************************************************/
  519. LM_STATUS LM_GetAdapterInfo (PLM_DEVICE_BLOCK pDevice)
  520. {
  521. PLM_ADAPTER_INFO pAdapterInfo;
  522. LM_UINT32 Value32;
  523. LM_STATUS Status;
  524. LM_UINT32 j;
  525. LM_UINT32 EeSigFound;
  526. LM_UINT32 EePhyTypeSerdes = 0;
  527. LM_UINT32 EePhyLedMode = 0;
  528. LM_UINT32 EePhyId = 0;
  529. /* Get Device Id and Vendor Id */
  530. Status = MM_ReadConfig32 (pDevice, PCI_VENDOR_ID_REG, &Value32);
  531. if (Status != LM_STATUS_SUCCESS) {
  532. return Status;
  533. }
  534. pDevice->PciVendorId = (LM_UINT16) Value32;
  535. pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
  536. /* If we are not getting the write adapter, exit. */
  537. if ((Value32 != T3_PCI_ID_BCM5700) &&
  538. (Value32 != T3_PCI_ID_BCM5701) &&
  539. (Value32 != T3_PCI_ID_BCM5702) &&
  540. (Value32 != T3_PCI_ID_BCM5702x) &&
  541. (Value32 != T3_PCI_ID_BCM5702FE) &&
  542. (Value32 != T3_PCI_ID_BCM5703) &&
  543. (Value32 != T3_PCI_ID_BCM5703x) && (Value32 != T3_PCI_ID_BCM5704)) {
  544. return LM_STATUS_FAILURE;
  545. }
  546. Status = MM_ReadConfig32 (pDevice, PCI_REV_ID_REG, &Value32);
  547. if (Status != LM_STATUS_SUCCESS) {
  548. return Status;
  549. }
  550. pDevice->PciRevId = (LM_UINT8) Value32;
  551. /* Get IRQ. */
  552. Status = MM_ReadConfig32 (pDevice, PCI_INT_LINE_REG, &Value32);
  553. if (Status != LM_STATUS_SUCCESS) {
  554. return Status;
  555. }
  556. pDevice->Irq = (LM_UINT8) Value32;
  557. /* Get interrupt pin. */
  558. pDevice->IntPin = (LM_UINT8) (Value32 >> 8);
  559. /* Get chip revision id. */
  560. Status = MM_ReadConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
  561. pDevice->ChipRevId = Value32 >> 16;
  562. /* Get subsystem vendor. */
  563. Status =
  564. MM_ReadConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
  565. if (Status != LM_STATUS_SUCCESS) {
  566. return Status;
  567. }
  568. pDevice->SubsystemVendorId = (LM_UINT16) Value32;
  569. /* Get PCI subsystem id. */
  570. pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
  571. /* Get the cache line size. */
  572. MM_ReadConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
  573. pDevice->CacheLineSize = (LM_UINT8) Value32;
  574. pDevice->SavedCacheLineReg = Value32;
  575. if (pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
  576. pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
  577. pDevice->ChipRevId != T3_CHIP_ID_5704_A0) {
  578. pDevice->UndiFix = FALSE;
  579. }
  580. #if !PCIX_TARGET_WORKAROUND
  581. pDevice->UndiFix = FALSE;
  582. #endif
  583. /* Map the memory base to system address space. */
  584. if (!pDevice->UndiFix) {
  585. Status = MM_MapMemBase (pDevice);
  586. if (Status != LM_STATUS_SUCCESS) {
  587. return Status;
  588. }
  589. /* Initialize the memory view pointer. */
  590. pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
  591. }
  592. #if PCIX_TARGET_WORKAROUND
  593. /* store whether we are in PCI are PCI-X mode */
  594. pDevice->EnablePciXFix = FALSE;
  595. MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
  596. if ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) {
  597. /* Enable PCI-X workaround only if we are running on 5700 BX. */
  598. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  599. pDevice->EnablePciXFix = TRUE;
  600. }
  601. }
  602. if (pDevice->UndiFix) {
  603. pDevice->EnablePciXFix = TRUE;
  604. }
  605. #endif
  606. /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
  607. /* management register may be clobbered which may cause the */
  608. /* BCM5700 to go into D3 state. While in this state, we will */
  609. /* not have memory mapped register access. As a workaround, we */
  610. /* need to restore the device to D0 state. */
  611. MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
  612. Value32 |= T3_PM_PME_ASSERTED;
  613. Value32 &= ~T3_PM_POWER_STATE_MASK;
  614. Value32 |= T3_PM_POWER_STATE_D0;
  615. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
  616. /* read the current PCI command word */
  617. MM_ReadConfig32 (pDevice, PCI_COMMAND_REG, &Value32);
  618. /* Make sure bus-mastering is enabled. */
  619. Value32 |= PCI_BUSMASTER_ENABLE;
  620. #if PCIX_TARGET_WORKAROUND
  621. /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
  622. are enabled */
  623. if (pDevice->EnablePciXFix == TRUE) {
  624. Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
  625. PCI_PARITY_ERROR_ENABLE);
  626. }
  627. if (pDevice->UndiFix) {
  628. Value32 &= ~PCI_MEM_SPACE_ENABLE;
  629. }
  630. #endif
  631. if (pDevice->EnableMWI) {
  632. Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
  633. } else {
  634. Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
  635. }
  636. /* Error out if mem-mapping is NOT enabled for PCI systems */
  637. if (!(Value32 | PCI_MEM_SPACE_ENABLE)) {
  638. return LM_STATUS_FAILURE;
  639. }
  640. /* save the value we are going to write into the PCI command word */
  641. pDevice->PciCommandStatusWords = Value32;
  642. Status = MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, Value32);
  643. if (Status != LM_STATUS_SUCCESS) {
  644. return Status;
  645. }
  646. /* Set power state to D0. */
  647. LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
  648. #ifdef BIG_ENDIAN_PCI
  649. pDevice->MiscHostCtrl =
  650. MISC_HOST_CTRL_MASK_PCI_INT |
  651. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  652. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  653. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  654. #else /* No CPU Swap modes for PCI IO */
  655. /* Setup the mode registers. */
  656. pDevice->MiscHostCtrl =
  657. MISC_HOST_CTRL_MASK_PCI_INT |
  658. MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
  659. #ifdef BIG_ENDIAN_HOST
  660. MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
  661. #endif /* BIG_ENDIAN_HOST */
  662. MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
  663. MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
  664. #endif /* !BIG_ENDIAN_PCI */
  665. /* write to PCI misc host ctr first in order to enable indirect accesses */
  666. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  667. pDevice->MiscHostCtrl);
  668. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl);
  669. #ifdef BIG_ENDIAN_PCI
  670. Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  671. #else
  672. /* No CPU Swap modes for PCI IO */
  673. #ifdef BIG_ENDIAN_HOST
  674. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  675. GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  676. #else
  677. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  678. #endif
  679. #endif /* !BIG_ENDIAN_PCI */
  680. REG_WR (pDevice, Grc.Mode, Value32);
  681. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  682. REG_WR (pDevice, Grc.LocalCtrl,
  683. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  684. GRC_MISC_LOCAL_CTRL_GPIO_OE1);
  685. }
  686. MM_Wait (40);
  687. /* Enable indirect memory access */
  688. REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  689. if (REG_RD (pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK) {
  690. REG_WR (pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK |
  691. T3_PCI_SELECT_ALTERNATE_CLOCK);
  692. REG_WR (pDevice, PciCfg.ClockCtrl,
  693. T3_PCI_SELECT_ALTERNATE_CLOCK);
  694. MM_Wait (40); /* required delay is 27usec */
  695. }
  696. REG_WR (pDevice, PciCfg.ClockCtrl, 0);
  697. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
  698. #if PCIX_TARGET_WORKAROUND
  699. MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
  700. if ((pDevice->EnablePciXFix == FALSE) &&
  701. ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) {
  702. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  703. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  704. pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
  705. pDevice->ChipRevId == T3_CHIP_ID_5701_B5) {
  706. __raw_writel (0,
  707. &(pDevice->pMemView->uIntMem.
  708. MemBlock32K[0x300]));
  709. __raw_writel (0,
  710. &(pDevice->pMemView->uIntMem.
  711. MemBlock32K[0x301]));
  712. __raw_writel (0xffffffff,
  713. &(pDevice->pMemView->uIntMem.
  714. MemBlock32K[0x301]));
  715. if (__raw_readl
  716. (&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
  717. {
  718. pDevice->EnablePciXFix = TRUE;
  719. }
  720. }
  721. }
  722. #endif
  723. #if 1
  724. /*
  725. * This code was at the beginning of else block below, but that's
  726. * a bug if node address in shared memory.
  727. */
  728. MM_Wait (50);
  729. LM_NvramInit (pDevice);
  730. #endif
  731. /* Get the node address. First try to get in from the shared memory. */
  732. /* If the signature is not present, then get it from the NVRAM. */
  733. Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
  734. if ((Value32 >> 16) == 0x484b) {
  735. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
  736. pDevice->NodeAddress[1] = (LM_UINT8) Value32;
  737. Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_LOW_MAILBOX);
  738. pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
  739. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
  740. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
  741. pDevice->NodeAddress[5] = (LM_UINT8) Value32;
  742. Status = LM_STATUS_SUCCESS;
  743. } else {
  744. Status = LM_NvramRead (pDevice, 0x7c, &Value32);
  745. if (Status == LM_STATUS_SUCCESS) {
  746. pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16);
  747. pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24);
  748. Status = LM_NvramRead (pDevice, 0x80, &Value32);
  749. pDevice->NodeAddress[2] = (LM_UINT8) Value32;
  750. pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8);
  751. pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16);
  752. pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24);
  753. }
  754. }
  755. /* Assign a default address. */
  756. if (Status != LM_STATUS_SUCCESS) {
  757. #ifndef EMBEDDED
  758. printk (KERN_ERR
  759. "Cannot get MAC addr from NVRAM. Using default.\n");
  760. #endif
  761. pDevice->NodeAddress[0] = 0x00;
  762. pDevice->NodeAddress[1] = 0x10;
  763. pDevice->NodeAddress[2] = 0x18;
  764. pDevice->NodeAddress[3] = 0x68;
  765. pDevice->NodeAddress[4] = 0x61;
  766. pDevice->NodeAddress[5] = 0x76;
  767. }
  768. pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0];
  769. pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1];
  770. pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2];
  771. pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3];
  772. pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4];
  773. pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5];
  774. /* Initialize the default values. */
  775. pDevice->NoTxPseudoHdrChksum = FALSE;
  776. pDevice->NoRxPseudoHdrChksum = FALSE;
  777. pDevice->NicSendBd = FALSE;
  778. pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
  779. pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
  780. pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
  781. pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
  782. pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
  783. pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
  784. pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  785. pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
  786. pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  787. pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
  788. pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
  789. pDevice->EnableMWI = FALSE;
  790. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  791. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  792. pDevice->DisableAutoNeg = FALSE;
  793. pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
  794. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
  795. pDevice->LedMode = LED_MODE_AUTO;
  796. pDevice->ResetPhyOnInit = TRUE;
  797. pDevice->DelayPciGrant = TRUE;
  798. pDevice->UseTaggedStatus = FALSE;
  799. pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE;
  800. pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO;
  801. pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO;
  802. pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO;
  803. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO;
  804. pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
  805. pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
  806. pDevice->EnableTbi = FALSE;
  807. #if INCLUDE_TBI_SUPPORT
  808. pDevice->PollTbiLink = BAD_DEFAULT_VALUE;
  809. #endif
  810. switch (T3_ASIC_REV (pDevice->ChipRevId)) {
  811. case T3_ASIC_REV_5704:
  812. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  813. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
  814. break;
  815. default:
  816. pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
  817. pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
  818. break;
  819. }
  820. pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
  821. pDevice->QueueRxPackets = TRUE;
  822. pDevice->EnableWireSpeed = TRUE;
  823. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  824. pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
  825. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  826. /* Make this is a known adapter. */
  827. pAdapterInfo = LM_GetAdapterInfoBySsid (pDevice->SubsystemVendorId,
  828. pDevice->SubsystemId);
  829. pDevice->BondId = REG_RD (pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
  830. if (pDevice->BondId != GRC_MISC_BD_ID_5700 &&
  831. pDevice->BondId != GRC_MISC_BD_ID_5701 &&
  832. pDevice->BondId != GRC_MISC_BD_ID_5702FE &&
  833. pDevice->BondId != GRC_MISC_BD_ID_5703 &&
  834. pDevice->BondId != GRC_MISC_BD_ID_5703S &&
  835. pDevice->BondId != GRC_MISC_BD_ID_5704 &&
  836. pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE) {
  837. return LM_STATUS_UNKNOWN_ADAPTER;
  838. }
  839. pDevice->SplitModeEnable = SPLIT_MODE_DISABLE;
  840. if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) &&
  841. (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)) {
  842. pDevice->SplitModeEnable = SPLIT_MODE_ENABLE;
  843. pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ;
  844. }
  845. /* Get Eeprom info. */
  846. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_SIG_ADDR);
  847. if (Value32 == T3_NIC_DATA_SIG) {
  848. EeSigFound = TRUE;
  849. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
  850. /* Determine PHY type. */
  851. switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) {
  852. case T3_NIC_CFG_PHY_TYPE_COPPER:
  853. EePhyTypeSerdes = FALSE;
  854. break;
  855. case T3_NIC_CFG_PHY_TYPE_FIBER:
  856. EePhyTypeSerdes = TRUE;
  857. break;
  858. default:
  859. EePhyTypeSerdes = FALSE;
  860. break;
  861. }
  862. /* Determine PHY led mode. */
  863. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  864. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  865. switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
  866. case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED:
  867. EePhyLedMode = LED_MODE_THREE_LINK;
  868. break;
  869. case T3_NIC_CFG_LED_MODE_LINK_SPEED:
  870. EePhyLedMode = LED_MODE_LINK10;
  871. break;
  872. default:
  873. EePhyLedMode = LED_MODE_AUTO;
  874. break;
  875. }
  876. } else {
  877. switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
  878. case T3_NIC_CFG_LED_MODE_OPEN_DRAIN:
  879. EePhyLedMode = LED_MODE_OPEN_DRAIN;
  880. break;
  881. case T3_NIC_CFG_LED_MODE_OUTPUT:
  882. EePhyLedMode = LED_MODE_OUTPUT;
  883. break;
  884. default:
  885. EePhyLedMode = LED_MODE_AUTO;
  886. break;
  887. }
  888. }
  889. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  890. pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
  891. /* Enable EEPROM write protection. */
  892. if (Value32 & T3_NIC_EEPROM_WP) {
  893. pDevice->EepromWp = TRUE;
  894. }
  895. }
  896. /* Get the PHY Id. */
  897. Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_PHY_ID_ADDR);
  898. if (Value32) {
  899. EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
  900. PHY_ID1_OUI_MASK) << 10;
  901. Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
  902. EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  903. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 &
  904. PHY_ID2_REV_MASK);
  905. } else {
  906. EePhyId = 0;
  907. }
  908. } else {
  909. EeSigFound = FALSE;
  910. }
  911. /* Set the PHY address. */
  912. pDevice->PhyAddr = PHY_DEVICE_ID;
  913. /* Disable auto polling. */
  914. pDevice->MiMode = 0xc0000;
  915. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  916. MM_Wait (40);
  917. /* Get the PHY id. */
  918. LM_ReadPhy (pDevice, PHY_ID1_REG, &Value32);
  919. pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
  920. LM_ReadPhy (pDevice, PHY_ID2_REG, &Value32);
  921. pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
  922. (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
  923. /* Set the EnableTbi flag to false if we have a copper PHY. */
  924. switch (pDevice->PhyId & PHY_ID_MASK) {
  925. case PHY_BCM5400_PHY_ID:
  926. pDevice->EnableTbi = FALSE;
  927. break;
  928. case PHY_BCM5401_PHY_ID:
  929. pDevice->EnableTbi = FALSE;
  930. break;
  931. case PHY_BCM5411_PHY_ID:
  932. pDevice->EnableTbi = FALSE;
  933. break;
  934. case PHY_BCM5701_PHY_ID:
  935. pDevice->EnableTbi = FALSE;
  936. break;
  937. case PHY_BCM5703_PHY_ID:
  938. pDevice->EnableTbi = FALSE;
  939. break;
  940. case PHY_BCM5704_PHY_ID:
  941. pDevice->EnableTbi = FALSE;
  942. break;
  943. case PHY_BCM8002_PHY_ID:
  944. pDevice->EnableTbi = TRUE;
  945. break;
  946. default:
  947. if (pAdapterInfo) {
  948. pDevice->PhyId = pAdapterInfo->PhyId;
  949. pDevice->EnableTbi = pAdapterInfo->Serdes;
  950. } else if (EeSigFound) {
  951. pDevice->PhyId = EePhyId;
  952. pDevice->EnableTbi = EePhyTypeSerdes;
  953. }
  954. break;
  955. }
  956. /* Bail out if we don't know the copper PHY id. */
  957. if (UNKNOWN_PHY_ID (pDevice->PhyId) && !pDevice->EnableTbi) {
  958. return LM_STATUS_FAILURE;
  959. }
  960. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
  961. if ((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) {
  962. pDevice->SavedCacheLineReg &= 0xffff00ff;
  963. pDevice->SavedCacheLineReg |= 0x4000;
  964. }
  965. }
  966. /* Change driver parameters. */
  967. Status = MM_GetConfig (pDevice);
  968. if (Status != LM_STATUS_SUCCESS) {
  969. return Status;
  970. }
  971. #if INCLUDE_5701_AX_FIX
  972. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  973. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  974. pDevice->ResetPhyOnInit = TRUE;
  975. }
  976. #endif
  977. /* Save the current phy link status. */
  978. if (!pDevice->EnableTbi) {
  979. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  980. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  981. /* If we don't have link reset the PHY. */
  982. if (!(Value32 & PHY_STATUS_LINK_PASS)
  983. || pDevice->ResetPhyOnInit) {
  984. LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
  985. for (j = 0; j < 100; j++) {
  986. MM_Wait (10);
  987. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  988. if (Value32 && !(Value32 & PHY_CTRL_PHY_RESET)) {
  989. MM_Wait (40);
  990. break;
  991. }
  992. }
  993. #if INCLUDE_5701_AX_FIX
  994. /* 5701_AX_BX bug: only advertises 10mb speed. */
  995. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  996. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  997. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  998. PHY_AN_AD_10BASET_HALF |
  999. PHY_AN_AD_10BASET_FULL |
  1000. PHY_AN_AD_100BASETX_FULL |
  1001. PHY_AN_AD_100BASETX_HALF;
  1002. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  1003. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  1004. pDevice->advertising = Value32;
  1005. Value32 = BCM540X_AN_AD_1000BASET_HALF |
  1006. BCM540X_AN_AD_1000BASET_FULL |
  1007. BCM540X_CONFIG_AS_MASTER |
  1008. BCM540X_ENABLE_CONFIG_AS_MASTER;
  1009. LM_WritePhy (pDevice,
  1010. BCM540X_1000BASET_CTRL_REG,
  1011. Value32);
  1012. pDevice->advertising1000 = Value32;
  1013. LM_WritePhy (pDevice, PHY_CTRL_REG,
  1014. PHY_CTRL_AUTO_NEG_ENABLE |
  1015. PHY_CTRL_RESTART_AUTO_NEG);
  1016. }
  1017. #endif
  1018. if (T3_ASIC_REV (pDevice->ChipRevId) ==
  1019. T3_ASIC_REV_5703) {
  1020. LM_WritePhy (pDevice, 0x18, 0x0c00);
  1021. LM_WritePhy (pDevice, 0x17, 0x201f);
  1022. LM_WritePhy (pDevice, 0x15, 0x2aaa);
  1023. }
  1024. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  1025. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  1026. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  1027. }
  1028. /* Enable Ethernet@WireSpeed. */
  1029. if (pDevice->EnableWireSpeed) {
  1030. LM_WritePhy (pDevice, 0x18, 0x7007);
  1031. LM_ReadPhy (pDevice, 0x18, &Value32);
  1032. LM_WritePhy (pDevice, 0x18,
  1033. Value32 | BIT_15 | BIT_4);
  1034. }
  1035. }
  1036. }
  1037. /* Turn off tap power management. */
  1038. if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
  1039. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
  1040. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  1041. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  1042. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  1043. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  1044. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1045. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  1046. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  1047. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  1048. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  1049. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  1050. MM_Wait (40);
  1051. }
  1052. #if INCLUDE_TBI_SUPPORT
  1053. pDevice->IgnoreTbiLinkChange = FALSE;
  1054. if (pDevice->EnableTbi) {
  1055. pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
  1056. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1057. if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) ||
  1058. pDevice->DisableAutoNeg) {
  1059. pDevice->PollTbiLink = FALSE;
  1060. }
  1061. } else {
  1062. pDevice->PollTbiLink = FALSE;
  1063. }
  1064. #endif /* INCLUDE_TBI_SUPPORT */
  1065. /* UseTaggedStatus is only valid for 5701 and later. */
  1066. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1067. pDevice->UseTaggedStatus = FALSE;
  1068. pDevice->CoalesceMode = 0;
  1069. } else {
  1070. pDevice->CoalesceMode =
  1071. HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
  1072. HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
  1073. }
  1074. /* Set the status block size. */
  1075. if (T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
  1076. T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) {
  1077. pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
  1078. }
  1079. /* Check the DURING_INT coalescing ticks parameters. */
  1080. if (pDevice->UseTaggedStatus) {
  1081. if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1082. pDevice->RxCoalescingTicksDuringInt =
  1083. DEFAULT_RX_COALESCING_TICKS_DURING_INT;
  1084. }
  1085. if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1086. pDevice->TxCoalescingTicksDuringInt =
  1087. DEFAULT_TX_COALESCING_TICKS_DURING_INT;
  1088. }
  1089. if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1090. pDevice->RxMaxCoalescedFramesDuringInt =
  1091. DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
  1092. }
  1093. if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1094. pDevice->TxMaxCoalescedFramesDuringInt =
  1095. DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
  1096. }
  1097. } else {
  1098. if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1099. pDevice->RxCoalescingTicksDuringInt = 0;
  1100. }
  1101. if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
  1102. pDevice->TxCoalescingTicksDuringInt = 0;
  1103. }
  1104. if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1105. pDevice->RxMaxCoalescedFramesDuringInt = 0;
  1106. }
  1107. if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
  1108. pDevice->TxMaxCoalescedFramesDuringInt = 0;
  1109. }
  1110. }
  1111. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1112. if (pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */ )) {
  1113. pDevice->RxJumboDescCnt = 0;
  1114. if (pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
  1115. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1116. }
  1117. } else {
  1118. pDevice->RxJumboBufferSize =
  1119. (pDevice->RxMtu + 8 /* CRC + VLAN */ +
  1120. COMMON_CACHE_LINE_SIZE - 1) & ~COMMON_CACHE_LINE_MASK;
  1121. if (pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) {
  1122. pDevice->RxJumboBufferSize =
  1123. DEFAULT_JUMBO_RCV_BUFFER_SIZE;
  1124. pDevice->RxMtu =
  1125. pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */ ;
  1126. }
  1127. pDevice->TxMtu = pDevice->RxMtu;
  1128. }
  1129. #else
  1130. pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1131. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1132. pDevice->RxPacketDescCnt =
  1133. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1134. pDevice->RxJumboDescCnt +
  1135. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1136. pDevice->RxStdDescCnt;
  1137. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
  1138. pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
  1139. }
  1140. if (pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) {
  1141. pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
  1142. }
  1143. /* Configure the proper ways to get link change interrupt. */
  1144. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) {
  1145. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1146. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1147. } else {
  1148. pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
  1149. }
  1150. } else if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  1151. /* Auto-polling does not work on 5700_AX and 5700_BX. */
  1152. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1153. pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
  1154. }
  1155. }
  1156. /* Determine the method to get link change status. */
  1157. if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) {
  1158. /* The link status bit in the status block does not work on 5700_AX */
  1159. /* and 5700_BX chips. */
  1160. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1161. pDevice->LinkChngMode =
  1162. T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1163. } else {
  1164. pDevice->LinkChngMode =
  1165. T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
  1166. }
  1167. }
  1168. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
  1169. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  1170. pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1171. }
  1172. /* Configure PHY led mode. */
  1173. if (pDevice->LedMode == LED_MODE_AUTO) {
  1174. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1175. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  1176. if (pDevice->SubsystemVendorId == T3_SVID_DELL) {
  1177. pDevice->LedMode = LED_MODE_LINK10;
  1178. } else {
  1179. pDevice->LedMode = LED_MODE_THREE_LINK;
  1180. if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
  1181. pDevice->LedMode = EePhyLedMode;
  1182. }
  1183. }
  1184. /* bug? 5701 in LINK10 mode does not seem to work when */
  1185. /* PhyIntMode is LINK_READY. */
  1186. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700
  1187. &&
  1188. #if INCLUDE_TBI_SUPPORT
  1189. pDevice->EnableTbi == FALSE &&
  1190. #endif
  1191. pDevice->LedMode == LED_MODE_LINK10) {
  1192. pDevice->PhyIntMode =
  1193. T3_PHY_INT_MODE_MI_INTERRUPT;
  1194. pDevice->LinkChngMode =
  1195. T3_LINK_CHNG_MODE_USE_STATUS_REG;
  1196. }
  1197. if (pDevice->EnableTbi) {
  1198. pDevice->LedMode = LED_MODE_THREE_LINK;
  1199. }
  1200. } else {
  1201. if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
  1202. pDevice->LedMode = EePhyLedMode;
  1203. } else {
  1204. pDevice->LedMode = LED_MODE_OPEN_DRAIN;
  1205. }
  1206. }
  1207. }
  1208. /* Enable OneDmaAtOnce. */
  1209. if (pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE) {
  1210. pDevice->OneDmaAtOnce = FALSE;
  1211. }
  1212. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  1213. pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  1214. pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
  1215. pDevice->ChipRevId == T3_CHIP_ID_5701_B2) {
  1216. pDevice->WolSpeed = WOL_SPEED_10MB;
  1217. } else {
  1218. pDevice->WolSpeed = WOL_SPEED_100MB;
  1219. }
  1220. /* Offloadings. */
  1221. pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
  1222. /* Turn off task offloading on Ax. */
  1223. if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) {
  1224. pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
  1225. LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
  1226. }
  1227. pDevice->PciState = REG_RD (pDevice, PciCfg.PciState);
  1228. LM_ReadVPD (pDevice);
  1229. LM_ReadBootCodeVersion (pDevice);
  1230. LM_GetBusSpeed (pDevice);
  1231. return LM_STATUS_SUCCESS;
  1232. } /* LM_GetAdapterInfo */
  1233. STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, LM_UINT16 Ssid)
  1234. {
  1235. static LM_ADAPTER_INFO AdapterArr[] = {
  1236. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6,
  1237. PHY_BCM5401_PHY_ID, 0},
  1238. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5,
  1239. PHY_BCM5701_PHY_ID, 0},
  1240. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6,
  1241. PHY_BCM8002_PHY_ID, 1},
  1242. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1},
  1243. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1,
  1244. PHY_BCM5701_PHY_ID, 0},
  1245. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8,
  1246. PHY_BCM5701_PHY_ID, 0},
  1247. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
  1248. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10,
  1249. PHY_BCM5701_PHY_ID, 0},
  1250. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12,
  1251. PHY_BCM5701_PHY_ID, 0},
  1252. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1,
  1253. PHY_BCM5701_PHY_ID, 0},
  1254. {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2,
  1255. PHY_BCM5701_PHY_ID, 0},
  1256. {T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0},
  1257. {T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0},
  1258. {T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1},
  1259. {T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0},
  1260. {T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0},
  1261. {T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0},
  1262. {T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0},
  1263. {T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0},
  1264. {T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0},
  1265. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0},
  1266. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID,
  1267. 0},
  1268. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1},
  1269. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0},
  1270. {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID,
  1271. 0},
  1272. };
  1273. LM_UINT32 j;
  1274. for (j = 0; j < sizeof (AdapterArr) / sizeof (LM_ADAPTER_INFO); j++) {
  1275. if (AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) {
  1276. return &AdapterArr[j];
  1277. }
  1278. }
  1279. return NULL;
  1280. }
  1281. /******************************************************************************/
  1282. /* Description: */
  1283. /* This routine sets up receive/transmit buffer descriptions queues. */
  1284. /* */
  1285. /* Return: */
  1286. /* LM_STATUS_SUCCESS */
  1287. /******************************************************************************/
  1288. LM_STATUS LM_InitializeAdapter (PLM_DEVICE_BLOCK pDevice)
  1289. {
  1290. LM_PHYSICAL_ADDRESS MemPhy;
  1291. PLM_UINT8 pMemVirt;
  1292. PLM_PACKET pPacket;
  1293. LM_STATUS Status;
  1294. LM_UINT32 Size;
  1295. LM_UINT32 j;
  1296. /* Set power state to D0. */
  1297. LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
  1298. /* Intialize the queues. */
  1299. QQ_InitQueue (&pDevice->RxPacketReceivedQ.Container,
  1300. MAX_RX_PACKET_DESC_COUNT);
  1301. QQ_InitQueue (&pDevice->RxPacketFreeQ.Container,
  1302. MAX_RX_PACKET_DESC_COUNT);
  1303. QQ_InitQueue (&pDevice->TxPacketFreeQ.Container,
  1304. MAX_TX_PACKET_DESC_COUNT);
  1305. QQ_InitQueue (&pDevice->TxPacketActiveQ.Container,
  1306. MAX_TX_PACKET_DESC_COUNT);
  1307. QQ_InitQueue (&pDevice->TxPacketXmittedQ.Container,
  1308. MAX_TX_PACKET_DESC_COUNT);
  1309. /* Allocate shared memory for: status block, the buffers for receive */
  1310. /* rings -- standard, mini, jumbo, and return rings. */
  1311. Size = T3_STATUS_BLOCK_SIZE + sizeof (T3_STATS_BLOCK) +
  1312. T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
  1313. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1314. T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
  1315. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1316. T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1317. /* Memory for host based Send BD. */
  1318. if (pDevice->NicSendBd == FALSE) {
  1319. Size += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1320. }
  1321. /* Allocate the memory block. */
  1322. Status =
  1323. MM_AllocateSharedMemory (pDevice, Size, (PLM_VOID) & pMemVirt,
  1324. &MemPhy, FALSE);
  1325. if (Status != LM_STATUS_SUCCESS) {
  1326. return Status;
  1327. }
  1328. /* Program DMA Read/Write */
  1329. if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) {
  1330. pDevice->DmaReadWriteCtrl = 0x763f000f;
  1331. } else {
  1332. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5704) {
  1333. pDevice->DmaReadWriteCtrl = 0x761f0000;
  1334. } else {
  1335. pDevice->DmaReadWriteCtrl = 0x761b000f;
  1336. }
  1337. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
  1338. pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
  1339. pDevice->OneDmaAtOnce = TRUE;
  1340. }
  1341. }
  1342. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
  1343. pDevice->DmaReadWriteCtrl &= 0xfffffff0;
  1344. }
  1345. if (pDevice->OneDmaAtOnce) {
  1346. pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
  1347. }
  1348. REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  1349. if (LM_DmaTest (pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) {
  1350. return LM_STATUS_FAILURE;
  1351. }
  1352. /* Status block. */
  1353. pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
  1354. pDevice->StatusBlkPhy = MemPhy;
  1355. pMemVirt += T3_STATUS_BLOCK_SIZE;
  1356. LM_INC_PHYSICAL_ADDRESS (&MemPhy, T3_STATUS_BLOCK_SIZE);
  1357. /* Statistics block. */
  1358. pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
  1359. pDevice->StatsBlkPhy = MemPhy;
  1360. pMemVirt += sizeof (T3_STATS_BLOCK);
  1361. LM_INC_PHYSICAL_ADDRESS (&MemPhy, sizeof (T3_STATS_BLOCK));
  1362. /* Receive standard BD buffer. */
  1363. pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
  1364. pDevice->RxStdBdPhy = MemPhy;
  1365. pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1366. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1367. T3_STD_RCV_RCB_ENTRY_COUNT *
  1368. sizeof (T3_RCV_BD));
  1369. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1370. /* Receive jumbo BD buffer. */
  1371. pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
  1372. pDevice->RxJumboBdPhy = MemPhy;
  1373. pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1374. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1375. T3_JUMBO_RCV_RCB_ENTRY_COUNT *
  1376. sizeof (T3_RCV_BD));
  1377. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1378. /* Receive return BD buffer. */
  1379. pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
  1380. pDevice->RcvRetBdPhy = MemPhy;
  1381. pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
  1382. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1383. T3_RCV_RETURN_RCB_ENTRY_COUNT *
  1384. sizeof (T3_RCV_BD));
  1385. /* Set up Send BD. */
  1386. if (pDevice->NicSendBd == FALSE) {
  1387. pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
  1388. pDevice->SendBdPhy = MemPhy;
  1389. pMemVirt += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
  1390. LM_INC_PHYSICAL_ADDRESS (&MemPhy,
  1391. sizeof (T3_SND_BD) *
  1392. T3_SEND_RCB_ENTRY_COUNT);
  1393. } else {
  1394. pDevice->pSendBdVirt = (PT3_SND_BD)
  1395. pDevice->pMemView->uIntMem.First32k.BufferDesc;
  1396. pDevice->SendBdPhy.High = 0;
  1397. pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
  1398. }
  1399. /* Allocate memory for packet descriptors. */
  1400. Size = (pDevice->RxPacketDescCnt +
  1401. pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
  1402. Status = MM_AllocateMemory (pDevice, Size, (PLM_VOID *) & pPacket);
  1403. if (Status != LM_STATUS_SUCCESS) {
  1404. return Status;
  1405. }
  1406. pDevice->pPacketDescBase = (PLM_VOID) pPacket;
  1407. /* Create transmit packet descriptors from the memory block and add them */
  1408. /* to the TxPacketFreeQ for each send ring. */
  1409. for (j = 0; j < pDevice->TxPacketDescCnt; j++) {
  1410. /* Ring index. */
  1411. pPacket->Flags = 0;
  1412. /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
  1413. QQ_PushTail (&pDevice->TxPacketFreeQ.Container, pPacket);
  1414. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1415. /* is the total size of the packet descriptor including the */
  1416. /* os-specific extensions in the UM_PACKET structure. */
  1417. pPacket =
  1418. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1419. } /* for(j.. */
  1420. /* Create receive packet descriptors from the memory block and add them */
  1421. /* to the RxPacketFreeQ. Create the Standard packet descriptors. */
  1422. for (j = 0; j < pDevice->RxStdDescCnt; j++) {
  1423. /* Receive producer ring. */
  1424. pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
  1425. /* Receive buffer size. */
  1426. pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
  1427. /* Add the descriptor to RxPacketFreeQ. */
  1428. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  1429. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1430. /* is the total size of the packet descriptor including the */
  1431. /* os-specific extensions in the UM_PACKET structure. */
  1432. pPacket =
  1433. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1434. } /* for */
  1435. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1436. /* Create the Jumbo packet descriptors. */
  1437. for (j = 0; j < pDevice->RxJumboDescCnt; j++) {
  1438. /* Receive producer ring. */
  1439. pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
  1440. /* Receive buffer size. */
  1441. pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
  1442. /* Add the descriptor to RxPacketFreeQ. */
  1443. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  1444. /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
  1445. /* is the total size of the packet descriptor including the */
  1446. /* os-specific extensions in the UM_PACKET structure. */
  1447. pPacket =
  1448. (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
  1449. } /* for */
  1450. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  1451. /* Initialize the rest of the packet descriptors. */
  1452. Status = MM_InitializeUmPackets (pDevice);
  1453. if (Status != LM_STATUS_SUCCESS) {
  1454. return Status;
  1455. }
  1456. /* if */
  1457. /* Default receive mask. */
  1458. pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
  1459. LM_ACCEPT_UNICAST;
  1460. /* Make sure we are in the first 32k memory window or NicSendBd. */
  1461. REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
  1462. /* Initialize the hardware. */
  1463. Status = LM_ResetAdapter (pDevice);
  1464. if (Status != LM_STATUS_SUCCESS) {
  1465. return Status;
  1466. }
  1467. /* We are done with initialization. */
  1468. pDevice->InitDone = TRUE;
  1469. return LM_STATUS_SUCCESS;
  1470. } /* LM_InitializeAdapter */
  1471. /******************************************************************************/
  1472. /* Description: */
  1473. /* This function Enables/Disables a given block. */
  1474. /* */
  1475. /* Return: */
  1476. /* LM_STATUS_SUCCESS */
  1477. /******************************************************************************/
  1478. LM_STATUS
  1479. LM_CntrlBlock (PLM_DEVICE_BLOCK pDevice, LM_UINT32 mask, LM_UINT32 cntrl)
  1480. {
  1481. LM_UINT32 j, i, data;
  1482. LM_UINT32 MaxWaitCnt;
  1483. MaxWaitCnt = 2;
  1484. j = 0;
  1485. for (i = 0; i < 32; i++) {
  1486. if (!(mask & (1 << i)))
  1487. continue;
  1488. switch (1 << i) {
  1489. case T3_BLOCK_DMA_RD:
  1490. data = REG_RD (pDevice, DmaRead.Mode);
  1491. if (cntrl == LM_DISABLE) {
  1492. data &= ~DMA_READ_MODE_ENABLE;
  1493. REG_WR (pDevice, DmaRead.Mode, data);
  1494. for (j = 0; j < MaxWaitCnt; j++) {
  1495. if (!
  1496. (REG_RD (pDevice, DmaRead.Mode) &
  1497. DMA_READ_MODE_ENABLE))
  1498. break;
  1499. MM_Wait (10);
  1500. }
  1501. } else
  1502. REG_WR (pDevice, DmaRead.Mode,
  1503. data | DMA_READ_MODE_ENABLE);
  1504. break;
  1505. case T3_BLOCK_DMA_COMP:
  1506. data = REG_RD (pDevice, DmaComp.Mode);
  1507. if (cntrl == LM_DISABLE) {
  1508. data &= ~DMA_COMP_MODE_ENABLE;
  1509. REG_WR (pDevice, DmaComp.Mode, data);
  1510. for (j = 0; j < MaxWaitCnt; j++) {
  1511. if (!
  1512. (REG_RD (pDevice, DmaComp.Mode) &
  1513. DMA_COMP_MODE_ENABLE))
  1514. break;
  1515. MM_Wait (10);
  1516. }
  1517. } else
  1518. REG_WR (pDevice, DmaComp.Mode,
  1519. data | DMA_COMP_MODE_ENABLE);
  1520. break;
  1521. case T3_BLOCK_RX_BD_INITIATOR:
  1522. data = REG_RD (pDevice, RcvBdIn.Mode);
  1523. if (cntrl == LM_DISABLE) {
  1524. data &= ~RCV_BD_IN_MODE_ENABLE;
  1525. REG_WR (pDevice, RcvBdIn.Mode, data);
  1526. for (j = 0; j < MaxWaitCnt; j++) {
  1527. if (!
  1528. (REG_RD (pDevice, RcvBdIn.Mode) &
  1529. RCV_BD_IN_MODE_ENABLE))
  1530. break;
  1531. MM_Wait (10);
  1532. }
  1533. } else
  1534. REG_WR (pDevice, RcvBdIn.Mode,
  1535. data | RCV_BD_IN_MODE_ENABLE);
  1536. break;
  1537. case T3_BLOCK_RX_BD_COMP:
  1538. data = REG_RD (pDevice, RcvBdComp.Mode);
  1539. if (cntrl == LM_DISABLE) {
  1540. data &= ~RCV_BD_COMP_MODE_ENABLE;
  1541. REG_WR (pDevice, RcvBdComp.Mode, data);
  1542. for (j = 0; j < MaxWaitCnt; j++) {
  1543. if (!
  1544. (REG_RD (pDevice, RcvBdComp.Mode) &
  1545. RCV_BD_COMP_MODE_ENABLE))
  1546. break;
  1547. MM_Wait (10);
  1548. }
  1549. } else
  1550. REG_WR (pDevice, RcvBdComp.Mode,
  1551. data | RCV_BD_COMP_MODE_ENABLE);
  1552. break;
  1553. case T3_BLOCK_DMA_WR:
  1554. data = REG_RD (pDevice, DmaWrite.Mode);
  1555. if (cntrl == LM_DISABLE) {
  1556. data &= ~DMA_WRITE_MODE_ENABLE;
  1557. REG_WR (pDevice, DmaWrite.Mode, data);
  1558. for (j = 0; j < MaxWaitCnt; j++) {
  1559. if (!
  1560. (REG_RD (pDevice, DmaWrite.Mode) &
  1561. DMA_WRITE_MODE_ENABLE))
  1562. break;
  1563. MM_Wait (10);
  1564. }
  1565. } else
  1566. REG_WR (pDevice, DmaWrite.Mode,
  1567. data | DMA_WRITE_MODE_ENABLE);
  1568. break;
  1569. case T3_BLOCK_MSI_HANDLER:
  1570. data = REG_RD (pDevice, Msi.Mode);
  1571. if (cntrl == LM_DISABLE) {
  1572. data &= ~MSI_MODE_ENABLE;
  1573. REG_WR (pDevice, Msi.Mode, data);
  1574. for (j = 0; j < MaxWaitCnt; j++) {
  1575. if (!
  1576. (REG_RD (pDevice, Msi.Mode) &
  1577. MSI_MODE_ENABLE))
  1578. break;
  1579. MM_Wait (10);
  1580. }
  1581. } else
  1582. REG_WR (pDevice, Msi.Mode,
  1583. data | MSI_MODE_ENABLE);
  1584. break;
  1585. case T3_BLOCK_RX_LIST_PLMT:
  1586. data = REG_RD (pDevice, RcvListPlmt.Mode);
  1587. if (cntrl == LM_DISABLE) {
  1588. data &= ~RCV_LIST_PLMT_MODE_ENABLE;
  1589. REG_WR (pDevice, RcvListPlmt.Mode, data);
  1590. for (j = 0; j < MaxWaitCnt; j++) {
  1591. if (!
  1592. (REG_RD (pDevice, RcvListPlmt.Mode)
  1593. & RCV_LIST_PLMT_MODE_ENABLE))
  1594. break;
  1595. MM_Wait (10);
  1596. }
  1597. } else
  1598. REG_WR (pDevice, RcvListPlmt.Mode,
  1599. data | RCV_LIST_PLMT_MODE_ENABLE);
  1600. break;
  1601. case T3_BLOCK_RX_LIST_SELECTOR:
  1602. data = REG_RD (pDevice, RcvListSel.Mode);
  1603. if (cntrl == LM_DISABLE) {
  1604. data &= ~RCV_LIST_SEL_MODE_ENABLE;
  1605. REG_WR (pDevice, RcvListSel.Mode, data);
  1606. for (j = 0; j < MaxWaitCnt; j++) {
  1607. if (!
  1608. (REG_RD (pDevice, RcvListSel.Mode) &
  1609. RCV_LIST_SEL_MODE_ENABLE))
  1610. break;
  1611. MM_Wait (10);
  1612. }
  1613. } else
  1614. REG_WR (pDevice, RcvListSel.Mode,
  1615. data | RCV_LIST_SEL_MODE_ENABLE);
  1616. break;
  1617. case T3_BLOCK_RX_DATA_INITIATOR:
  1618. data = REG_RD (pDevice, RcvDataBdIn.Mode);
  1619. if (cntrl == LM_DISABLE) {
  1620. data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
  1621. REG_WR (pDevice, RcvDataBdIn.Mode, data);
  1622. for (j = 0; j < MaxWaitCnt; j++) {
  1623. if (!
  1624. (REG_RD (pDevice, RcvDataBdIn.Mode)
  1625. & RCV_DATA_BD_IN_MODE_ENABLE))
  1626. break;
  1627. MM_Wait (10);
  1628. }
  1629. } else
  1630. REG_WR (pDevice, RcvDataBdIn.Mode,
  1631. data | RCV_DATA_BD_IN_MODE_ENABLE);
  1632. break;
  1633. case T3_BLOCK_RX_DATA_COMP:
  1634. data = REG_RD (pDevice, RcvDataComp.Mode);
  1635. if (cntrl == LM_DISABLE) {
  1636. data &= ~RCV_DATA_COMP_MODE_ENABLE;
  1637. REG_WR (pDevice, RcvDataComp.Mode, data);
  1638. for (j = 0; j < MaxWaitCnt; j++) {
  1639. if (!
  1640. (REG_RD (pDevice, RcvDataBdIn.Mode)
  1641. & RCV_DATA_COMP_MODE_ENABLE))
  1642. break;
  1643. MM_Wait (10);
  1644. }
  1645. } else
  1646. REG_WR (pDevice, RcvDataComp.Mode,
  1647. data | RCV_DATA_COMP_MODE_ENABLE);
  1648. break;
  1649. case T3_BLOCK_HOST_COALESING:
  1650. data = REG_RD (pDevice, HostCoalesce.Mode);
  1651. if (cntrl == LM_DISABLE) {
  1652. data &= ~HOST_COALESCE_ENABLE;
  1653. REG_WR (pDevice, HostCoalesce.Mode, data);
  1654. for (j = 0; j < MaxWaitCnt; j++) {
  1655. if (!
  1656. (REG_RD (pDevice, SndBdIn.Mode) &
  1657. HOST_COALESCE_ENABLE))
  1658. break;
  1659. MM_Wait (10);
  1660. }
  1661. } else
  1662. REG_WR (pDevice, HostCoalesce.Mode,
  1663. data | HOST_COALESCE_ENABLE);
  1664. break;
  1665. case T3_BLOCK_MAC_RX_ENGINE:
  1666. if (cntrl == LM_DISABLE) {
  1667. pDevice->RxMode &= ~RX_MODE_ENABLE;
  1668. REG_WR (pDevice, MacCtrl.RxMode,
  1669. pDevice->RxMode);
  1670. for (j = 0; j < MaxWaitCnt; j++) {
  1671. if (!
  1672. (REG_RD (pDevice, MacCtrl.RxMode) &
  1673. RX_MODE_ENABLE)) {
  1674. break;
  1675. }
  1676. MM_Wait (10);
  1677. }
  1678. } else {
  1679. pDevice->RxMode |= RX_MODE_ENABLE;
  1680. REG_WR (pDevice, MacCtrl.RxMode,
  1681. pDevice->RxMode);
  1682. }
  1683. break;
  1684. case T3_BLOCK_MBUF_CLUSTER_FREE:
  1685. data = REG_RD (pDevice, MbufClusterFree.Mode);
  1686. if (cntrl == LM_DISABLE) {
  1687. data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
  1688. REG_WR (pDevice, MbufClusterFree.Mode, data);
  1689. for (j = 0; j < MaxWaitCnt; j++) {
  1690. if (!
  1691. (REG_RD
  1692. (pDevice,
  1693. MbufClusterFree.
  1694. Mode) &
  1695. MBUF_CLUSTER_FREE_MODE_ENABLE))
  1696. break;
  1697. MM_Wait (10);
  1698. }
  1699. } else
  1700. REG_WR (pDevice, MbufClusterFree.Mode,
  1701. data | MBUF_CLUSTER_FREE_MODE_ENABLE);
  1702. break;
  1703. case T3_BLOCK_SEND_BD_INITIATOR:
  1704. data = REG_RD (pDevice, SndBdIn.Mode);
  1705. if (cntrl == LM_DISABLE) {
  1706. data &= ~SND_BD_IN_MODE_ENABLE;
  1707. REG_WR (pDevice, SndBdIn.Mode, data);
  1708. for (j = 0; j < MaxWaitCnt; j++) {
  1709. if (!
  1710. (REG_RD (pDevice, SndBdIn.Mode) &
  1711. SND_BD_IN_MODE_ENABLE))
  1712. break;
  1713. MM_Wait (10);
  1714. }
  1715. } else
  1716. REG_WR (pDevice, SndBdIn.Mode,
  1717. data | SND_BD_IN_MODE_ENABLE);
  1718. break;
  1719. case T3_BLOCK_SEND_BD_COMP:
  1720. data = REG_RD (pDevice, SndBdComp.Mode);
  1721. if (cntrl == LM_DISABLE) {
  1722. data &= ~SND_BD_COMP_MODE_ENABLE;
  1723. REG_WR (pDevice, SndBdComp.Mode, data);
  1724. for (j = 0; j < MaxWaitCnt; j++) {
  1725. if (!
  1726. (REG_RD (pDevice, SndBdComp.Mode) &
  1727. SND_BD_COMP_MODE_ENABLE))
  1728. break;
  1729. MM_Wait (10);
  1730. }
  1731. } else
  1732. REG_WR (pDevice, SndBdComp.Mode,
  1733. data | SND_BD_COMP_MODE_ENABLE);
  1734. break;
  1735. case T3_BLOCK_SEND_BD_SELECTOR:
  1736. data = REG_RD (pDevice, SndBdSel.Mode);
  1737. if (cntrl == LM_DISABLE) {
  1738. data &= ~SND_BD_SEL_MODE_ENABLE;
  1739. REG_WR (pDevice, SndBdSel.Mode, data);
  1740. for (j = 0; j < MaxWaitCnt; j++) {
  1741. if (!
  1742. (REG_RD (pDevice, SndBdSel.Mode) &
  1743. SND_BD_SEL_MODE_ENABLE))
  1744. break;
  1745. MM_Wait (10);
  1746. }
  1747. } else
  1748. REG_WR (pDevice, SndBdSel.Mode,
  1749. data | SND_BD_SEL_MODE_ENABLE);
  1750. break;
  1751. case T3_BLOCK_SEND_DATA_INITIATOR:
  1752. data = REG_RD (pDevice, SndDataIn.Mode);
  1753. if (cntrl == LM_DISABLE) {
  1754. data &= ~T3_SND_DATA_IN_MODE_ENABLE;
  1755. REG_WR (pDevice, SndDataIn.Mode, data);
  1756. for (j = 0; j < MaxWaitCnt; j++) {
  1757. if (!
  1758. (REG_RD (pDevice, SndDataIn.Mode) &
  1759. T3_SND_DATA_IN_MODE_ENABLE))
  1760. break;
  1761. MM_Wait (10);
  1762. }
  1763. } else
  1764. REG_WR (pDevice, SndDataIn.Mode,
  1765. data | T3_SND_DATA_IN_MODE_ENABLE);
  1766. break;
  1767. case T3_BLOCK_SEND_DATA_COMP:
  1768. data = REG_RD (pDevice, SndDataComp.Mode);
  1769. if (cntrl == LM_DISABLE) {
  1770. data &= ~SND_DATA_COMP_MODE_ENABLE;
  1771. REG_WR (pDevice, SndDataComp.Mode, data);
  1772. for (j = 0; j < MaxWaitCnt; j++) {
  1773. if (!
  1774. (REG_RD (pDevice, SndDataComp.Mode)
  1775. & SND_DATA_COMP_MODE_ENABLE))
  1776. break;
  1777. MM_Wait (10);
  1778. }
  1779. } else
  1780. REG_WR (pDevice, SndDataComp.Mode,
  1781. data | SND_DATA_COMP_MODE_ENABLE);
  1782. break;
  1783. case T3_BLOCK_MAC_TX_ENGINE:
  1784. if (cntrl == LM_DISABLE) {
  1785. pDevice->TxMode &= ~TX_MODE_ENABLE;
  1786. REG_WR (pDevice, MacCtrl.TxMode,
  1787. pDevice->TxMode);
  1788. for (j = 0; j < MaxWaitCnt; j++) {
  1789. if (!
  1790. (REG_RD (pDevice, MacCtrl.TxMode) &
  1791. TX_MODE_ENABLE))
  1792. break;
  1793. MM_Wait (10);
  1794. }
  1795. } else {
  1796. pDevice->TxMode |= TX_MODE_ENABLE;
  1797. REG_WR (pDevice, MacCtrl.TxMode,
  1798. pDevice->TxMode);
  1799. }
  1800. break;
  1801. case T3_BLOCK_MEM_ARBITOR:
  1802. data = REG_RD (pDevice, MemArbiter.Mode);
  1803. if (cntrl == LM_DISABLE) {
  1804. data &= ~T3_MEM_ARBITER_MODE_ENABLE;
  1805. REG_WR (pDevice, MemArbiter.Mode, data);
  1806. for (j = 0; j < MaxWaitCnt; j++) {
  1807. if (!
  1808. (REG_RD (pDevice, MemArbiter.Mode) &
  1809. T3_MEM_ARBITER_MODE_ENABLE))
  1810. break;
  1811. MM_Wait (10);
  1812. }
  1813. } else
  1814. REG_WR (pDevice, MemArbiter.Mode,
  1815. data | T3_MEM_ARBITER_MODE_ENABLE);
  1816. break;
  1817. case T3_BLOCK_MBUF_MANAGER:
  1818. data = REG_RD (pDevice, BufMgr.Mode);
  1819. if (cntrl == LM_DISABLE) {
  1820. data &= ~BUFMGR_MODE_ENABLE;
  1821. REG_WR (pDevice, BufMgr.Mode, data);
  1822. for (j = 0; j < MaxWaitCnt; j++) {
  1823. if (!
  1824. (REG_RD (pDevice, BufMgr.Mode) &
  1825. BUFMGR_MODE_ENABLE))
  1826. break;
  1827. MM_Wait (10);
  1828. }
  1829. } else
  1830. REG_WR (pDevice, BufMgr.Mode,
  1831. data | BUFMGR_MODE_ENABLE);
  1832. break;
  1833. case T3_BLOCK_MAC_GLOBAL:
  1834. if (cntrl == LM_DISABLE) {
  1835. pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE |
  1836. MAC_MODE_ENABLE_RDE |
  1837. MAC_MODE_ENABLE_FHDE);
  1838. } else {
  1839. pDevice->MacMode |= (MAC_MODE_ENABLE_TDE |
  1840. MAC_MODE_ENABLE_RDE |
  1841. MAC_MODE_ENABLE_FHDE);
  1842. }
  1843. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  1844. break;
  1845. default:
  1846. return LM_STATUS_FAILURE;
  1847. } /* switch */
  1848. if (j >= MaxWaitCnt) {
  1849. return LM_STATUS_FAILURE;
  1850. }
  1851. }
  1852. return LM_STATUS_SUCCESS;
  1853. }
  1854. /******************************************************************************/
  1855. /* Description: */
  1856. /* This function reinitializes the adapter. */
  1857. /* */
  1858. /* Return: */
  1859. /* LM_STATUS_SUCCESS */
  1860. /******************************************************************************/
  1861. LM_STATUS LM_ResetAdapter (PLM_DEVICE_BLOCK pDevice)
  1862. {
  1863. LM_UINT32 Value32;
  1864. LM_UINT16 Value16;
  1865. LM_UINT32 j, k;
  1866. /* Disable interrupt. */
  1867. LM_DisableInterrupt (pDevice);
  1868. /* May get a spurious interrupt */
  1869. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
  1870. /* Disable transmit and receive DMA engines. Abort all pending requests. */
  1871. if (pDevice->InitDone) {
  1872. LM_Abort (pDevice);
  1873. }
  1874. pDevice->ShuttingDown = FALSE;
  1875. LM_ResetChip (pDevice);
  1876. /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
  1877. /* in other chip revisions. */
  1878. if (pDevice->DelayPciGrant) {
  1879. Value32 = REG_RD (pDevice, PciCfg.ClockCtrl);
  1880. REG_WR (pDevice, PciCfg.ClockCtrl, Value32 | BIT_31);
  1881. }
  1882. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  1883. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  1884. Value32 = REG_RD (pDevice, PciCfg.PciState);
  1885. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  1886. REG_WR (pDevice, PciCfg.PciState, Value32);
  1887. }
  1888. }
  1889. /* Enable TaggedStatus mode. */
  1890. if (pDevice->UseTaggedStatus) {
  1891. pDevice->MiscHostCtrl |=
  1892. MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
  1893. }
  1894. /* Restore PCI configuration registers. */
  1895. MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
  1896. pDevice->SavedCacheLineReg);
  1897. MM_WriteConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  1898. (pDevice->SubsystemId << 16) | pDevice->
  1899. SubsystemVendorId);
  1900. /* Clear the statistics block. */
  1901. for (j = 0x0300; j < 0x0b00; j++) {
  1902. MEM_WR_OFFSET (pDevice, j, 0);
  1903. }
  1904. /* Initialize the statistis Block */
  1905. pDevice->pStatusBlkVirt->Status = 0;
  1906. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  1907. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  1908. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  1909. for (j = 0; j < 16; j++) {
  1910. pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
  1911. pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
  1912. }
  1913. for (k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT; k++) {
  1914. pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
  1915. pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
  1916. }
  1917. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  1918. /* Receive jumbo BD buffer. */
  1919. for (k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) {
  1920. pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
  1921. pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
  1922. }
  1923. #endif
  1924. REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
  1925. /* GRC mode control register. */
  1926. #ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */
  1927. Value32 =
  1928. GRC_MODE_WORD_SWAP_DATA |
  1929. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1930. GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
  1931. #else
  1932. /* No CPU Swap modes for PCI IO */
  1933. Value32 =
  1934. #ifdef BIG_ENDIAN_HOST
  1935. GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  1936. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1937. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
  1938. #else
  1939. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  1940. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
  1941. #endif
  1942. GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
  1943. #endif /* !BIG_ENDIAN_PCI */
  1944. /* Configure send BD mode. */
  1945. if (pDevice->NicSendBd == FALSE) {
  1946. Value32 |= GRC_MODE_HOST_SEND_BDS;
  1947. } else {
  1948. Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
  1949. }
  1950. /* Configure pseudo checksum mode. */
  1951. if (pDevice->NoTxPseudoHdrChksum) {
  1952. Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
  1953. }
  1954. if (pDevice->NoRxPseudoHdrChksum) {
  1955. Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
  1956. }
  1957. REG_WR (pDevice, Grc.Mode, Value32);
  1958. /* Setup the timer prescalar register. */
  1959. REG_WR (pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66MHz. */
  1960. /* Set up the MBUF pool base address and size. */
  1961. REG_WR (pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
  1962. REG_WR (pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
  1963. /* Set up the DMA descriptor pool base address and size. */
  1964. REG_WR (pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
  1965. REG_WR (pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
  1966. /* Configure MBUF and Threshold watermarks */
  1967. /* Configure the DMA read MBUF low water mark. */
  1968. if (pDevice->DmaMbufLowMark) {
  1969. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1970. pDevice->DmaMbufLowMark);
  1971. } else {
  1972. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  1973. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1974. T3_DEF_DMA_MBUF_LOW_WMARK);
  1975. } else {
  1976. REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
  1977. T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
  1978. }
  1979. }
  1980. /* Configure the MAC Rx MBUF low water mark. */
  1981. if (pDevice->RxMacMbufLowMark) {
  1982. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1983. pDevice->RxMacMbufLowMark);
  1984. } else {
  1985. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  1986. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1987. T3_DEF_RX_MAC_MBUF_LOW_WMARK);
  1988. } else {
  1989. REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
  1990. T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
  1991. }
  1992. }
  1993. /* Configure the MBUF high water mark. */
  1994. if (pDevice->MbufHighMark) {
  1995. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  1996. pDevice->MbufHighMark);
  1997. } else {
  1998. if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
  1999. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  2000. T3_DEF_MBUF_HIGH_WMARK);
  2001. } else {
  2002. REG_WR (pDevice, BufMgr.MbufHighWaterMark,
  2003. T3_DEF_MBUF_HIGH_WMARK_JUMBO);
  2004. }
  2005. }
  2006. REG_WR (pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
  2007. REG_WR (pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
  2008. /* Enable buffer manager. */
  2009. REG_WR (pDevice, BufMgr.Mode,
  2010. BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
  2011. for (j = 0; j < 2000; j++) {
  2012. if (REG_RD (pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
  2013. break;
  2014. MM_Wait (10);
  2015. }
  2016. if (j >= 2000) {
  2017. return LM_STATUS_FAILURE;
  2018. }
  2019. /* Enable the FTQs. */
  2020. REG_WR (pDevice, Ftq.Reset, 0xffffffff);
  2021. REG_WR (pDevice, Ftq.Reset, 0);
  2022. /* Wait until FTQ is ready */
  2023. for (j = 0; j < 2000; j++) {
  2024. if (REG_RD (pDevice, Ftq.Reset) == 0)
  2025. break;
  2026. MM_Wait (10);
  2027. }
  2028. if (j >= 2000) {
  2029. return LM_STATUS_FAILURE;
  2030. }
  2031. /* Initialize the Standard Receive RCB. */
  2032. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
  2033. pDevice->RxStdBdPhy.High);
  2034. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
  2035. pDevice->RxStdBdPhy.Low);
  2036. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
  2037. MAX_STD_RCV_BUFFER_SIZE << 16);
  2038. /* Initialize the Jumbo Receive RCB. */
  2039. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
  2040. T3_RCB_FLAG_RING_DISABLED);
  2041. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2042. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
  2043. pDevice->RxJumboBdPhy.High);
  2044. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
  2045. pDevice->RxJumboBdPhy.Low);
  2046. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
  2047. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2048. /* Initialize the Mini Receive RCB. */
  2049. REG_WR (pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
  2050. T3_RCB_FLAG_RING_DISABLED);
  2051. {
  2052. REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
  2053. (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
  2054. REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
  2055. (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
  2056. }
  2057. /* Receive BD Ring replenish threshold. */
  2058. REG_WR (pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt / 8);
  2059. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2060. REG_WR (pDevice, RcvBdIn.JumboRcvThreshold,
  2061. pDevice->RxJumboDescCnt / 8);
  2062. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2063. /* Disable all the unused rings. */
  2064. for (j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
  2065. MEM_WR (pDevice, SendRcb[j].u.MaxLen_Flags,
  2066. T3_RCB_FLAG_RING_DISABLED);
  2067. } /* for */
  2068. /* Initialize the indices. */
  2069. pDevice->SendProdIdx = 0;
  2070. pDevice->SendConIdx = 0;
  2071. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
  2072. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
  2073. /* Set up host or NIC based send RCB. */
  2074. if (pDevice->NicSendBd == FALSE) {
  2075. MEM_WR (pDevice, SendRcb[0].HostRingAddr.High,
  2076. pDevice->SendBdPhy.High);
  2077. MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low,
  2078. pDevice->SendBdPhy.Low);
  2079. /* Set up the NIC ring address in the RCB. */
  2080. MEM_WR (pDevice, SendRcb[0].NicRingAddr,
  2081. T3_NIC_SND_BUFFER_DESC_ADDR);
  2082. /* Setup the RCB. */
  2083. MEM_WR (pDevice, SendRcb[0].u.MaxLen_Flags,
  2084. T3_SEND_RCB_ENTRY_COUNT << 16);
  2085. for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
  2086. pDevice->pSendBdVirt[k].HostAddr.High = 0;
  2087. pDevice->pSendBdVirt[k].HostAddr.Low = 0;
  2088. }
  2089. } else {
  2090. MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, 0);
  2091. MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, 0);
  2092. MEM_WR (pDevice, SendRcb[0].NicRingAddr,
  2093. pDevice->SendBdPhy.Low);
  2094. for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
  2095. __raw_writel (0,
  2096. &(pDevice->pSendBdVirt[k].HostAddr.High));
  2097. __raw_writel (0,
  2098. &(pDevice->pSendBdVirt[k].HostAddr.Low));
  2099. __raw_writel (0,
  2100. &(pDevice->pSendBdVirt[k].u1.Len_Flags));
  2101. pDevice->ShadowSendBd[k].HostAddr.High = 0;
  2102. pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
  2103. }
  2104. }
  2105. atomic_set (&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT - 1);
  2106. /* Configure the receive return rings. */
  2107. for (j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) {
  2108. MEM_WR (pDevice, RcvRetRcb[j].u.MaxLen_Flags,
  2109. T3_RCB_FLAG_RING_DISABLED);
  2110. }
  2111. pDevice->RcvRetConIdx = 0;
  2112. MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.High,
  2113. pDevice->RcvRetBdPhy.High);
  2114. MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.Low,
  2115. pDevice->RcvRetBdPhy.Low);
  2116. /* Set up the NIC ring address in the RCB. */
  2117. /* Not very clear from the spec. I am guessing that for Receive */
  2118. /* Return Ring, NicRingAddr is not used. */
  2119. MEM_WR (pDevice, RcvRetRcb[0].NicRingAddr, 0);
  2120. /* Setup the RCB. */
  2121. MEM_WR (pDevice, RcvRetRcb[0].u.MaxLen_Flags,
  2122. T3_RCV_RETURN_RCB_ENTRY_COUNT << 16);
  2123. /* Reinitialize RX ring producer index */
  2124. MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, 0);
  2125. MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
  2126. MB_REG_WR (pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
  2127. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2128. pDevice->RxJumboProdIdx = 0;
  2129. pDevice->RxJumboQueuedCnt = 0;
  2130. #endif
  2131. /* Reinitialize our copy of the indices. */
  2132. pDevice->RxStdProdIdx = 0;
  2133. pDevice->RxStdQueuedCnt = 0;
  2134. #if T3_JUMBO_RCV_ENTRY_COUNT
  2135. pDevice->RxJumboProdIdx = 0;
  2136. #endif /* T3_JUMBO_RCV_ENTRY_COUNT */
  2137. /* Configure the MAC address. */
  2138. LM_SetMacAddress (pDevice, pDevice->NodeAddress);
  2139. /* Initialize the transmit random backoff seed. */
  2140. Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
  2141. pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
  2142. pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
  2143. MAC_TX_BACKOFF_SEED_MASK;
  2144. REG_WR (pDevice, MacCtrl.TxBackoffSeed, Value32);
  2145. /* Receive MTU. Frames larger than the MTU is marked as oversized. */
  2146. REG_WR (pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
  2147. /* Configure Time slot/IPG per 802.3 */
  2148. REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
  2149. /*
  2150. * Configure Receive Rules so that packets don't match
  2151. * Programmble rule will be queued to Return Ring 1
  2152. */
  2153. REG_WR (pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
  2154. /*
  2155. * Configure to have 16 Classes of Services (COS) and one
  2156. * queue per class. Bad frames are queued to RRR#1.
  2157. * And frames don't match rules are also queued to COS#1.
  2158. */
  2159. REG_WR (pDevice, RcvListPlmt.Config, 0x181);
  2160. /* Enable Receive Placement Statistics */
  2161. REG_WR (pDevice, RcvListPlmt.StatsEnableMask, 0xffffff);
  2162. REG_WR (pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
  2163. /* Enable Send Data Initator Statistics */
  2164. REG_WR (pDevice, SndDataIn.StatsEnableMask, 0xffffff);
  2165. REG_WR (pDevice, SndDataIn.StatsCtrl,
  2166. T3_SND_DATA_IN_STATS_CTRL_ENABLE |
  2167. T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
  2168. /* Disable the host coalescing state machine before configuring it's */
  2169. /* parameters. */
  2170. REG_WR (pDevice, HostCoalesce.Mode, 0);
  2171. for (j = 0; j < 2000; j++) {
  2172. Value32 = REG_RD (pDevice, HostCoalesce.Mode);
  2173. if (!(Value32 & HOST_COALESCE_ENABLE)) {
  2174. break;
  2175. }
  2176. MM_Wait (10);
  2177. }
  2178. /* Host coalescing configurations. */
  2179. REG_WR (pDevice, HostCoalesce.RxCoalescingTicks,
  2180. pDevice->RxCoalescingTicks);
  2181. REG_WR (pDevice, HostCoalesce.TxCoalescingTicks,
  2182. pDevice->TxCoalescingTicks);
  2183. REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFrames,
  2184. pDevice->RxMaxCoalescedFrames);
  2185. REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFrames,
  2186. pDevice->TxMaxCoalescedFrames);
  2187. REG_WR (pDevice, HostCoalesce.RxCoalescedTickDuringInt,
  2188. pDevice->RxCoalescingTicksDuringInt);
  2189. REG_WR (pDevice, HostCoalesce.TxCoalescedTickDuringInt,
  2190. pDevice->TxCoalescingTicksDuringInt);
  2191. REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
  2192. pDevice->RxMaxCoalescedFramesDuringInt);
  2193. REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
  2194. pDevice->TxMaxCoalescedFramesDuringInt);
  2195. /* Initialize the address of the status block. The NIC will DMA */
  2196. /* the status block to this memory which resides on the host. */
  2197. REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.High,
  2198. pDevice->StatusBlkPhy.High);
  2199. REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.Low,
  2200. pDevice->StatusBlkPhy.Low);
  2201. /* Initialize the address of the statistics block. The NIC will DMA */
  2202. /* the statistics to this block of memory. */
  2203. REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.High,
  2204. pDevice->StatsBlkPhy.High);
  2205. REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.Low,
  2206. pDevice->StatsBlkPhy.Low);
  2207. REG_WR (pDevice, HostCoalesce.StatsCoalescingTicks,
  2208. pDevice->StatsCoalescingTicks);
  2209. REG_WR (pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
  2210. REG_WR (pDevice, HostCoalesce.StatusBlkNicAddr, 0xb00);
  2211. /* Enable Host Coalesing state machine */
  2212. REG_WR (pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
  2213. pDevice->CoalesceMode);
  2214. /* Enable the Receive BD Completion state machine. */
  2215. REG_WR (pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
  2216. RCV_BD_COMP_MODE_ATTN_ENABLE);
  2217. /* Enable the Receive List Placement state machine. */
  2218. REG_WR (pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
  2219. /* Enable the Receive List Selector state machine. */
  2220. REG_WR (pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
  2221. RCV_LIST_SEL_MODE_ATTN_ENABLE);
  2222. /* Enable transmit DMA, clear statistics. */
  2223. pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS |
  2224. MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
  2225. MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
  2226. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  2227. MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
  2228. /* GRC miscellaneous local control register. */
  2229. pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
  2230. GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
  2231. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2232. pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  2233. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
  2234. }
  2235. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  2236. MM_Wait (40);
  2237. /* Reset RX counters. */
  2238. for (j = 0; j < sizeof (LM_RX_COUNTERS); j++) {
  2239. ((PLM_UINT8) & pDevice->RxCounters)[j] = 0;
  2240. }
  2241. /* Reset TX counters. */
  2242. for (j = 0; j < sizeof (LM_TX_COUNTERS); j++) {
  2243. ((PLM_UINT8) & pDevice->TxCounters)[j] = 0;
  2244. }
  2245. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
  2246. /* Enable the DMA Completion state machine. */
  2247. REG_WR (pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
  2248. /* Enable the DMA Write state machine. */
  2249. Value32 = DMA_WRITE_MODE_ENABLE |
  2250. DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
  2251. DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
  2252. DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
  2253. DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2254. DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2255. DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2256. DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2257. DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
  2258. REG_WR (pDevice, DmaWrite.Mode, Value32);
  2259. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  2260. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  2261. Value16 = REG_RD (pDevice, PciCfg.PciXCommand);
  2262. Value16 &=
  2263. ~(PCIX_CMD_MAX_SPLIT_MASK |
  2264. PCIX_CMD_MAX_BURST_MASK);
  2265. Value16 |=
  2266. ((PCIX_CMD_MAX_BURST_CPIOB <<
  2267. PCIX_CMD_MAX_BURST_SHL) &
  2268. PCIX_CMD_MAX_BURST_MASK);
  2269. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
  2270. Value16 |=
  2271. (pDevice->
  2272. SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
  2273. & PCIX_CMD_MAX_SPLIT_MASK;
  2274. }
  2275. REG_WR (pDevice, PciCfg.PciXCommand, Value16);
  2276. }
  2277. }
  2278. /* Enable the Read DMA state machine. */
  2279. Value32 = DMA_READ_MODE_ENABLE |
  2280. DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
  2281. DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
  2282. DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
  2283. DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
  2284. DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
  2285. DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
  2286. DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
  2287. DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
  2288. if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
  2289. Value32 |= DMA_READ_MODE_SPLIT_ENABLE;
  2290. }
  2291. REG_WR (pDevice, DmaRead.Mode, Value32);
  2292. /* Enable the Receive Data Completion state machine. */
  2293. REG_WR (pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
  2294. RCV_DATA_COMP_MODE_ATTN_ENABLE);
  2295. /* Enable the Mbuf Cluster Free state machine. */
  2296. REG_WR (pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
  2297. /* Enable the Send Data Completion state machine. */
  2298. REG_WR (pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
  2299. /* Enable the Send BD Completion state machine. */
  2300. REG_WR (pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
  2301. SND_BD_COMP_MODE_ATTN_ENABLE);
  2302. /* Enable the Receive BD Initiator state machine. */
  2303. REG_WR (pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
  2304. RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
  2305. /* Enable the Receive Data and Receive BD Initiator state machine. */
  2306. REG_WR (pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
  2307. RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
  2308. /* Enable the Send Data Initiator state machine. */
  2309. REG_WR (pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
  2310. /* Enable the Send BD Initiator state machine. */
  2311. REG_WR (pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
  2312. SND_BD_IN_MODE_ATTN_ENABLE);
  2313. /* Enable the Send BD Selector state machine. */
  2314. REG_WR (pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
  2315. SND_BD_SEL_MODE_ATTN_ENABLE);
  2316. #if INCLUDE_5701_AX_FIX
  2317. /* Load the firmware for the 5701_A0 workaround. */
  2318. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0) {
  2319. LM_LoadRlsFirmware (pDevice);
  2320. }
  2321. #endif
  2322. /* Enable the transmitter. */
  2323. pDevice->TxMode = TX_MODE_ENABLE;
  2324. REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
  2325. /* Enable the receiver. */
  2326. pDevice->RxMode = RX_MODE_ENABLE;
  2327. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2328. if (pDevice->RestoreOnWakeUp) {
  2329. pDevice->RestoreOnWakeUp = FALSE;
  2330. pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
  2331. pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType;
  2332. }
  2333. /* Disable auto polling. */
  2334. pDevice->MiMode = 0xc0000;
  2335. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  2336. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  2337. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  2338. Value32 = LED_CTRL_PHY_MODE_1;
  2339. } else {
  2340. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  2341. Value32 = LED_CTRL_PHY_MODE_2;
  2342. } else {
  2343. Value32 = LED_CTRL_PHY_MODE_1;
  2344. }
  2345. }
  2346. REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
  2347. /* Activate Link to enable MAC state machine */
  2348. REG_WR (pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
  2349. if (pDevice->EnableTbi) {
  2350. REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_RESET);
  2351. MM_Wait (10);
  2352. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  2353. if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) {
  2354. REG_WR (pDevice, MacCtrl.SerdesCfg, 0x616000);
  2355. }
  2356. }
  2357. /* Setup the phy chip. */
  2358. LM_SetupPhy (pDevice);
  2359. if (!pDevice->EnableTbi) {
  2360. /* Clear CRC stats */
  2361. LM_ReadPhy (pDevice, 0x1e, &Value32);
  2362. LM_WritePhy (pDevice, 0x1e, Value32 | 0x8000);
  2363. LM_ReadPhy (pDevice, 0x14, &Value32);
  2364. }
  2365. /* Set up the receive mask. */
  2366. LM_SetReceiveMask (pDevice, pDevice->ReceiveMask);
  2367. /* Queue Rx packet buffers. */
  2368. if (pDevice->QueueRxPackets) {
  2369. LM_QueueRxPackets (pDevice);
  2370. }
  2371. /* Enable interrupt to the host. */
  2372. if (pDevice->InitDone) {
  2373. LM_EnableInterrupt (pDevice);
  2374. }
  2375. return LM_STATUS_SUCCESS;
  2376. } /* LM_ResetAdapter */
  2377. /******************************************************************************/
  2378. /* Description: */
  2379. /* This routine disables the adapter from generating interrupts. */
  2380. /* */
  2381. /* Return: */
  2382. /* LM_STATUS_SUCCESS */
  2383. /******************************************************************************/
  2384. LM_STATUS LM_DisableInterrupt (PLM_DEVICE_BLOCK pDevice)
  2385. {
  2386. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
  2387. MISC_HOST_CTRL_MASK_PCI_INT);
  2388. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 1);
  2389. return LM_STATUS_SUCCESS;
  2390. }
  2391. /******************************************************************************/
  2392. /* Description: */
  2393. /* This routine enables the adapter to generate interrupts. */
  2394. /* */
  2395. /* Return: */
  2396. /* LM_STATUS_SUCCESS */
  2397. /******************************************************************************/
  2398. LM_STATUS LM_EnableInterrupt (PLM_DEVICE_BLOCK pDevice)
  2399. {
  2400. REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
  2401. ~MISC_HOST_CTRL_MASK_PCI_INT);
  2402. MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
  2403. if (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) {
  2404. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  2405. GRC_MISC_LOCAL_CTRL_SET_INT);
  2406. }
  2407. return LM_STATUS_SUCCESS;
  2408. }
  2409. /******************************************************************************/
  2410. /* Description: */
  2411. /* This routine puts a packet on the wire if there is a transmit DMA */
  2412. /* descriptor available; otherwise the packet is queued for later */
  2413. /* transmission. If the second argue is NULL, this routine will put */
  2414. /* the queued packet on the wire if possible. */
  2415. /* */
  2416. /* Return: */
  2417. /* LM_STATUS_SUCCESS */
  2418. /******************************************************************************/
  2419. #if 0
  2420. LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2421. {
  2422. LM_UINT32 FragCount;
  2423. PT3_SND_BD pSendBd;
  2424. PT3_SND_BD pShadowSendBd;
  2425. LM_UINT32 Value32, Len;
  2426. LM_UINT32 Idx;
  2427. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2428. return LM_5700SendPacket (pDevice, pPacket);
  2429. }
  2430. /* Update the SendBdLeft count. */
  2431. atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2432. /* Initalize the send buffer descriptors. */
  2433. Idx = pDevice->SendProdIdx;
  2434. pSendBd = &pDevice->pSendBdVirt[Idx];
  2435. /* Next producer index. */
  2436. if (pDevice->NicSendBd == TRUE) {
  2437. T3_64BIT_HOST_ADDR paddr;
  2438. pShadowSendBd = &pDevice->ShadowSendBd[Idx];
  2439. for (FragCount = 0;;) {
  2440. MM_MapTxDma (pDevice, pPacket, &paddr, &Len, FragCount);
  2441. /* Initialize the pointer to the send buffer fragment. */
  2442. if (paddr.High != pShadowSendBd->HostAddr.High) {
  2443. __raw_writel (paddr.High,
  2444. &(pSendBd->HostAddr.High));
  2445. pShadowSendBd->HostAddr.High = paddr.High;
  2446. }
  2447. __raw_writel (paddr.Low, &(pSendBd->HostAddr.Low));
  2448. /* Setup the control flags and send buffer size. */
  2449. Value32 = (Len << 16) | pPacket->Flags;
  2450. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2451. FragCount++;
  2452. if (FragCount >= pPacket->u.Tx.FragCount) {
  2453. Value32 |= SND_BD_FLAG_END;
  2454. if (Value32 != pShadowSendBd->u1.Len_Flags) {
  2455. __raw_writel (Value32,
  2456. &(pSendBd->u1.Len_Flags));
  2457. pShadowSendBd->u1.Len_Flags = Value32;
  2458. }
  2459. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2460. __raw_writel (pPacket->VlanTag,
  2461. &(pSendBd->u2.VlanTag));
  2462. }
  2463. break;
  2464. } else {
  2465. if (Value32 != pShadowSendBd->u1.Len_Flags) {
  2466. __raw_writel (Value32,
  2467. &(pSendBd->u1.Len_Flags));
  2468. pShadowSendBd->u1.Len_Flags = Value32;
  2469. }
  2470. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2471. __raw_writel (pPacket->VlanTag,
  2472. &(pSendBd->u2.VlanTag));
  2473. }
  2474. }
  2475. pSendBd++;
  2476. pShadowSendBd++;
  2477. if (Idx == 0) {
  2478. pSendBd = &pDevice->pSendBdVirt[0];
  2479. pShadowSendBd = &pDevice->ShadowSendBd[0];
  2480. }
  2481. } /* for */
  2482. /* Put the packet descriptor in the ActiveQ. */
  2483. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2484. wmb ();
  2485. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2486. } else {
  2487. for (FragCount = 0;;) {
  2488. /* Initialize the pointer to the send buffer fragment. */
  2489. MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
  2490. FragCount);
  2491. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2492. /* Setup the control flags and send buffer size. */
  2493. Value32 = (Len << 16) | pPacket->Flags;
  2494. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2495. FragCount++;
  2496. if (FragCount >= pPacket->u.Tx.FragCount) {
  2497. pSendBd->u1.Len_Flags =
  2498. Value32 | SND_BD_FLAG_END;
  2499. break;
  2500. } else {
  2501. pSendBd->u1.Len_Flags = Value32;
  2502. }
  2503. pSendBd++;
  2504. if (Idx == 0) {
  2505. pSendBd = &pDevice->pSendBdVirt[0];
  2506. }
  2507. } /* for */
  2508. /* Put the packet descriptor in the ActiveQ. */
  2509. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2510. wmb ();
  2511. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2512. }
  2513. /* Update the producer index. */
  2514. pDevice->SendProdIdx = Idx;
  2515. return LM_STATUS_SUCCESS;
  2516. }
  2517. #endif
  2518. LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
  2519. {
  2520. LM_UINT32 FragCount;
  2521. PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd;
  2522. T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
  2523. LM_UINT32 StartIdx, Idx;
  2524. while (1) {
  2525. /* Initalize the send buffer descriptors. */
  2526. StartIdx = Idx = pDevice->SendProdIdx;
  2527. if (pDevice->NicSendBd) {
  2528. pTmpSendBd = pSendBd = &NicSendBdArr[0];
  2529. } else {
  2530. pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
  2531. }
  2532. /* Next producer index. */
  2533. for (FragCount = 0;;) {
  2534. LM_UINT32 Value32, Len;
  2535. /* Initialize the pointer to the send buffer fragment. */
  2536. MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
  2537. FragCount);
  2538. pSendBd->u2.VlanTag = pPacket->VlanTag;
  2539. /* Setup the control flags and send buffer size. */
  2540. Value32 = (Len << 16) | pPacket->Flags;
  2541. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2542. FragCount++;
  2543. if (FragCount >= pPacket->u.Tx.FragCount) {
  2544. pSendBd->u1.Len_Flags =
  2545. Value32 | SND_BD_FLAG_END;
  2546. break;
  2547. } else {
  2548. pSendBd->u1.Len_Flags = Value32;
  2549. }
  2550. pSendBd++;
  2551. if ((Idx == 0) && !pDevice->NicSendBd) {
  2552. pSendBd = &pDevice->pSendBdVirt[0];
  2553. }
  2554. } /* for */
  2555. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  2556. if (LM_Test4GBoundary (pDevice, pPacket, pTmpSendBd) ==
  2557. LM_STATUS_SUCCESS) {
  2558. if (MM_CoalesceTxBuffer (pDevice, pPacket) !=
  2559. LM_STATUS_SUCCESS) {
  2560. QQ_PushHead (&pDevice->TxPacketFreeQ.
  2561. Container, pPacket);
  2562. return LM_STATUS_FAILURE;
  2563. }
  2564. continue;
  2565. }
  2566. }
  2567. break;
  2568. }
  2569. /* Put the packet descriptor in the ActiveQ. */
  2570. QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
  2571. if (pDevice->NicSendBd) {
  2572. pSendBd = &pDevice->pSendBdVirt[StartIdx];
  2573. pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
  2574. while (StartIdx != Idx) {
  2575. LM_UINT32 Value32;
  2576. if ((Value32 = pTmpSendBd->HostAddr.High) !=
  2577. pShadowSendBd->HostAddr.High) {
  2578. __raw_writel (Value32,
  2579. &(pSendBd->HostAddr.High));
  2580. pShadowSendBd->HostAddr.High = Value32;
  2581. }
  2582. __raw_writel (pTmpSendBd->HostAddr.Low,
  2583. &(pSendBd->HostAddr.Low));
  2584. if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
  2585. pShadowSendBd->u1.Len_Flags) {
  2586. __raw_writel (Value32,
  2587. &(pSendBd->u1.Len_Flags));
  2588. pShadowSendBd->u1.Len_Flags = Value32;
  2589. }
  2590. if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
  2591. __raw_writel (pTmpSendBd->u2.VlanTag,
  2592. &(pSendBd->u2.VlanTag));
  2593. }
  2594. StartIdx =
  2595. (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2596. if (StartIdx == 0)
  2597. pSendBd = &pDevice->pSendBdVirt[0];
  2598. else
  2599. pSendBd++;
  2600. pTmpSendBd++;
  2601. }
  2602. wmb ();
  2603. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2604. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  2605. MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
  2606. }
  2607. } else {
  2608. wmb ();
  2609. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
  2610. if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
  2611. MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low,
  2612. Idx);
  2613. }
  2614. }
  2615. /* Update the SendBdLeft count. */
  2616. atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2617. /* Update the producer index. */
  2618. pDevice->SendProdIdx = Idx;
  2619. return LM_STATUS_SUCCESS;
  2620. }
  2621. STATIC LM_STATUS
  2622. LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
  2623. PT3_SND_BD pSendBd)
  2624. {
  2625. int FragCount;
  2626. LM_UINT32 Idx, Base, Len;
  2627. Idx = pDevice->SendProdIdx;
  2628. for (FragCount = 0;;) {
  2629. Len = pSendBd->u1.Len_Flags >> 16;
  2630. if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
  2631. (pSendBd->HostAddr.High == 0) &&
  2632. ((Base + 8 + Len) < Base)) {
  2633. return LM_STATUS_SUCCESS;
  2634. }
  2635. FragCount++;
  2636. if (FragCount >= pPacket->u.Tx.FragCount) {
  2637. break;
  2638. }
  2639. pSendBd++;
  2640. if (!pDevice->NicSendBd) {
  2641. Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
  2642. if (Idx == 0) {
  2643. pSendBd = &pDevice->pSendBdVirt[0];
  2644. }
  2645. }
  2646. }
  2647. return LM_STATUS_FAILURE;
  2648. }
  2649. /******************************************************************************/
  2650. /* Description: */
  2651. /* */
  2652. /* Return: */
  2653. /******************************************************************************/
  2654. __inline static unsigned long
  2655. ComputeCrc32 (unsigned char *pBuffer, unsigned long BufferSize)
  2656. {
  2657. unsigned long Reg;
  2658. unsigned long Tmp;
  2659. unsigned long j, k;
  2660. Reg = 0xffffffff;
  2661. for (j = 0; j < BufferSize; j++) {
  2662. Reg ^= pBuffer[j];
  2663. for (k = 0; k < 8; k++) {
  2664. Tmp = Reg & 0x01;
  2665. Reg >>= 1;
  2666. if (Tmp) {
  2667. Reg ^= 0xedb88320;
  2668. }
  2669. }
  2670. }
  2671. return ~Reg;
  2672. } /* ComputeCrc32 */
  2673. /******************************************************************************/
  2674. /* Description: */
  2675. /* This routine sets the receive control register according to ReceiveMask */
  2676. /* */
  2677. /* Return: */
  2678. /* LM_STATUS_SUCCESS */
  2679. /******************************************************************************/
  2680. LM_STATUS LM_SetReceiveMask (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
  2681. {
  2682. LM_UINT32 ReceiveMask;
  2683. LM_UINT32 RxMode;
  2684. LM_UINT32 j, k;
  2685. ReceiveMask = Mask;
  2686. RxMode = pDevice->RxMode;
  2687. if (Mask & LM_ACCEPT_UNICAST) {
  2688. Mask &= ~LM_ACCEPT_UNICAST;
  2689. }
  2690. if (Mask & LM_ACCEPT_MULTICAST) {
  2691. Mask &= ~LM_ACCEPT_MULTICAST;
  2692. }
  2693. if (Mask & LM_ACCEPT_ALL_MULTICAST) {
  2694. Mask &= ~LM_ACCEPT_ALL_MULTICAST;
  2695. }
  2696. if (Mask & LM_ACCEPT_BROADCAST) {
  2697. Mask &= ~LM_ACCEPT_BROADCAST;
  2698. }
  2699. RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
  2700. if (Mask & LM_PROMISCUOUS_MODE) {
  2701. RxMode |= RX_MODE_PROMISCUOUS_MODE;
  2702. Mask &= ~LM_PROMISCUOUS_MODE;
  2703. }
  2704. RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
  2705. if (Mask & LM_ACCEPT_ERROR_PACKET) {
  2706. RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
  2707. Mask &= ~LM_ACCEPT_ERROR_PACKET;
  2708. }
  2709. /* Make sure all the bits are valid before committing changes. */
  2710. if (Mask) {
  2711. return LM_STATUS_FAILURE;
  2712. }
  2713. /* Commit the new filter. */
  2714. pDevice->RxMode = RxMode;
  2715. REG_WR (pDevice, MacCtrl.RxMode, RxMode);
  2716. pDevice->ReceiveMask = ReceiveMask;
  2717. /* Set up the MC hash table. */
  2718. if (ReceiveMask & LM_ACCEPT_ALL_MULTICAST) {
  2719. for (k = 0; k < 4; k++) {
  2720. REG_WR (pDevice, MacCtrl.HashReg[k], 0xffffffff);
  2721. }
  2722. } else if (ReceiveMask & LM_ACCEPT_MULTICAST) {
  2723. LM_UINT32 HashReg[4];
  2724. HashReg[0] = 0;
  2725. HashReg[1] = 0;
  2726. HashReg[2] = 0;
  2727. HashReg[3] = 0;
  2728. for (j = 0; j < pDevice->McEntryCount; j++) {
  2729. LM_UINT32 RegIndex;
  2730. LM_UINT32 Bitpos;
  2731. LM_UINT32 Crc32;
  2732. Crc32 =
  2733. ComputeCrc32 (pDevice->McTable[j],
  2734. ETHERNET_ADDRESS_SIZE);
  2735. /* The most significant 7 bits of the CRC32 (no inversion), */
  2736. /* are used to index into one of the possible 128 bit positions. */
  2737. Bitpos = ~Crc32 & 0x7f;
  2738. /* Hash register index. */
  2739. RegIndex = (Bitpos & 0x60) >> 5;
  2740. /* Bit to turn on within a hash register. */
  2741. Bitpos &= 0x1f;
  2742. /* Enable the multicast bit. */
  2743. HashReg[RegIndex] |= (1 << Bitpos);
  2744. }
  2745. /* REV_AX has problem with multicast filtering where it uses both */
  2746. /* DA and SA to perform hashing. */
  2747. for (k = 0; k < 4; k++) {
  2748. REG_WR (pDevice, MacCtrl.HashReg[k], HashReg[k]);
  2749. }
  2750. } else {
  2751. /* Reject all multicast frames. */
  2752. for (j = 0; j < 4; j++) {
  2753. REG_WR (pDevice, MacCtrl.HashReg[j], 0);
  2754. }
  2755. }
  2756. /* By default, Tigon3 will accept broadcast frames. We need to setup */
  2757. if (ReceiveMask & LM_ACCEPT_BROADCAST) {
  2758. REG_WR (pDevice,
  2759. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  2760. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  2761. REG_WR (pDevice,
  2762. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  2763. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  2764. REG_WR (pDevice,
  2765. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  2766. REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
  2767. REG_WR (pDevice,
  2768. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  2769. REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
  2770. } else {
  2771. REG_WR (pDevice,
  2772. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
  2773. REJECT_BROADCAST_RULE1_RULE);
  2774. REG_WR (pDevice,
  2775. MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
  2776. REJECT_BROADCAST_RULE1_VALUE);
  2777. REG_WR (pDevice,
  2778. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
  2779. REJECT_BROADCAST_RULE2_RULE);
  2780. REG_WR (pDevice,
  2781. MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
  2782. REJECT_BROADCAST_RULE2_VALUE);
  2783. }
  2784. /* disable the rest of the rules. */
  2785. for (j = RCV_LAST_RULE_IDX; j < 16; j++) {
  2786. REG_WR (pDevice, MacCtrl.RcvRules[j].Rule, 0);
  2787. REG_WR (pDevice, MacCtrl.RcvRules[j].Value, 0);
  2788. }
  2789. return LM_STATUS_SUCCESS;
  2790. } /* LM_SetReceiveMask */
  2791. /******************************************************************************/
  2792. /* Description: */
  2793. /* Disable the interrupt and put the transmitter and receiver engines in */
  2794. /* an idle state. Also aborts all pending send requests and receive */
  2795. /* buffers. */
  2796. /* */
  2797. /* Return: */
  2798. /* LM_STATUS_SUCCESS */
  2799. /******************************************************************************/
  2800. LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice)
  2801. {
  2802. PLM_PACKET pPacket;
  2803. LM_UINT Idx;
  2804. LM_DisableInterrupt (pDevice);
  2805. /* Disable all the state machines. */
  2806. LM_CntrlBlock (pDevice, T3_BLOCK_MAC_RX_ENGINE, LM_DISABLE);
  2807. LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_INITIATOR, LM_DISABLE);
  2808. LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_PLMT, LM_DISABLE);
  2809. LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_SELECTOR, LM_DISABLE);
  2810. LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_INITIATOR, LM_DISABLE);
  2811. LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_COMP, LM_DISABLE);
  2812. LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_COMP, LM_DISABLE);
  2813. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_SELECTOR, LM_DISABLE);
  2814. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_INITIATOR, LM_DISABLE);
  2815. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_INITIATOR, LM_DISABLE);
  2816. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_RD, LM_DISABLE);
  2817. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_COMP, LM_DISABLE);
  2818. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_COMP, LM_DISABLE);
  2819. LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_COMP, LM_DISABLE);
  2820. /* Clear TDE bit */
  2821. pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
  2822. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  2823. LM_CntrlBlock (pDevice, T3_BLOCK_MAC_TX_ENGINE, LM_DISABLE);
  2824. LM_CntrlBlock (pDevice, T3_BLOCK_HOST_COALESING, LM_DISABLE);
  2825. LM_CntrlBlock (pDevice, T3_BLOCK_DMA_WR, LM_DISABLE);
  2826. LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_CLUSTER_FREE, LM_DISABLE);
  2827. /* Reset all FTQs */
  2828. REG_WR (pDevice, Ftq.Reset, 0xffffffff);
  2829. REG_WR (pDevice, Ftq.Reset, 0x0);
  2830. LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_MANAGER, LM_DISABLE);
  2831. LM_CntrlBlock (pDevice, T3_BLOCK_MEM_ARBITOR, LM_DISABLE);
  2832. MM_ACQUIRE_INT_LOCK (pDevice);
  2833. /* Abort packets that have already queued to go out. */
  2834. pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
  2835. while (pPacket) {
  2836. pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
  2837. pDevice->TxCounters.TxPacketAbortedCnt++;
  2838. atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  2839. QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
  2840. pPacket = (PLM_PACKET)
  2841. QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
  2842. }
  2843. /* Cleanup the receive return rings. */
  2844. LM_ServiceRxInterrupt (pDevice);
  2845. /* Don't want to indicate rx packets in Ndis miniport shutdown context. */
  2846. /* Doing so may cause system crash. */
  2847. if (!pDevice->ShuttingDown) {
  2848. /* Indicate packets to the protocol. */
  2849. MM_IndicateTxPackets (pDevice);
  2850. /* Indicate received packets to the protocols. */
  2851. MM_IndicateRxPackets (pDevice);
  2852. } else {
  2853. /* Move the receive packet descriptors in the ReceivedQ to the */
  2854. /* free queue. */
  2855. for (;;) {
  2856. pPacket =
  2857. (PLM_PACKET) QQ_PopHead (&pDevice->
  2858. RxPacketReceivedQ.
  2859. Container);
  2860. if (pPacket == NULL) {
  2861. break;
  2862. }
  2863. QQ_PushTail (&pDevice->RxPacketFreeQ.Container,
  2864. pPacket);
  2865. }
  2866. }
  2867. /* Clean up the Std Receive Producer ring. */
  2868. Idx = pDevice->pStatusBlkVirt->RcvStdConIdx;
  2869. while (Idx != pDevice->RxStdProdIdx) {
  2870. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  2871. MM_UINT_PTR (pDevice->pRxStdBdVirt[Idx].
  2872. Opaque));
  2873. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2874. Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
  2875. } /* while */
  2876. /* Reinitialize our copy of the indices. */
  2877. pDevice->RxStdProdIdx = 0;
  2878. #if T3_JUMBO_RCV_RCB_ENTRY_COUNT
  2879. /* Clean up the Jumbo Receive Producer ring. */
  2880. Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx;
  2881. while (Idx != pDevice->RxJumboProdIdx) {
  2882. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  2883. MM_UINT_PTR (pDevice->
  2884. pRxJumboBdVirt[Idx].
  2885. Opaque));
  2886. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2887. Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
  2888. } /* while */
  2889. /* Reinitialize our copy of the indices. */
  2890. pDevice->RxJumboProdIdx = 0;
  2891. #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
  2892. MM_RELEASE_INT_LOCK (pDevice);
  2893. /* Initialize the statistis Block */
  2894. pDevice->pStatusBlkVirt->Status = 0;
  2895. pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
  2896. pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
  2897. pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
  2898. return LM_STATUS_SUCCESS;
  2899. } /* LM_Abort */
  2900. /******************************************************************************/
  2901. /* Description: */
  2902. /* Disable the interrupt and put the transmitter and receiver engines in */
  2903. /* an idle state. Aborts all pending send requests and receive buffers. */
  2904. /* Also free all the receive buffers. */
  2905. /* */
  2906. /* Return: */
  2907. /* LM_STATUS_SUCCESS */
  2908. /******************************************************************************/
  2909. LM_STATUS LM_Halt (PLM_DEVICE_BLOCK pDevice)
  2910. {
  2911. PLM_PACKET pPacket;
  2912. LM_UINT32 EntryCnt;
  2913. LM_Abort (pDevice);
  2914. /* Get the number of entries in the queue. */
  2915. EntryCnt = QQ_GetEntryCnt (&pDevice->RxPacketFreeQ.Container);
  2916. /* Make sure all the packets have been accounted for. */
  2917. for (EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) {
  2918. pPacket =
  2919. (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
  2920. if (pPacket == 0)
  2921. break;
  2922. MM_FreeRxBuffer (pDevice, pPacket);
  2923. QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
  2924. }
  2925. LM_ResetChip (pDevice);
  2926. /* Restore PCI configuration registers. */
  2927. MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
  2928. pDevice->SavedCacheLineReg);
  2929. LM_RegWrInd (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
  2930. (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
  2931. /* Reprogram the MAC address. */
  2932. LM_SetMacAddress (pDevice, pDevice->NodeAddress);
  2933. return LM_STATUS_SUCCESS;
  2934. } /* LM_Halt */
  2935. STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice)
  2936. {
  2937. LM_UINT32 Value32;
  2938. LM_UINT32 j;
  2939. /* Wait for access to the nvram interface before resetting. This is */
  2940. /* a workaround to prevent EEPROM corruption. */
  2941. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  2942. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  2943. /* Request access to the flash interface. */
  2944. REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
  2945. for (j = 0; j < 100000; j++) {
  2946. Value32 = REG_RD (pDevice, Nvram.SwArb);
  2947. if (Value32 & SW_ARB_GNT1) {
  2948. break;
  2949. }
  2950. MM_Wait (10);
  2951. }
  2952. }
  2953. /* Global reset. */
  2954. REG_WR (pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET);
  2955. MM_Wait (40);
  2956. MM_Wait (40);
  2957. MM_Wait (40);
  2958. /* make sure we re-enable indirect accesses */
  2959. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  2960. pDevice->MiscHostCtrl);
  2961. /* Set MAX PCI retry to zero. */
  2962. Value32 =
  2963. T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
  2964. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  2965. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  2966. Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
  2967. }
  2968. }
  2969. MM_WriteConfig32 (pDevice, T3_PCI_STATE_REG, Value32);
  2970. /* Restore PCI command register. */
  2971. MM_WriteConfig32 (pDevice, PCI_COMMAND_REG,
  2972. pDevice->PciCommandStatusWords);
  2973. /* Disable PCI-X relaxed ordering bit. */
  2974. MM_ReadConfig32 (pDevice, PCIX_CAP_REG, &Value32);
  2975. Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
  2976. MM_WriteConfig32 (pDevice, PCIX_CAP_REG, Value32);
  2977. /* Enable memory arbiter. */
  2978. REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
  2979. #ifdef BIG_ENDIAN_PCI /* This from jfd */
  2980. Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
  2981. #else
  2982. #ifdef BIG_ENDIAN_HOST
  2983. /* Reconfigure the mode register. */
  2984. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
  2985. GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
  2986. GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA;
  2987. #else
  2988. /* Reconfigure the mode register. */
  2989. Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
  2990. #endif
  2991. #endif
  2992. REG_WR (pDevice, Grc.Mode, Value32);
  2993. /* Prevent PXE from restarting. */
  2994. MEM_WR_OFFSET (pDevice, 0x0b50, T3_MAGIC_NUM);
  2995. if (pDevice->EnableTbi) {
  2996. pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
  2997. REG_WR (pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI);
  2998. } else {
  2999. REG_WR (pDevice, MacCtrl.Mode, 0);
  3000. }
  3001. /* Wait for the firmware to finish initialization. */
  3002. for (j = 0; j < 100000; j++) {
  3003. MM_Wait (10);
  3004. Value32 = MEM_RD_OFFSET (pDevice, 0x0b50);
  3005. if (Value32 == ~T3_MAGIC_NUM) {
  3006. break;
  3007. }
  3008. }
  3009. return LM_STATUS_SUCCESS;
  3010. }
  3011. /******************************************************************************/
  3012. /* Description: */
  3013. /* */
  3014. /* Return: */
  3015. /******************************************************************************/
  3016. __inline static void LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice)
  3017. {
  3018. PLM_PACKET pPacket;
  3019. LM_UINT32 HwConIdx;
  3020. LM_UINT32 SwConIdx;
  3021. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3022. /* Get our copy of the consumer index. The buffer descriptors */
  3023. /* that are in between the consumer indices are freed. */
  3024. SwConIdx = pDevice->SendConIdx;
  3025. /* Move the packets from the TxPacketActiveQ that are sent out to */
  3026. /* the TxPacketXmittedQ. Packets that are sent use the */
  3027. /* descriptors that are between SwConIdx and HwConIdx. */
  3028. while (SwConIdx != HwConIdx) {
  3029. /* Get the packet that was sent from the TxPacketActiveQ. */
  3030. pPacket =
  3031. (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.
  3032. Container);
  3033. /* Set the return status. */
  3034. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3035. /* Put the packet in the TxPacketXmittedQ for indication later. */
  3036. QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
  3037. /* Move to the next packet's BD. */
  3038. SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
  3039. T3_SEND_RCB_ENTRY_COUNT_MASK;
  3040. /* Update the number of unused BDs. */
  3041. atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
  3042. /* Get the new updated HwConIdx. */
  3043. HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
  3044. } /* while */
  3045. /* Save the new SwConIdx. */
  3046. pDevice->SendConIdx = SwConIdx;
  3047. } /* LM_ServiceTxInterrupt */
  3048. /******************************************************************************/
  3049. /* Description: */
  3050. /* */
  3051. /* Return: */
  3052. /******************************************************************************/
  3053. __inline static void LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice)
  3054. {
  3055. PLM_PACKET pPacket;
  3056. PT3_RCV_BD pRcvBd;
  3057. LM_UINT32 HwRcvRetProdIdx;
  3058. LM_UINT32 SwRcvRetConIdx;
  3059. /* Loop thru the receive return rings for received packets. */
  3060. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3061. SwRcvRetConIdx = pDevice->RcvRetConIdx;
  3062. while (SwRcvRetConIdx != HwRcvRetProdIdx) {
  3063. pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
  3064. /* Get the received packet descriptor. */
  3065. pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
  3066. MM_UINT_PTR (pRcvBd->Opaque));
  3067. /* Check the error flag. */
  3068. if (pRcvBd->ErrorFlag &&
  3069. pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
  3070. pPacket->PacketStatus = LM_STATUS_FAILURE;
  3071. pDevice->RxCounters.RxPacketErrCnt++;
  3072. if (pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) {
  3073. pDevice->RxCounters.RxErrCrcCnt++;
  3074. }
  3075. if (pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) {
  3076. pDevice->RxCounters.RxErrCollCnt++;
  3077. }
  3078. if (pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) {
  3079. pDevice->RxCounters.RxErrLinkLostCnt++;
  3080. }
  3081. if (pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) {
  3082. pDevice->RxCounters.RxErrPhyDecodeCnt++;
  3083. }
  3084. if (pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
  3085. pDevice->RxCounters.RxErrOddNibbleCnt++;
  3086. }
  3087. if (pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) {
  3088. pDevice->RxCounters.RxErrMacAbortCnt++;
  3089. }
  3090. if (pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) {
  3091. pDevice->RxCounters.RxErrShortPacketCnt++;
  3092. }
  3093. if (pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) {
  3094. pDevice->RxCounters.RxErrNoResourceCnt++;
  3095. }
  3096. if (pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) {
  3097. pDevice->RxCounters.RxErrLargePacketCnt++;
  3098. }
  3099. } else {
  3100. pPacket->PacketStatus = LM_STATUS_SUCCESS;
  3101. pPacket->PacketSize = pRcvBd->Len - 4;
  3102. pPacket->Flags = pRcvBd->Flags;
  3103. if (pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) {
  3104. pPacket->VlanTag = pRcvBd->VlanTag;
  3105. }
  3106. pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
  3107. }
  3108. /* Put the packet descriptor containing the received packet */
  3109. /* buffer in the RxPacketReceivedQ for indication later. */
  3110. QQ_PushTail (&pDevice->RxPacketReceivedQ.Container, pPacket);
  3111. /* Go to the next buffer descriptor. */
  3112. SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
  3113. T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
  3114. /* Get the updated HwRcvRetProdIdx. */
  3115. HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
  3116. } /* while */
  3117. pDevice->RcvRetConIdx = SwRcvRetConIdx;
  3118. /* Update the receive return ring consumer index. */
  3119. MB_REG_WR (pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
  3120. } /* LM_ServiceRxInterrupt */
  3121. /******************************************************************************/
  3122. /* Description: */
  3123. /* This is the interrupt event handler routine. It acknowledges all */
  3124. /* pending interrupts and process all pending events. */
  3125. /* */
  3126. /* Return: */
  3127. /* LM_STATUS_SUCCESS */
  3128. /******************************************************************************/
  3129. LM_STATUS LM_ServiceInterrupts (PLM_DEVICE_BLOCK pDevice)
  3130. {
  3131. LM_UINT32 Value32;
  3132. int ServicePhyInt = FALSE;
  3133. /* Setup the phy chip whenever the link status changes. */
  3134. if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) {
  3135. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3136. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  3137. if (Value32 & MAC_STATUS_MI_INTERRUPT) {
  3138. ServicePhyInt = TRUE;
  3139. }
  3140. } else if (Value32 & MAC_STATUS_LINK_STATE_CHANGED) {
  3141. ServicePhyInt = TRUE;
  3142. }
  3143. } else {
  3144. if (pDevice->pStatusBlkVirt->
  3145. Status & STATUS_BLOCK_LINK_CHANGED_STATUS) {
  3146. pDevice->pStatusBlkVirt->Status =
  3147. STATUS_BLOCK_UPDATED | (pDevice->pStatusBlkVirt->
  3148. Status &
  3149. ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  3150. ServicePhyInt = TRUE;
  3151. }
  3152. }
  3153. #if INCLUDE_TBI_SUPPORT
  3154. if (pDevice->IgnoreTbiLinkChange == TRUE) {
  3155. ServicePhyInt = FALSE;
  3156. }
  3157. #endif
  3158. if (ServicePhyInt == TRUE) {
  3159. LM_SetupPhy (pDevice);
  3160. }
  3161. /* Service receive and transmit interrupts. */
  3162. LM_ServiceRxInterrupt (pDevice);
  3163. LM_ServiceTxInterrupt (pDevice);
  3164. /* No spinlock for this queue since this routine is serialized. */
  3165. if (!QQ_Empty (&pDevice->RxPacketReceivedQ.Container)) {
  3166. /* Indicate receive packets. */
  3167. MM_IndicateRxPackets (pDevice);
  3168. /* LM_QueueRxPackets(pDevice); */
  3169. }
  3170. /* No spinlock for this queue since this routine is serialized. */
  3171. if (!QQ_Empty (&pDevice->TxPacketXmittedQ.Container)) {
  3172. MM_IndicateTxPackets (pDevice);
  3173. }
  3174. return LM_STATUS_SUCCESS;
  3175. } /* LM_ServiceInterrupts */
  3176. /******************************************************************************/
  3177. /* Description: */
  3178. /* */
  3179. /* Return: */
  3180. /******************************************************************************/
  3181. LM_STATUS LM_MulticastAdd (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
  3182. {
  3183. PLM_UINT8 pEntry;
  3184. LM_UINT32 j;
  3185. pEntry = pDevice->McTable[0];
  3186. for (j = 0; j < pDevice->McEntryCount; j++) {
  3187. if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
  3188. /* Found a match, increment the instance count. */
  3189. pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1;
  3190. return LM_STATUS_SUCCESS;
  3191. }
  3192. pEntry += LM_MC_ENTRY_SIZE;
  3193. }
  3194. if (pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE) {
  3195. return LM_STATUS_FAILURE;
  3196. }
  3197. pEntry = pDevice->McTable[pDevice->McEntryCount];
  3198. COPY_ETH_ADDRESS (pMcAddress, pEntry);
  3199. pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1;
  3200. pDevice->McEntryCount++;
  3201. LM_SetReceiveMask (pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
  3202. return LM_STATUS_SUCCESS;
  3203. } /* LM_MulticastAdd */
  3204. /******************************************************************************/
  3205. /* Description: */
  3206. /* */
  3207. /* Return: */
  3208. /******************************************************************************/
  3209. LM_STATUS LM_MulticastDel (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
  3210. {
  3211. PLM_UINT8 pEntry;
  3212. LM_UINT32 j;
  3213. pEntry = pDevice->McTable[0];
  3214. for (j = 0; j < pDevice->McEntryCount; j++) {
  3215. if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
  3216. /* Found a match, decrement the instance count. */
  3217. pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1;
  3218. /* No more instance left, remove the address from the table. */
  3219. /* Move the last entry in the table to the delete slot. */
  3220. if (pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 &&
  3221. pDevice->McEntryCount > 1) {
  3222. COPY_ETH_ADDRESS (pDevice->
  3223. McTable[pDevice->
  3224. McEntryCount - 1],
  3225. pEntry);
  3226. pEntry[LM_MC_INSTANCE_COUNT_INDEX] =
  3227. pDevice->McTable[pDevice->McEntryCount - 1]
  3228. [LM_MC_INSTANCE_COUNT_INDEX];
  3229. }
  3230. pDevice->McEntryCount--;
  3231. /* Update the receive mask if the table is empty. */
  3232. if (pDevice->McEntryCount == 0) {
  3233. LM_SetReceiveMask (pDevice,
  3234. pDevice->
  3235. ReceiveMask &
  3236. ~LM_ACCEPT_MULTICAST);
  3237. }
  3238. return LM_STATUS_SUCCESS;
  3239. }
  3240. pEntry += LM_MC_ENTRY_SIZE;
  3241. }
  3242. return LM_STATUS_FAILURE;
  3243. } /* LM_MulticastDel */
  3244. /******************************************************************************/
  3245. /* Description: */
  3246. /* */
  3247. /* Return: */
  3248. /******************************************************************************/
  3249. LM_STATUS LM_MulticastClear (PLM_DEVICE_BLOCK pDevice)
  3250. {
  3251. pDevice->McEntryCount = 0;
  3252. LM_SetReceiveMask (pDevice,
  3253. pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
  3254. return LM_STATUS_SUCCESS;
  3255. } /* LM_MulticastClear */
  3256. /******************************************************************************/
  3257. /* Description: */
  3258. /* */
  3259. /* Return: */
  3260. /******************************************************************************/
  3261. LM_STATUS LM_SetMacAddress (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMacAddress)
  3262. {
  3263. LM_UINT32 j;
  3264. for (j = 0; j < 4; j++) {
  3265. REG_WR (pDevice, MacCtrl.MacAddr[j].High,
  3266. (pMacAddress[0] << 8) | pMacAddress[1]);
  3267. REG_WR (pDevice, MacCtrl.MacAddr[j].Low,
  3268. (pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
  3269. (pMacAddress[4] << 8) | pMacAddress[5]);
  3270. }
  3271. return LM_STATUS_SUCCESS;
  3272. }
  3273. /******************************************************************************/
  3274. /* Description: */
  3275. /* Sets up the default line speed, and duplex modes based on the requested */
  3276. /* media type. */
  3277. /* */
  3278. /* Return: */
  3279. /* None. */
  3280. /******************************************************************************/
  3281. static LM_STATUS
  3282. LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
  3283. PLM_MEDIA_TYPE pMediaType,
  3284. PLM_LINE_SPEED pLineSpeed,
  3285. PLM_DUPLEX_MODE pDuplexMode)
  3286. {
  3287. *pMediaType = LM_MEDIA_TYPE_AUTO;
  3288. *pLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3289. *pDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3290. /* determine media type */
  3291. switch (RequestedMediaType) {
  3292. case LM_REQUESTED_MEDIA_TYPE_BNC:
  3293. *pMediaType = LM_MEDIA_TYPE_BNC;
  3294. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3295. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3296. break;
  3297. case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO:
  3298. *pMediaType = LM_MEDIA_TYPE_UTP;
  3299. break;
  3300. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS:
  3301. *pMediaType = LM_MEDIA_TYPE_UTP;
  3302. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3303. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3304. break;
  3305. case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX:
  3306. *pMediaType = LM_MEDIA_TYPE_UTP;
  3307. *pLineSpeed = LM_LINE_SPEED_10MBPS;
  3308. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3309. break;
  3310. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS:
  3311. *pMediaType = LM_MEDIA_TYPE_UTP;
  3312. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3313. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3314. break;
  3315. case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX:
  3316. *pMediaType = LM_MEDIA_TYPE_UTP;
  3317. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3318. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3319. break;
  3320. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS:
  3321. *pMediaType = LM_MEDIA_TYPE_UTP;
  3322. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3323. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3324. break;
  3325. case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX:
  3326. *pMediaType = LM_MEDIA_TYPE_UTP;
  3327. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3328. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3329. break;
  3330. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS:
  3331. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3332. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3333. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3334. break;
  3335. case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX:
  3336. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3337. *pLineSpeed = LM_LINE_SPEED_100MBPS;
  3338. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3339. break;
  3340. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS:
  3341. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3342. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3343. *pDuplexMode = LM_DUPLEX_MODE_HALF;
  3344. break;
  3345. case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX:
  3346. *pMediaType = LM_MEDIA_TYPE_FIBER;
  3347. *pLineSpeed = LM_LINE_SPEED_1000MBPS;
  3348. *pDuplexMode = LM_DUPLEX_MODE_FULL;
  3349. break;
  3350. default:
  3351. break;
  3352. } /* switch */
  3353. return LM_STATUS_SUCCESS;
  3354. } /* LM_TranslateRequestedMediaType */
  3355. /******************************************************************************/
  3356. /* Description: */
  3357. /* */
  3358. /* Return: */
  3359. /* LM_STATUS_LINK_ACTIVE */
  3360. /* LM_STATUS_LINK_DOWN */
  3361. /******************************************************************************/
  3362. static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice)
  3363. {
  3364. LM_LINE_SPEED CurrentLineSpeed;
  3365. LM_DUPLEX_MODE CurrentDuplexMode;
  3366. LM_STATUS CurrentLinkStatus;
  3367. LM_UINT32 Value32;
  3368. LM_UINT32 j;
  3369. #if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */
  3370. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x2);
  3371. #endif
  3372. if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
  3373. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3374. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3375. if (!pDevice->InitDone) {
  3376. Value32 = 0;
  3377. }
  3378. if (!(Value32 & PHY_STATUS_LINK_PASS)) {
  3379. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
  3380. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
  3381. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
  3382. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
  3383. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
  3384. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3385. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
  3386. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
  3387. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
  3388. LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
  3389. LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
  3390. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3391. for (j = 0; j < 1000; j++) {
  3392. MM_Wait (10);
  3393. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3394. if (Value32 & PHY_STATUS_LINK_PASS) {
  3395. MM_Wait (40);
  3396. break;
  3397. }
  3398. }
  3399. if ((pDevice->PhyId & PHY_ID_REV_MASK) ==
  3400. PHY_BCM5401_B0_REV) {
  3401. if (!(Value32 & PHY_STATUS_LINK_PASS)
  3402. && (pDevice->OldLineSpeed ==
  3403. LM_LINE_SPEED_1000MBPS)) {
  3404. LM_WritePhy (pDevice, PHY_CTRL_REG,
  3405. PHY_CTRL_PHY_RESET);
  3406. for (j = 0; j < 100; j++) {
  3407. MM_Wait (10);
  3408. LM_ReadPhy (pDevice,
  3409. PHY_CTRL_REG,
  3410. &Value32);
  3411. if (!
  3412. (Value32 &
  3413. PHY_CTRL_PHY_RESET)) {
  3414. MM_Wait (40);
  3415. break;
  3416. }
  3417. }
  3418. LM_WritePhy (pDevice, BCM5401_AUX_CTRL,
  3419. 0x0c20);
  3420. LM_WritePhy (pDevice,
  3421. BCM540X_DSP_ADDRESS_REG,
  3422. 0x0012);
  3423. LM_WritePhy (pDevice,
  3424. BCM540X_DSP_RW_PORT,
  3425. 0x1804);
  3426. LM_WritePhy (pDevice,
  3427. BCM540X_DSP_ADDRESS_REG,
  3428. 0x0013);
  3429. LM_WritePhy (pDevice,
  3430. BCM540X_DSP_RW_PORT,
  3431. 0x1204);
  3432. LM_WritePhy (pDevice,
  3433. BCM540X_DSP_ADDRESS_REG,
  3434. 0x8006);
  3435. LM_WritePhy (pDevice,
  3436. BCM540X_DSP_RW_PORT,
  3437. 0x0132);
  3438. LM_WritePhy (pDevice,
  3439. BCM540X_DSP_ADDRESS_REG,
  3440. 0x8006);
  3441. LM_WritePhy (pDevice,
  3442. BCM540X_DSP_RW_PORT,
  3443. 0x0232);
  3444. LM_WritePhy (pDevice,
  3445. BCM540X_DSP_ADDRESS_REG,
  3446. 0x201f);
  3447. LM_WritePhy (pDevice,
  3448. BCM540X_DSP_RW_PORT,
  3449. 0x0a20);
  3450. }
  3451. }
  3452. }
  3453. } else if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  3454. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  3455. /* Bug: 5701 A0, B0 TX CRC workaround. */
  3456. LM_WritePhy (pDevice, 0x15, 0x0a75);
  3457. LM_WritePhy (pDevice, 0x1c, 0x8c68);
  3458. LM_WritePhy (pDevice, 0x1c, 0x8d68);
  3459. LM_WritePhy (pDevice, 0x1c, 0x8c68);
  3460. }
  3461. /* Acknowledge interrupts. */
  3462. LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3463. LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
  3464. /* Configure the interrupt mask. */
  3465. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  3466. LM_WritePhy (pDevice, BCM540X_INT_MASK_REG,
  3467. ~BCM540X_INT_LINK_CHANGE);
  3468. }
  3469. /* Configure PHY led mode. */
  3470. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
  3471. (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700)) {
  3472. if (pDevice->LedMode == LED_MODE_THREE_LINK) {
  3473. LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG,
  3474. BCM540X_EXT_CTRL_LINK3_LED_MODE);
  3475. } else {
  3476. LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, 0);
  3477. }
  3478. }
  3479. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3480. /* Get current link and duplex mode. */
  3481. for (j = 0; j < 100; j++) {
  3482. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3483. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3484. if (Value32 & PHY_STATUS_LINK_PASS) {
  3485. break;
  3486. }
  3487. MM_Wait (40);
  3488. }
  3489. if (Value32 & PHY_STATUS_LINK_PASS) {
  3490. /* Determine the current line and duplex settings. */
  3491. LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3492. for (j = 0; j < 2000; j++) {
  3493. MM_Wait (10);
  3494. LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
  3495. if (Value32) {
  3496. break;
  3497. }
  3498. }
  3499. switch (Value32 & BCM540X_AUX_SPEED_MASK) {
  3500. case BCM540X_AUX_10BASET_HD:
  3501. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3502. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3503. break;
  3504. case BCM540X_AUX_10BASET_FD:
  3505. CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
  3506. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3507. break;
  3508. case BCM540X_AUX_100BASETX_HD:
  3509. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3510. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3511. break;
  3512. case BCM540X_AUX_100BASETX_FD:
  3513. CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
  3514. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3515. break;
  3516. case BCM540X_AUX_100BASET_HD:
  3517. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3518. CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
  3519. break;
  3520. case BCM540X_AUX_100BASET_FD:
  3521. CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
  3522. CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
  3523. break;
  3524. default:
  3525. CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
  3526. CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3527. break;
  3528. }
  3529. /* Make sure we are in auto-neg mode. */
  3530. for (j = 0; j < 200; j++) {
  3531. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  3532. if (Value32 && Value32 != 0x7fff) {
  3533. break;
  3534. }
  3535. if (Value32 == 0 && pDevice->RequestedMediaType ==
  3536. LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS) {
  3537. break;
  3538. }
  3539. MM_Wait (10);
  3540. }
  3541. /* Use the current line settings for "auto" mode. */
  3542. if (pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO
  3543. || pDevice->RequestedMediaType ==
  3544. LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  3545. if (Value32 & PHY_CTRL_AUTO_NEG_ENABLE) {
  3546. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3547. /* We may be exiting low power mode and the link is in */
  3548. /* 10mb. In this case, we need to restart autoneg. */
  3549. LM_ReadPhy (pDevice, BCM540X_1000BASET_CTRL_REG,
  3550. &Value32);
  3551. pDevice->advertising1000 = Value32;
  3552. /* 5702FE supports 10/100Mb only. */
  3553. if (T3_ASIC_REV (pDevice->ChipRevId) !=
  3554. T3_ASIC_REV_5703
  3555. || pDevice->BondId !=
  3556. GRC_MISC_BD_ID_5702FE) {
  3557. if (!
  3558. (Value32 &
  3559. (BCM540X_AN_AD_1000BASET_HALF |
  3560. BCM540X_AN_AD_1000BASET_FULL))) {
  3561. CurrentLinkStatus =
  3562. LM_STATUS_LINK_SETTING_MISMATCH;
  3563. }
  3564. }
  3565. } else {
  3566. CurrentLinkStatus =
  3567. LM_STATUS_LINK_SETTING_MISMATCH;
  3568. }
  3569. } else {
  3570. /* Force line settings. */
  3571. /* Use the current setting if it matches the user's requested */
  3572. /* setting. */
  3573. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  3574. if ((pDevice->LineSpeed == CurrentLineSpeed) &&
  3575. (pDevice->DuplexMode == CurrentDuplexMode)) {
  3576. if ((pDevice->DisableAutoNeg &&
  3577. !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
  3578. (!pDevice->DisableAutoNeg &&
  3579. (Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) {
  3580. CurrentLinkStatus =
  3581. LM_STATUS_LINK_ACTIVE;
  3582. } else {
  3583. CurrentLinkStatus =
  3584. LM_STATUS_LINK_SETTING_MISMATCH;
  3585. }
  3586. } else {
  3587. CurrentLinkStatus =
  3588. LM_STATUS_LINK_SETTING_MISMATCH;
  3589. }
  3590. }
  3591. /* Save line settings. */
  3592. pDevice->LineSpeed = CurrentLineSpeed;
  3593. pDevice->DuplexMode = CurrentDuplexMode;
  3594. pDevice->MediaType = LM_MEDIA_TYPE_UTP;
  3595. }
  3596. return CurrentLinkStatus;
  3597. } /* LM_InitBcm540xPhy */
  3598. /******************************************************************************/
  3599. /* Description: */
  3600. /* */
  3601. /* Return: */
  3602. /******************************************************************************/
  3603. LM_STATUS
  3604. LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
  3605. LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd)
  3606. {
  3607. LM_FLOW_CONTROL FlowCap;
  3608. /* Resolve flow control. */
  3609. FlowCap = LM_FLOW_CONTROL_NONE;
  3610. /* See Table 28B-3 of 802.3ab-1999 spec. */
  3611. if (pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) {
  3612. if (LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) {
  3613. if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
  3614. if (RemotePhyAd &
  3615. PHY_LINK_PARTNER_PAUSE_CAPABLE) {
  3616. FlowCap =
  3617. LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3618. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3619. } else if (RemotePhyAd &
  3620. PHY_LINK_PARTNER_ASYM_PAUSE) {
  3621. FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3622. }
  3623. } else {
  3624. if (RemotePhyAd &
  3625. PHY_LINK_PARTNER_PAUSE_CAPABLE) {
  3626. FlowCap =
  3627. LM_FLOW_CONTROL_TRANSMIT_PAUSE |
  3628. LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3629. }
  3630. }
  3631. } else if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
  3632. if ((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
  3633. (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) {
  3634. FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3635. }
  3636. }
  3637. } else {
  3638. FlowCap = pDevice->FlowControlCap;
  3639. }
  3640. /* Enable/disable rx PAUSE. */
  3641. pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
  3642. if (FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
  3643. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3644. pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) {
  3645. pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
  3646. pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
  3647. }
  3648. REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
  3649. /* Enable/disable tx PAUSE. */
  3650. pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
  3651. if (FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
  3652. (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
  3653. pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) {
  3654. pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
  3655. pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
  3656. }
  3657. REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
  3658. return LM_STATUS_SUCCESS;
  3659. }
  3660. #if INCLUDE_TBI_SUPPORT
  3661. /******************************************************************************/
  3662. /* Description: */
  3663. /* */
  3664. /* Return: */
  3665. /******************************************************************************/
  3666. STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice)
  3667. {
  3668. LM_UINT32 Value32;
  3669. LM_UINT32 j;
  3670. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3671. /* Reset the SERDES during init and when we have link. */
  3672. if (!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) {
  3673. /* Set PLL lock range. */
  3674. LM_WritePhy (pDevice, 0x16, 0x8007);
  3675. /* Software reset. */
  3676. LM_WritePhy (pDevice, 0x00, 0x8000);
  3677. /* Wait for reset to complete. */
  3678. for (j = 0; j < 500; j++) {
  3679. MM_Wait (10);
  3680. }
  3681. /* Config mode; seletct PMA/Ch 1 regs. */
  3682. LM_WritePhy (pDevice, 0x10, 0x8411);
  3683. /* Enable auto-lock and comdet, select txclk for tx. */
  3684. LM_WritePhy (pDevice, 0x11, 0x0a10);
  3685. LM_WritePhy (pDevice, 0x18, 0x00a0);
  3686. LM_WritePhy (pDevice, 0x16, 0x41ff);
  3687. /* Assert and deassert POR. */
  3688. LM_WritePhy (pDevice, 0x13, 0x0400);
  3689. MM_Wait (40);
  3690. LM_WritePhy (pDevice, 0x13, 0x0000);
  3691. LM_WritePhy (pDevice, 0x11, 0x0a50);
  3692. MM_Wait (40);
  3693. LM_WritePhy (pDevice, 0x11, 0x0a10);
  3694. /* Delay for signal to stabilize. */
  3695. for (j = 0; j < 15000; j++) {
  3696. MM_Wait (10);
  3697. }
  3698. /* Deselect the channel register so we can read the PHY id later. */
  3699. LM_WritePhy (pDevice, 0x10, 0x8011);
  3700. }
  3701. return LM_STATUS_SUCCESS;
  3702. }
  3703. /******************************************************************************/
  3704. /* Description: */
  3705. /* */
  3706. /* Return: */
  3707. /******************************************************************************/
  3708. STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice)
  3709. {
  3710. LM_STATUS CurrentLinkStatus;
  3711. AUTONEG_STATUS AnStatus = 0;
  3712. LM_UINT32 Value32;
  3713. LM_UINT32 Cnt;
  3714. LM_UINT32 j, k;
  3715. pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
  3716. /* Initialize the send_config register. */
  3717. REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
  3718. /* Enable TBI and full duplex mode. */
  3719. pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
  3720. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3721. /* Initialize the BCM8002 SERDES PHY. */
  3722. switch (pDevice->PhyId & PHY_ID_MASK) {
  3723. case PHY_BCM8002_PHY_ID:
  3724. LM_InitBcm800xPhy (pDevice);
  3725. break;
  3726. default:
  3727. break;
  3728. }
  3729. /* Enable link change interrupt. */
  3730. REG_WR (pDevice, MacCtrl.MacEvent,
  3731. MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  3732. /* Default to link down. */
  3733. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3734. /* Get the link status. */
  3735. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3736. if (Value32 & MAC_STATUS_PCS_SYNCED) {
  3737. if ((pDevice->RequestedMediaType ==
  3738. LM_REQUESTED_MEDIA_TYPE_AUTO)
  3739. || (pDevice->DisableAutoNeg == FALSE)) {
  3740. /* auto-negotiation mode. */
  3741. /* Initialize the autoneg default capaiblities. */
  3742. AutonegInit (&pDevice->AnInfo);
  3743. /* Set the context pointer to point to the main device structure. */
  3744. pDevice->AnInfo.pContext = pDevice;
  3745. /* Setup flow control advertisement register. */
  3746. Value32 = GetPhyAdFlowCntrlSettings (pDevice);
  3747. if (Value32 & PHY_AN_AD_PAUSE_CAPABLE) {
  3748. pDevice->AnInfo.mr_adv_sym_pause = 1;
  3749. } else {
  3750. pDevice->AnInfo.mr_adv_sym_pause = 0;
  3751. }
  3752. if (Value32 & PHY_AN_AD_ASYM_PAUSE) {
  3753. pDevice->AnInfo.mr_adv_asym_pause = 1;
  3754. } else {
  3755. pDevice->AnInfo.mr_adv_asym_pause = 0;
  3756. }
  3757. /* Try to autoneg up to six times. */
  3758. if (pDevice->IgnoreTbiLinkChange) {
  3759. Cnt = 1;
  3760. } else {
  3761. Cnt = 6;
  3762. }
  3763. for (j = 0; j < Cnt; j++) {
  3764. REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
  3765. Value32 =
  3766. pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
  3767. REG_WR (pDevice, MacCtrl.Mode, Value32);
  3768. MM_Wait (20);
  3769. REG_WR (pDevice, MacCtrl.Mode,
  3770. pDevice->
  3771. MacMode | MAC_MODE_SEND_CONFIGS);
  3772. MM_Wait (20);
  3773. pDevice->AnInfo.State = AN_STATE_UNKNOWN;
  3774. pDevice->AnInfo.CurrentTime_us = 0;
  3775. REG_WR (pDevice, Grc.Timer, 0);
  3776. for (k = 0;
  3777. (pDevice->AnInfo.CurrentTime_us < 75000)
  3778. && (k < 75000); k++) {
  3779. AnStatus =
  3780. Autoneg8023z (&pDevice->AnInfo);
  3781. if ((AnStatus == AUTONEG_STATUS_DONE) ||
  3782. (AnStatus == AUTONEG_STATUS_FAILED))
  3783. {
  3784. break;
  3785. }
  3786. pDevice->AnInfo.CurrentTime_us =
  3787. REG_RD (pDevice, Grc.Timer);
  3788. }
  3789. if ((AnStatus == AUTONEG_STATUS_DONE) ||
  3790. (AnStatus == AUTONEG_STATUS_FAILED)) {
  3791. break;
  3792. }
  3793. if (j >= 1) {
  3794. if (!(REG_RD (pDevice, MacCtrl.Status) &
  3795. MAC_STATUS_PCS_SYNCED)) {
  3796. break;
  3797. }
  3798. }
  3799. }
  3800. /* Stop sending configs. */
  3801. MM_AnTxIdle (&pDevice->AnInfo);
  3802. /* Resolve flow control settings. */
  3803. if ((AnStatus == AUTONEG_STATUS_DONE) &&
  3804. pDevice->AnInfo.mr_an_complete
  3805. && pDevice->AnInfo.mr_link_ok
  3806. && pDevice->AnInfo.mr_lp_adv_full_duplex) {
  3807. LM_UINT32 RemotePhyAd;
  3808. LM_UINT32 LocalPhyAd;
  3809. LocalPhyAd = 0;
  3810. if (pDevice->AnInfo.mr_adv_sym_pause) {
  3811. LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
  3812. }
  3813. if (pDevice->AnInfo.mr_adv_asym_pause) {
  3814. LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
  3815. }
  3816. RemotePhyAd = 0;
  3817. if (pDevice->AnInfo.mr_lp_adv_sym_pause) {
  3818. RemotePhyAd |=
  3819. PHY_LINK_PARTNER_PAUSE_CAPABLE;
  3820. }
  3821. if (pDevice->AnInfo.mr_lp_adv_asym_pause) {
  3822. RemotePhyAd |=
  3823. PHY_LINK_PARTNER_ASYM_PAUSE;
  3824. }
  3825. LM_SetFlowControl (pDevice, LocalPhyAd,
  3826. RemotePhyAd);
  3827. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3828. }
  3829. for (j = 0; j < 30; j++) {
  3830. MM_Wait (20);
  3831. REG_WR (pDevice, MacCtrl.Status,
  3832. MAC_STATUS_SYNC_CHANGED |
  3833. MAC_STATUS_CFG_CHANGED);
  3834. MM_Wait (20);
  3835. if ((REG_RD (pDevice, MacCtrl.Status) &
  3836. (MAC_STATUS_SYNC_CHANGED |
  3837. MAC_STATUS_CFG_CHANGED)) == 0)
  3838. break;
  3839. }
  3840. if (pDevice->PollTbiLink) {
  3841. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3842. if (Value32 & MAC_STATUS_RECEIVING_CFG) {
  3843. pDevice->IgnoreTbiLinkChange = TRUE;
  3844. } else {
  3845. pDevice->IgnoreTbiLinkChange = FALSE;
  3846. }
  3847. }
  3848. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3849. if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
  3850. (Value32 & MAC_STATUS_PCS_SYNCED) &&
  3851. ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) {
  3852. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3853. }
  3854. } else {
  3855. /* We are forcing line speed. */
  3856. pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
  3857. LM_SetFlowControl (pDevice, 0, 0);
  3858. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3859. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  3860. MAC_MODE_SEND_CONFIGS);
  3861. }
  3862. }
  3863. /* Set the link polarity bit. */
  3864. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  3865. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3866. pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
  3867. (pDevice->pStatusBlkVirt->
  3868. Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
  3869. for (j = 0; j < 100; j++) {
  3870. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  3871. MAC_STATUS_CFG_CHANGED);
  3872. MM_Wait (5);
  3873. if ((REG_RD (pDevice, MacCtrl.Status) &
  3874. (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
  3875. break;
  3876. }
  3877. Value32 = REG_RD (pDevice, MacCtrl.Status);
  3878. if ((Value32 & MAC_STATUS_PCS_SYNCED) == 0) {
  3879. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3880. if (pDevice->DisableAutoNeg == FALSE) {
  3881. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
  3882. MAC_MODE_SEND_CONFIGS);
  3883. MM_Wait (1);
  3884. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  3885. }
  3886. }
  3887. /* Initialize the current link status. */
  3888. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  3889. pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
  3890. pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
  3891. REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  3892. LED_CTRL_1000MBPS_LED_ON);
  3893. } else {
  3894. pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
  3895. pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
  3896. REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
  3897. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  3898. }
  3899. /* Indicate link status. */
  3900. if (pDevice->LinkStatus != CurrentLinkStatus) {
  3901. pDevice->LinkStatus = CurrentLinkStatus;
  3902. MM_IndicateStatus (pDevice, CurrentLinkStatus);
  3903. }
  3904. return LM_STATUS_SUCCESS;
  3905. }
  3906. #endif /* INCLUDE_TBI_SUPPORT */
  3907. /******************************************************************************/
  3908. /* Description: */
  3909. /* */
  3910. /* Return: */
  3911. /******************************************************************************/
  3912. LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice)
  3913. {
  3914. LM_STATUS CurrentLinkStatus;
  3915. LM_UINT32 Value32;
  3916. /* Assume there is not link first. */
  3917. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3918. /* Disable phy link change attention. */
  3919. REG_WR (pDevice, MacCtrl.MacEvent, 0);
  3920. /* Clear link change attention. */
  3921. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  3922. MAC_STATUS_CFG_CHANGED);
  3923. /* Disable auto-polling for the moment. */
  3924. pDevice->MiMode = 0xc0000;
  3925. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  3926. MM_Wait (40);
  3927. /* Determine the requested line speed and duplex. */
  3928. pDevice->OldLineSpeed = pDevice->LineSpeed;
  3929. LM_TranslateRequestedMediaType (pDevice->RequestedMediaType,
  3930. &pDevice->MediaType,
  3931. &pDevice->LineSpeed,
  3932. &pDevice->DuplexMode);
  3933. /* Initialize the phy chip. */
  3934. switch (pDevice->PhyId & PHY_ID_MASK) {
  3935. case PHY_BCM5400_PHY_ID:
  3936. case PHY_BCM5401_PHY_ID:
  3937. case PHY_BCM5411_PHY_ID:
  3938. case PHY_BCM5701_PHY_ID:
  3939. case PHY_BCM5703_PHY_ID:
  3940. case PHY_BCM5704_PHY_ID:
  3941. CurrentLinkStatus = LM_InitBcm540xPhy (pDevice);
  3942. break;
  3943. default:
  3944. break;
  3945. }
  3946. if (CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) {
  3947. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3948. }
  3949. /* Setup flow control. */
  3950. pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
  3951. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  3952. LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
  3953. FlowCap = LM_FLOW_CONTROL_NONE;
  3954. if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) {
  3955. if (pDevice->DisableAutoNeg == FALSE ||
  3956. pDevice->RequestedMediaType ==
  3957. LM_REQUESTED_MEDIA_TYPE_AUTO
  3958. || pDevice->RequestedMediaType ==
  3959. LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  3960. LM_UINT32 ExpectedPhyAd;
  3961. LM_UINT32 LocalPhyAd;
  3962. LM_UINT32 RemotePhyAd;
  3963. LM_ReadPhy (pDevice, PHY_AN_AD_REG,
  3964. &LocalPhyAd);
  3965. pDevice->advertising = LocalPhyAd;
  3966. LocalPhyAd &=
  3967. (PHY_AN_AD_ASYM_PAUSE |
  3968. PHY_AN_AD_PAUSE_CAPABLE);
  3969. ExpectedPhyAd =
  3970. GetPhyAdFlowCntrlSettings (pDevice);
  3971. if (LocalPhyAd != ExpectedPhyAd) {
  3972. CurrentLinkStatus = LM_STATUS_LINK_DOWN;
  3973. } else {
  3974. LM_ReadPhy (pDevice,
  3975. PHY_LINK_PARTNER_ABILITY_REG,
  3976. &RemotePhyAd);
  3977. LM_SetFlowControl (pDevice, LocalPhyAd,
  3978. RemotePhyAd);
  3979. }
  3980. } else {
  3981. pDevice->FlowControlCap &=
  3982. ~LM_FLOW_CONTROL_AUTO_PAUSE;
  3983. LM_SetFlowControl (pDevice, 0, 0);
  3984. }
  3985. }
  3986. }
  3987. if (CurrentLinkStatus == LM_STATUS_LINK_DOWN) {
  3988. LM_ForceAutoNeg (pDevice, pDevice->RequestedMediaType);
  3989. /* If we force line speed, we make get link right away. */
  3990. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3991. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  3992. if (Value32 & PHY_STATUS_LINK_PASS) {
  3993. CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
  3994. }
  3995. }
  3996. /* GMII interface. */
  3997. pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
  3998. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  3999. if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
  4000. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) {
  4001. pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
  4002. } else {
  4003. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4004. }
  4005. } else {
  4006. pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
  4007. }
  4008. /* Set the MAC to operate in the appropriate duplex mode. */
  4009. pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
  4010. if (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) {
  4011. pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
  4012. }
  4013. /* Set the link polarity bit. */
  4014. pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
  4015. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  4016. if ((pDevice->LedMode == LED_MODE_LINK10) ||
  4017. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
  4018. pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) {
  4019. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4020. }
  4021. } else {
  4022. if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
  4023. pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
  4024. }
  4025. /* Set LED mode. */
  4026. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4027. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4028. Value32 = LED_CTRL_PHY_MODE_1;
  4029. } else {
  4030. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  4031. Value32 = LED_CTRL_PHY_MODE_2;
  4032. } else {
  4033. Value32 = LED_CTRL_PHY_MODE_1;
  4034. }
  4035. }
  4036. REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
  4037. }
  4038. REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
  4039. /* Enable auto polling. */
  4040. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4041. pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
  4042. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4043. }
  4044. /* Enable phy link change attention. */
  4045. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
  4046. REG_WR (pDevice, MacCtrl.MacEvent,
  4047. MAC_EVENT_ENABLE_MI_INTERRUPT);
  4048. } else {
  4049. REG_WR (pDevice, MacCtrl.MacEvent,
  4050. MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
  4051. }
  4052. if ((T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
  4053. (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
  4054. (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4055. (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
  4056. (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
  4057. !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) {
  4058. MM_Wait (120);
  4059. REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
  4060. MAC_STATUS_CFG_CHANGED);
  4061. MEM_WR_OFFSET (pDevice, T3_FIRMWARE_MAILBOX,
  4062. T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
  4063. }
  4064. /* Indicate link status. */
  4065. if (pDevice->LinkStatus != CurrentLinkStatus) {
  4066. pDevice->LinkStatus = CurrentLinkStatus;
  4067. MM_IndicateStatus (pDevice, CurrentLinkStatus);
  4068. }
  4069. return LM_STATUS_SUCCESS;
  4070. } /* LM_SetupCopperPhy */
  4071. /******************************************************************************/
  4072. /* Description: */
  4073. /* */
  4074. /* Return: */
  4075. /******************************************************************************/
  4076. LM_STATUS LM_SetupPhy (PLM_DEVICE_BLOCK pDevice)
  4077. {
  4078. LM_STATUS LmStatus;
  4079. LM_UINT32 Value32;
  4080. #if INCLUDE_TBI_SUPPORT
  4081. if (pDevice->EnableTbi) {
  4082. LmStatus = LM_SetupFiberPhy (pDevice);
  4083. } else
  4084. #endif /* INCLUDE_TBI_SUPPORT */
  4085. {
  4086. LmStatus = LM_SetupCopperPhy (pDevice);
  4087. }
  4088. if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
  4089. if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
  4090. Value32 = REG_RD (pDevice, PciCfg.PciState);
  4091. REG_WR (pDevice, PciCfg.PciState,
  4092. Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
  4093. }
  4094. }
  4095. if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
  4096. (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) {
  4097. REG_WR (pDevice, MacCtrl.TxLengths, 0x26ff);
  4098. } else {
  4099. REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
  4100. }
  4101. return LmStatus;
  4102. }
  4103. /******************************************************************************/
  4104. /* Description: */
  4105. /* */
  4106. /* Return: */
  4107. /******************************************************************************/
  4108. LM_VOID
  4109. LM_ReadPhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, PLM_UINT32 pData32)
  4110. {
  4111. LM_UINT32 Value32;
  4112. LM_UINT32 j;
  4113. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4114. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4115. ~MI_MODE_AUTO_POLLING_ENABLE);
  4116. MM_Wait (40);
  4117. }
  4118. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4119. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
  4120. MI_COM_FIRST_PHY_REG_ADDR_BIT) | MI_COM_CMD_READ | MI_COM_START;
  4121. REG_WR (pDevice, MacCtrl.MiCom, Value32);
  4122. for (j = 0; j < 20; j++) {
  4123. MM_Wait (25);
  4124. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4125. if (!(Value32 & MI_COM_BUSY)) {
  4126. MM_Wait (5);
  4127. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4128. Value32 &= MI_COM_PHY_DATA_MASK;
  4129. break;
  4130. }
  4131. }
  4132. if (Value32 & MI_COM_BUSY) {
  4133. Value32 = 0;
  4134. }
  4135. *pData32 = Value32;
  4136. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4137. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4138. MM_Wait (40);
  4139. }
  4140. } /* LM_ReadPhy */
  4141. /******************************************************************************/
  4142. /* Description: */
  4143. /* */
  4144. /* Return: */
  4145. /******************************************************************************/
  4146. LM_VOID
  4147. LM_WritePhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, LM_UINT32 Data32)
  4148. {
  4149. LM_UINT32 Value32;
  4150. LM_UINT32 j;
  4151. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4152. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
  4153. ~MI_MODE_AUTO_POLLING_ENABLE);
  4154. MM_Wait (40);
  4155. }
  4156. Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
  4157. ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
  4158. MI_COM_FIRST_PHY_REG_ADDR_BIT) | (Data32 & MI_COM_PHY_DATA_MASK) |
  4159. MI_COM_CMD_WRITE | MI_COM_START;
  4160. REG_WR (pDevice, MacCtrl.MiCom, Value32);
  4161. for (j = 0; j < 20; j++) {
  4162. MM_Wait (25);
  4163. Value32 = REG_RD (pDevice, MacCtrl.MiCom);
  4164. if (!(Value32 & MI_COM_BUSY)) {
  4165. MM_Wait (5);
  4166. break;
  4167. }
  4168. }
  4169. if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
  4170. REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
  4171. MM_Wait (40);
  4172. }
  4173. } /* LM_WritePhy */
  4174. /******************************************************************************/
  4175. /* Description: */
  4176. /* */
  4177. /* Return: */
  4178. /******************************************************************************/
  4179. LM_STATUS LM_SetPowerState (PLM_DEVICE_BLOCK pDevice, LM_POWER_STATE PowerLevel)
  4180. {
  4181. LM_UINT32 PmeSupport;
  4182. LM_UINT32 Value32;
  4183. LM_UINT32 PmCtrl;
  4184. /* make sureindirect accesses are enabled */
  4185. MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
  4186. pDevice->MiscHostCtrl);
  4187. /* Clear the PME_ASSERT bit and the power state bits. Also enable */
  4188. /* the PME bit. */
  4189. MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
  4190. PmCtrl |= T3_PM_PME_ASSERTED;
  4191. PmCtrl &= ~T3_PM_POWER_STATE_MASK;
  4192. /* Set the appropriate power state. */
  4193. if (PowerLevel == LM_POWER_STATE_D0) {
  4194. /* Bring the card out of low power mode. */
  4195. PmCtrl |= T3_PM_POWER_STATE_D0;
  4196. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4197. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
  4198. MM_Wait (40);
  4199. #if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */
  4200. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x02);
  4201. #endif
  4202. return LM_STATUS_SUCCESS;
  4203. } else if (PowerLevel == LM_POWER_STATE_D1) {
  4204. PmCtrl |= T3_PM_POWER_STATE_D1;
  4205. } else if (PowerLevel == LM_POWER_STATE_D2) {
  4206. PmCtrl |= T3_PM_POWER_STATE_D2;
  4207. } else if (PowerLevel == LM_POWER_STATE_D3) {
  4208. PmCtrl |= T3_PM_POWER_STATE_D3;
  4209. } else {
  4210. return LM_STATUS_FAILURE;
  4211. }
  4212. PmCtrl |= T3_PM_PME_ENABLE;
  4213. /* Mask out all interrupts so LM_SetupPhy won't be called while we are */
  4214. /* setting new line speed. */
  4215. Value32 = REG_RD (pDevice, PciCfg.MiscHostCtrl);
  4216. REG_WR (pDevice, PciCfg.MiscHostCtrl,
  4217. Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
  4218. if (!pDevice->RestoreOnWakeUp) {
  4219. pDevice->RestoreOnWakeUp = TRUE;
  4220. pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
  4221. pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType;
  4222. }
  4223. /* Force auto-negotiation to 10 line speed. */
  4224. pDevice->DisableAutoNeg = FALSE;
  4225. pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
  4226. LM_SetupPhy (pDevice);
  4227. /* Put the driver in the initial state, and go through the power down */
  4228. /* sequence. */
  4229. LM_Halt (pDevice);
  4230. MM_ReadConfig32 (pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
  4231. if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) {
  4232. /* Enable WOL. */
  4233. LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x5a);
  4234. MM_Wait (40);
  4235. /* Set LED mode. */
  4236. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4237. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4238. Value32 = LED_CTRL_PHY_MODE_1;
  4239. } else {
  4240. if (pDevice->LedMode == LED_MODE_OUTPUT) {
  4241. Value32 = LED_CTRL_PHY_MODE_2;
  4242. } else {
  4243. Value32 = LED_CTRL_PHY_MODE_1;
  4244. }
  4245. }
  4246. Value32 = MAC_MODE_PORT_MODE_MII;
  4247. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
  4248. if (pDevice->LedMode == LED_MODE_LINK10 ||
  4249. pDevice->WolSpeed == WOL_SPEED_10MB) {
  4250. Value32 |= MAC_MODE_LINK_POLARITY;
  4251. }
  4252. } else {
  4253. Value32 |= MAC_MODE_LINK_POLARITY;
  4254. }
  4255. REG_WR (pDevice, MacCtrl.Mode, Value32);
  4256. MM_Wait (40);
  4257. MM_Wait (40);
  4258. MM_Wait (40);
  4259. /* Always enable magic packet wake-up if we have vaux. */
  4260. if ((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
  4261. (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) {
  4262. Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
  4263. }
  4264. REG_WR (pDevice, MacCtrl.Mode, Value32);
  4265. /* Enable the receiver. */
  4266. REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
  4267. }
  4268. /* Disable tx/rx clocks, and seletect an alternate clock. */
  4269. if (pDevice->WolSpeed == WOL_SPEED_100MB) {
  4270. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4271. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4272. Value32 =
  4273. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4274. T3_PCI_SELECT_ALTERNATE_CLOCK;
  4275. } else {
  4276. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
  4277. }
  4278. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4279. MM_Wait (40);
  4280. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4281. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4282. Value32 =
  4283. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4284. T3_PCI_SELECT_ALTERNATE_CLOCK |
  4285. T3_PCI_44MHZ_CORE_CLOCK;
  4286. } else {
  4287. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4288. T3_PCI_44MHZ_CORE_CLOCK;
  4289. }
  4290. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4291. MM_Wait (40);
  4292. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4293. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4294. Value32 =
  4295. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4296. T3_PCI_44MHZ_CORE_CLOCK;
  4297. } else {
  4298. Value32 = T3_PCI_44MHZ_CORE_CLOCK;
  4299. }
  4300. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4301. } else {
  4302. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4303. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4304. Value32 =
  4305. T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
  4306. T3_PCI_SELECT_ALTERNATE_CLOCK |
  4307. T3_PCI_POWER_DOWN_PCI_PLL133;
  4308. } else {
  4309. Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
  4310. T3_PCI_POWER_DOWN_PCI_PLL133;
  4311. }
  4312. REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
  4313. }
  4314. MM_Wait (40);
  4315. if (!pDevice->EepromWp
  4316. && (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)) {
  4317. /* Switch adapter to auxilliary power. */
  4318. if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
  4319. T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
  4320. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4321. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4322. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4323. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4324. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4325. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4326. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4327. MM_Wait (40);
  4328. } else {
  4329. /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
  4330. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4331. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4332. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4333. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4334. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4335. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4336. MM_Wait (40);
  4337. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
  4338. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4339. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4340. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4341. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4342. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4343. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
  4344. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
  4345. MM_Wait (40);
  4346. /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
  4347. REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
  4348. GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
  4349. GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
  4350. GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
  4351. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
  4352. GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
  4353. MM_Wait (40);
  4354. }
  4355. }
  4356. /* Set the phy to low power mode. */
  4357. /* Put the the hardware in low power mode. */
  4358. MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
  4359. return LM_STATUS_SUCCESS;
  4360. } /* LM_SetPowerState */
  4361. /******************************************************************************/
  4362. /* Description: */
  4363. /* */
  4364. /* Return: */
  4365. /******************************************************************************/
  4366. static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice)
  4367. {
  4368. LM_UINT32 Value32;
  4369. Value32 = 0;
  4370. /* Auto negotiation flow control only when autonegotiation is enabled. */
  4371. if (pDevice->DisableAutoNeg == FALSE ||
  4372. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
  4373. pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
  4374. /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
  4375. if ((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
  4376. ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
  4377. && (pDevice->
  4378. FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) {
  4379. Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
  4380. } else if (pDevice->
  4381. FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) {
  4382. Value32 |= PHY_AN_AD_ASYM_PAUSE;
  4383. } else if (pDevice->
  4384. FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) {
  4385. Value32 |=
  4386. PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
  4387. }
  4388. }
  4389. return Value32;
  4390. }
  4391. /******************************************************************************/
  4392. /* Description: */
  4393. /* */
  4394. /* Return: */
  4395. /* LM_STATUS_FAILURE */
  4396. /* LM_STATUS_SUCCESS */
  4397. /* */
  4398. /******************************************************************************/
  4399. static LM_STATUS
  4400. LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
  4401. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4402. {
  4403. LM_MEDIA_TYPE MediaType;
  4404. LM_LINE_SPEED LineSpeed;
  4405. LM_DUPLEX_MODE DuplexMode;
  4406. LM_UINT32 NewPhyCtrl;
  4407. LM_UINT32 Value32;
  4408. LM_UINT32 Cnt;
  4409. /* Get the interface type, line speed, and duplex mode. */
  4410. LM_TranslateRequestedMediaType (RequestedMediaType, &MediaType,
  4411. &LineSpeed, &DuplexMode);
  4412. if (pDevice->RestoreOnWakeUp) {
  4413. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4414. pDevice->advertising1000 = 0;
  4415. Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
  4416. if (pDevice->WolSpeed == WOL_SPEED_100MB) {
  4417. Value32 |=
  4418. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4419. }
  4420. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4421. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4422. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4423. pDevice->advertising = Value32;
  4424. }
  4425. /* Setup the auto-negotiation advertisement register. */
  4426. else if (LineSpeed == LM_LINE_SPEED_UNKNOWN) {
  4427. /* Setup the 10/100 Mbps auto-negotiation advertisement register. */
  4428. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
  4429. PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
  4430. PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
  4431. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4432. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4433. pDevice->advertising = Value32;
  4434. /* Advertise 1000Mbps */
  4435. Value32 =
  4436. BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL;
  4437. #if INCLUDE_5701_AX_FIX
  4438. /* Bug: workaround for CRC error in gigabit mode when we are in */
  4439. /* slave mode. This will force the PHY to operate in */
  4440. /* master mode. */
  4441. if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
  4442. pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
  4443. Value32 |= BCM540X_CONFIG_AS_MASTER |
  4444. BCM540X_ENABLE_CONFIG_AS_MASTER;
  4445. }
  4446. #endif
  4447. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
  4448. pDevice->advertising1000 = Value32;
  4449. } else {
  4450. if (LineSpeed == LM_LINE_SPEED_1000MBPS) {
  4451. Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4452. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4453. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4454. pDevice->advertising = Value32;
  4455. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4456. Value32 = BCM540X_AN_AD_1000BASET_HALF;
  4457. } else {
  4458. Value32 = BCM540X_AN_AD_1000BASET_FULL;
  4459. }
  4460. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG,
  4461. Value32);
  4462. pDevice->advertising1000 = Value32;
  4463. } else if (LineSpeed == LM_LINE_SPEED_100MBPS) {
  4464. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4465. pDevice->advertising1000 = 0;
  4466. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4467. Value32 = PHY_AN_AD_100BASETX_HALF;
  4468. } else {
  4469. Value32 = PHY_AN_AD_100BASETX_FULL;
  4470. }
  4471. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4472. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4473. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4474. pDevice->advertising = Value32;
  4475. } else if (LineSpeed == LM_LINE_SPEED_10MBPS) {
  4476. LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
  4477. pDevice->advertising1000 = 0;
  4478. if (DuplexMode != LM_DUPLEX_MODE_FULL) {
  4479. Value32 = PHY_AN_AD_10BASET_HALF;
  4480. } else {
  4481. Value32 = PHY_AN_AD_10BASET_FULL;
  4482. }
  4483. Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
  4484. Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
  4485. LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
  4486. pDevice->advertising = Value32;
  4487. }
  4488. }
  4489. /* Force line speed if auto-negotiation is disabled. */
  4490. if (pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) {
  4491. /* This code path is executed only when there is link. */
  4492. pDevice->MediaType = MediaType;
  4493. pDevice->LineSpeed = LineSpeed;
  4494. pDevice->DuplexMode = DuplexMode;
  4495. /* Force line seepd. */
  4496. NewPhyCtrl = 0;
  4497. switch (LineSpeed) {
  4498. case LM_LINE_SPEED_10MBPS:
  4499. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
  4500. break;
  4501. case LM_LINE_SPEED_100MBPS:
  4502. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
  4503. break;
  4504. case LM_LINE_SPEED_1000MBPS:
  4505. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4506. break;
  4507. default:
  4508. NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
  4509. break;
  4510. }
  4511. if (DuplexMode == LM_DUPLEX_MODE_FULL) {
  4512. NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
  4513. }
  4514. /* Don't do anything if the PHY_CTRL is already what we wanted. */
  4515. LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
  4516. if (Value32 != NewPhyCtrl) {
  4517. /* Temporary bring the link down before forcing line speed. */
  4518. LM_WritePhy (pDevice, PHY_CTRL_REG,
  4519. PHY_CTRL_LOOPBACK_MODE);
  4520. /* Wait for link to go down. */
  4521. for (Cnt = 0; Cnt < 15000; Cnt++) {
  4522. MM_Wait (10);
  4523. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  4524. LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
  4525. if (!(Value32 & PHY_STATUS_LINK_PASS)) {
  4526. MM_Wait (40);
  4527. break;
  4528. }
  4529. }
  4530. LM_WritePhy (pDevice, PHY_CTRL_REG, NewPhyCtrl);
  4531. MM_Wait (40);
  4532. }
  4533. } else {
  4534. LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
  4535. PHY_CTRL_RESTART_AUTO_NEG);
  4536. }
  4537. return LM_STATUS_SUCCESS;
  4538. } /* LM_ForceAutoNegBcm540xPhy */
  4539. /******************************************************************************/
  4540. /* Description: */
  4541. /* */
  4542. /* Return: */
  4543. /******************************************************************************/
  4544. static LM_STATUS
  4545. LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
  4546. LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
  4547. {
  4548. LM_STATUS LmStatus;
  4549. /* Initialize the phy chip. */
  4550. switch (pDevice->PhyId & PHY_ID_MASK) {
  4551. case PHY_BCM5400_PHY_ID:
  4552. case PHY_BCM5401_PHY_ID:
  4553. case PHY_BCM5411_PHY_ID:
  4554. case PHY_BCM5701_PHY_ID:
  4555. case PHY_BCM5703_PHY_ID:
  4556. case PHY_BCM5704_PHY_ID:
  4557. LmStatus =
  4558. LM_ForceAutoNegBcm540xPhy (pDevice, RequestedMediaType);
  4559. break;
  4560. default:
  4561. LmStatus = LM_STATUS_FAILURE;
  4562. break;
  4563. }
  4564. return LmStatus;
  4565. } /* LM_ForceAutoNeg */
  4566. /******************************************************************************/
  4567. /* Description: */
  4568. /* */
  4569. /* Return: */
  4570. /******************************************************************************/
  4571. LM_STATUS LM_LoadFirmware (PLM_DEVICE_BLOCK pDevice,
  4572. PT3_FWIMG_INFO pFwImg,
  4573. LM_UINT32 LoadCpu, LM_UINT32 StartCpu)
  4574. {
  4575. LM_UINT32 i;
  4576. LM_UINT32 address;
  4577. if (LoadCpu & T3_RX_CPU_ID) {
  4578. if (LM_HaltCpu (pDevice, T3_RX_CPU_ID) != LM_STATUS_SUCCESS) {
  4579. return LM_STATUS_FAILURE;
  4580. }
  4581. /* First of all clear scrach pad memory */
  4582. for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i += 4) {
  4583. LM_RegWrInd (pDevice, T3_RX_CPU_SPAD_ADDR + i, 0);
  4584. }
  4585. /* Copy code first */
  4586. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  4587. for (i = 0; i <= pFwImg->Text.Length; i += 4) {
  4588. LM_RegWrInd (pDevice, address + i,
  4589. ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
  4590. 4]);
  4591. }
  4592. address =
  4593. T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  4594. for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
  4595. LM_RegWrInd (pDevice, address + i,
  4596. ((LM_UINT32 *) pFwImg->ROnlyData.
  4597. Buffer)[i / 4]);
  4598. }
  4599. address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  4600. for (i = 0; i <= pFwImg->Data.Length; i += 4) {
  4601. LM_RegWrInd (pDevice, address + i,
  4602. ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
  4603. 4]);
  4604. }
  4605. }
  4606. if (LoadCpu & T3_TX_CPU_ID) {
  4607. if (LM_HaltCpu (pDevice, T3_TX_CPU_ID) != LM_STATUS_SUCCESS) {
  4608. return LM_STATUS_FAILURE;
  4609. }
  4610. /* First of all clear scrach pad memory */
  4611. for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i += 4) {
  4612. LM_RegWrInd (pDevice, T3_TX_CPU_SPAD_ADDR + i, 0);
  4613. }
  4614. /* Copy code first */
  4615. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
  4616. for (i = 0; i <= pFwImg->Text.Length; i += 4) {
  4617. LM_RegWrInd (pDevice, address + i,
  4618. ((LM_UINT32 *) pFwImg->Text.Buffer)[i /
  4619. 4]);
  4620. }
  4621. address =
  4622. T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
  4623. for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
  4624. LM_RegWrInd (pDevice, address + i,
  4625. ((LM_UINT32 *) pFwImg->ROnlyData.
  4626. Buffer)[i / 4]);
  4627. }
  4628. address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
  4629. for (i = 0; i <= pFwImg->Data.Length; i += 4) {
  4630. LM_RegWrInd (pDevice, address + i,
  4631. ((LM_UINT32 *) pFwImg->Data.Buffer)[i /
  4632. 4]);
  4633. }
  4634. }
  4635. if (StartCpu & T3_RX_CPU_ID) {
  4636. /* Start Rx CPU */
  4637. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4638. REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
  4639. for (i = 0; i < 5; i++) {
  4640. if (pFwImg->StartAddress ==
  4641. REG_RD (pDevice, rxCpu.reg.PC))
  4642. break;
  4643. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4644. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4645. REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
  4646. MM_Wait (1000);
  4647. }
  4648. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4649. REG_WR (pDevice, rxCpu.reg.mode, 0);
  4650. }
  4651. if (StartCpu & T3_TX_CPU_ID) {
  4652. /* Start Tx CPU */
  4653. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4654. REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
  4655. for (i = 0; i < 5; i++) {
  4656. if (pFwImg->StartAddress ==
  4657. REG_RD (pDevice, txCpu.reg.PC))
  4658. break;
  4659. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4660. REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
  4661. REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
  4662. MM_Wait (1000);
  4663. }
  4664. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4665. REG_WR (pDevice, txCpu.reg.mode, 0);
  4666. }
  4667. return LM_STATUS_SUCCESS;
  4668. }
  4669. STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number)
  4670. {
  4671. LM_UINT32 i;
  4672. if (cpu_number == T3_RX_CPU_ID) {
  4673. for (i = 0; i < 10000; i++) {
  4674. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4675. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4676. if (REG_RD (pDevice, rxCpu.reg.mode) & CPU_MODE_HALT)
  4677. break;
  4678. }
  4679. REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
  4680. REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
  4681. MM_Wait (10);
  4682. } else {
  4683. for (i = 0; i < 10000; i++) {
  4684. REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
  4685. REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
  4686. if (REG_RD (pDevice, txCpu.reg.mode) & CPU_MODE_HALT)
  4687. break;
  4688. }
  4689. }
  4690. return ((i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS);
  4691. }
  4692. int LM_BlinkLED (PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
  4693. {
  4694. LM_UINT32 Oldcfg;
  4695. int j;
  4696. int ret = 0;
  4697. if (BlinkDurationSec == 0) {
  4698. return 0;
  4699. }
  4700. if (BlinkDurationSec > 120) {
  4701. BlinkDurationSec = 120;
  4702. }
  4703. Oldcfg = REG_RD (pDevice, MacCtrl.LedCtrl);
  4704. for (j = 0; j < BlinkDurationSec * 2; j++) {
  4705. if (j % 2) {
  4706. /* Turn on the LEDs. */
  4707. REG_WR (pDevice, MacCtrl.LedCtrl,
  4708. LED_CTRL_OVERRIDE_LINK_LED |
  4709. LED_CTRL_1000MBPS_LED_ON |
  4710. LED_CTRL_100MBPS_LED_ON |
  4711. LED_CTRL_10MBPS_LED_ON |
  4712. LED_CTRL_OVERRIDE_TRAFFIC_LED |
  4713. LED_CTRL_BLINK_TRAFFIC_LED |
  4714. LED_CTRL_TRAFFIC_LED);
  4715. } else {
  4716. /* Turn off the LEDs. */
  4717. REG_WR (pDevice, MacCtrl.LedCtrl,
  4718. LED_CTRL_OVERRIDE_LINK_LED |
  4719. LED_CTRL_OVERRIDE_TRAFFIC_LED);
  4720. }
  4721. #ifndef EMBEDDED
  4722. current->state = TASK_INTERRUPTIBLE;
  4723. if (schedule_timeout (HZ / 2) != 0) {
  4724. ret = -EINTR;
  4725. break;
  4726. }
  4727. #else
  4728. udelay (100000); /* 1s sleep */
  4729. #endif
  4730. }
  4731. REG_WR (pDevice, MacCtrl.LedCtrl, Oldcfg);
  4732. return ret;
  4733. }
  4734. int t3_do_dma (PLM_DEVICE_BLOCK pDevice,
  4735. LM_PHYSICAL_ADDRESS host_addr_phy, int length, int dma_read)
  4736. {
  4737. T3_DMA_DESC dma_desc;
  4738. int i;
  4739. LM_UINT32 dma_desc_addr;
  4740. LM_UINT32 value32;
  4741. REG_WR (pDevice, BufMgr.Mode, 0);
  4742. REG_WR (pDevice, Ftq.Reset, 0);
  4743. dma_desc.host_addr.High = host_addr_phy.High;
  4744. dma_desc.host_addr.Low = host_addr_phy.Low;
  4745. dma_desc.nic_mbuf = 0x2100;
  4746. dma_desc.len = length;
  4747. dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */
  4748. if (dma_read) {
  4749. dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
  4750. T3_QID_DMA_HIGH_PRI_READ;
  4751. REG_WR (pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
  4752. } else {
  4753. dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
  4754. T3_QID_DMA_HIGH_PRI_WRITE;
  4755. REG_WR (pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
  4756. }
  4757. dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
  4758. /* Writing this DMA descriptor to DMA memory */
  4759. for (i = 0; i < sizeof (T3_DMA_DESC); i += 4) {
  4760. value32 = *((PLM_UINT32) (((PLM_UINT8) & dma_desc) + i));
  4761. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG,
  4762. dma_desc_addr + i);
  4763. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG,
  4764. cpu_to_le32 (value32));
  4765. }
  4766. MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
  4767. if (dma_read)
  4768. REG_WR (pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue,
  4769. dma_desc_addr);
  4770. else
  4771. REG_WR (pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue,
  4772. dma_desc_addr);
  4773. for (i = 0; i < 40; i++) {
  4774. if (dma_read)
  4775. value32 =
  4776. REG_RD (pDevice,
  4777. Ftq.RcvBdCompFtqFifoEnqueueDequeue);
  4778. else
  4779. value32 =
  4780. REG_RD (pDevice,
  4781. Ftq.RcvDataCompFtqFifoEnqueueDequeue);
  4782. if ((value32 & 0xffff) == dma_desc_addr)
  4783. break;
  4784. MM_Wait (10);
  4785. }
  4786. return LM_STATUS_SUCCESS;
  4787. }
  4788. STATIC LM_STATUS
  4789. LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
  4790. LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
  4791. {
  4792. int j;
  4793. LM_UINT32 *ptr;
  4794. int dma_success = 0;
  4795. if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
  4796. T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
  4797. return LM_STATUS_SUCCESS;
  4798. }
  4799. while (!dma_success) {
  4800. /* Fill data with incremental patterns */
  4801. ptr = (LM_UINT32 *) pBufferVirt;
  4802. for (j = 0; j < BufferSize / 4; j++)
  4803. *ptr++ = j;
  4804. if (t3_do_dma (pDevice, BufferPhy, BufferSize, 1) ==
  4805. LM_STATUS_FAILURE) {
  4806. return LM_STATUS_FAILURE;
  4807. }
  4808. MM_Wait (40);
  4809. ptr = (LM_UINT32 *) pBufferVirt;
  4810. /* Fill data with zero */
  4811. for (j = 0; j < BufferSize / 4; j++)
  4812. *ptr++ = 0;
  4813. if (t3_do_dma (pDevice, BufferPhy, BufferSize, 0) ==
  4814. LM_STATUS_FAILURE) {
  4815. return LM_STATUS_FAILURE;
  4816. }
  4817. MM_Wait (40);
  4818. /* Check for data */
  4819. ptr = (LM_UINT32 *) pBufferVirt;
  4820. for (j = 0; j < BufferSize / 4; j++) {
  4821. if (*ptr++ != j) {
  4822. if ((pDevice->
  4823. DmaReadWriteCtrl &
  4824. DMA_CTRL_WRITE_BOUNDARY_MASK)
  4825. == DMA_CTRL_WRITE_BOUNDARY_DISABLE) {
  4826. pDevice->DmaReadWriteCtrl =
  4827. (pDevice->
  4828. DmaReadWriteCtrl &
  4829. ~DMA_CTRL_WRITE_BOUNDARY_MASK) |
  4830. DMA_CTRL_WRITE_BOUNDARY_16;
  4831. REG_WR (pDevice,
  4832. PciCfg.DmaReadWriteCtrl,
  4833. pDevice->DmaReadWriteCtrl);
  4834. break;
  4835. } else {
  4836. return LM_STATUS_FAILURE;
  4837. }
  4838. }
  4839. }
  4840. if (j == (BufferSize / 4))
  4841. dma_success = 1;
  4842. }
  4843. return LM_STATUS_SUCCESS;
  4844. }