uec.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395
  1. /*
  2. * Copyright (C) 2006-2009 Freescale Semiconductor, Inc.
  3. *
  4. * Dave Liu <daveliu@freescale.com>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of
  9. * the License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  19. * MA 02111-1307 USA
  20. */
  21. #include "common.h"
  22. #include "net.h"
  23. #include "malloc.h"
  24. #include "asm/errno.h"
  25. #include "asm/io.h"
  26. #include "asm/immap_qe.h"
  27. #include "qe.h"
  28. #include "uccf.h"
  29. #include "uec.h"
  30. #include "uec_phy.h"
  31. #include "miiphy.h"
  32. static uec_info_t uec_info[] = {
  33. #ifdef CONFIG_UEC_ETH1
  34. STD_UEC_INFO(1), /* UEC1 */
  35. #endif
  36. #ifdef CONFIG_UEC_ETH2
  37. STD_UEC_INFO(2), /* UEC2 */
  38. #endif
  39. #ifdef CONFIG_UEC_ETH3
  40. STD_UEC_INFO(3), /* UEC3 */
  41. #endif
  42. #ifdef CONFIG_UEC_ETH4
  43. STD_UEC_INFO(4), /* UEC4 */
  44. #endif
  45. #ifdef CONFIG_UEC_ETH5
  46. STD_UEC_INFO(5), /* UEC5 */
  47. #endif
  48. #ifdef CONFIG_UEC_ETH6
  49. STD_UEC_INFO(6), /* UEC6 */
  50. #endif
  51. #ifdef CONFIG_UEC_ETH7
  52. STD_UEC_INFO(7), /* UEC7 */
  53. #endif
  54. #ifdef CONFIG_UEC_ETH8
  55. STD_UEC_INFO(8), /* UEC8 */
  56. #endif
  57. };
  58. #define MAXCONTROLLERS (8)
  59. static struct eth_device *devlist[MAXCONTROLLERS];
  60. u16 phy_read (struct uec_mii_info *mii_info, u16 regnum);
  61. void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val);
  62. static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode)
  63. {
  64. uec_t *uec_regs;
  65. u32 maccfg1;
  66. if (!uec) {
  67. printf("%s: uec not initial\n", __FUNCTION__);
  68. return -EINVAL;
  69. }
  70. uec_regs = uec->uec_regs;
  71. maccfg1 = in_be32(&uec_regs->maccfg1);
  72. if (mode & COMM_DIR_TX) {
  73. maccfg1 |= MACCFG1_ENABLE_TX;
  74. out_be32(&uec_regs->maccfg1, maccfg1);
  75. uec->mac_tx_enabled = 1;
  76. }
  77. if (mode & COMM_DIR_RX) {
  78. maccfg1 |= MACCFG1_ENABLE_RX;
  79. out_be32(&uec_regs->maccfg1, maccfg1);
  80. uec->mac_rx_enabled = 1;
  81. }
  82. return 0;
  83. }
  84. static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode)
  85. {
  86. uec_t *uec_regs;
  87. u32 maccfg1;
  88. if (!uec) {
  89. printf("%s: uec not initial\n", __FUNCTION__);
  90. return -EINVAL;
  91. }
  92. uec_regs = uec->uec_regs;
  93. maccfg1 = in_be32(&uec_regs->maccfg1);
  94. if (mode & COMM_DIR_TX) {
  95. maccfg1 &= ~MACCFG1_ENABLE_TX;
  96. out_be32(&uec_regs->maccfg1, maccfg1);
  97. uec->mac_tx_enabled = 0;
  98. }
  99. if (mode & COMM_DIR_RX) {
  100. maccfg1 &= ~MACCFG1_ENABLE_RX;
  101. out_be32(&uec_regs->maccfg1, maccfg1);
  102. uec->mac_rx_enabled = 0;
  103. }
  104. return 0;
  105. }
  106. static int uec_graceful_stop_tx(uec_private_t *uec)
  107. {
  108. ucc_fast_t *uf_regs;
  109. u32 cecr_subblock;
  110. u32 ucce;
  111. if (!uec || !uec->uccf) {
  112. printf("%s: No handle passed.\n", __FUNCTION__);
  113. return -EINVAL;
  114. }
  115. uf_regs = uec->uccf->uf_regs;
  116. /* Clear the grace stop event */
  117. out_be32(&uf_regs->ucce, UCCE_GRA);
  118. /* Issue host command */
  119. cecr_subblock =
  120. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  121. qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
  122. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  123. /* Wait for command to complete */
  124. do {
  125. ucce = in_be32(&uf_regs->ucce);
  126. } while (! (ucce & UCCE_GRA));
  127. uec->grace_stopped_tx = 1;
  128. return 0;
  129. }
  130. static int uec_graceful_stop_rx(uec_private_t *uec)
  131. {
  132. u32 cecr_subblock;
  133. u8 ack;
  134. if (!uec) {
  135. printf("%s: No handle passed.\n", __FUNCTION__);
  136. return -EINVAL;
  137. }
  138. if (!uec->p_rx_glbl_pram) {
  139. printf("%s: No init rx global parameter\n", __FUNCTION__);
  140. return -EINVAL;
  141. }
  142. /* Clear acknowledge bit */
  143. ack = uec->p_rx_glbl_pram->rxgstpack;
  144. ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
  145. uec->p_rx_glbl_pram->rxgstpack = ack;
  146. /* Keep issuing cmd and checking ack bit until it is asserted */
  147. do {
  148. /* Issue host command */
  149. cecr_subblock =
  150. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  151. qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
  152. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  153. ack = uec->p_rx_glbl_pram->rxgstpack;
  154. } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX ));
  155. uec->grace_stopped_rx = 1;
  156. return 0;
  157. }
  158. static int uec_restart_tx(uec_private_t *uec)
  159. {
  160. u32 cecr_subblock;
  161. if (!uec || !uec->uec_info) {
  162. printf("%s: No handle passed.\n", __FUNCTION__);
  163. return -EINVAL;
  164. }
  165. cecr_subblock =
  166. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  167. qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
  168. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  169. uec->grace_stopped_tx = 0;
  170. return 0;
  171. }
  172. static int uec_restart_rx(uec_private_t *uec)
  173. {
  174. u32 cecr_subblock;
  175. if (!uec || !uec->uec_info) {
  176. printf("%s: No handle passed.\n", __FUNCTION__);
  177. return -EINVAL;
  178. }
  179. cecr_subblock =
  180. ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num);
  181. qe_issue_cmd(QE_RESTART_RX, cecr_subblock,
  182. (u8)QE_CR_PROTOCOL_ETHERNET, 0);
  183. uec->grace_stopped_rx = 0;
  184. return 0;
  185. }
  186. static int uec_open(uec_private_t *uec, comm_dir_e mode)
  187. {
  188. ucc_fast_private_t *uccf;
  189. if (!uec || !uec->uccf) {
  190. printf("%s: No handle passed.\n", __FUNCTION__);
  191. return -EINVAL;
  192. }
  193. uccf = uec->uccf;
  194. /* check if the UCC number is in range. */
  195. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  196. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  197. return -EINVAL;
  198. }
  199. /* Enable MAC */
  200. uec_mac_enable(uec, mode);
  201. /* Enable UCC fast */
  202. ucc_fast_enable(uccf, mode);
  203. /* RISC microcode start */
  204. if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) {
  205. uec_restart_tx(uec);
  206. }
  207. if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) {
  208. uec_restart_rx(uec);
  209. }
  210. return 0;
  211. }
  212. static int uec_stop(uec_private_t *uec, comm_dir_e mode)
  213. {
  214. ucc_fast_private_t *uccf;
  215. if (!uec || !uec->uccf) {
  216. printf("%s: No handle passed.\n", __FUNCTION__);
  217. return -EINVAL;
  218. }
  219. uccf = uec->uccf;
  220. /* check if the UCC number is in range. */
  221. if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) {
  222. printf("%s: ucc_num out of range.\n", __FUNCTION__);
  223. return -EINVAL;
  224. }
  225. /* Stop any transmissions */
  226. if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) {
  227. uec_graceful_stop_tx(uec);
  228. }
  229. /* Stop any receptions */
  230. if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) {
  231. uec_graceful_stop_rx(uec);
  232. }
  233. /* Disable the UCC fast */
  234. ucc_fast_disable(uec->uccf, mode);
  235. /* Disable the MAC */
  236. uec_mac_disable(uec, mode);
  237. return 0;
  238. }
  239. static int uec_set_mac_duplex(uec_private_t *uec, int duplex)
  240. {
  241. uec_t *uec_regs;
  242. u32 maccfg2;
  243. if (!uec) {
  244. printf("%s: uec not initial\n", __FUNCTION__);
  245. return -EINVAL;
  246. }
  247. uec_regs = uec->uec_regs;
  248. if (duplex == DUPLEX_HALF) {
  249. maccfg2 = in_be32(&uec_regs->maccfg2);
  250. maccfg2 &= ~MACCFG2_FDX;
  251. out_be32(&uec_regs->maccfg2, maccfg2);
  252. }
  253. if (duplex == DUPLEX_FULL) {
  254. maccfg2 = in_be32(&uec_regs->maccfg2);
  255. maccfg2 |= MACCFG2_FDX;
  256. out_be32(&uec_regs->maccfg2, maccfg2);
  257. }
  258. return 0;
  259. }
  260. static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode)
  261. {
  262. enet_interface_e enet_if_mode;
  263. uec_info_t *uec_info;
  264. uec_t *uec_regs;
  265. u32 upsmr;
  266. u32 maccfg2;
  267. if (!uec) {
  268. printf("%s: uec not initial\n", __FUNCTION__);
  269. return -EINVAL;
  270. }
  271. uec_info = uec->uec_info;
  272. uec_regs = uec->uec_regs;
  273. enet_if_mode = if_mode;
  274. maccfg2 = in_be32(&uec_regs->maccfg2);
  275. maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
  276. upsmr = in_be32(&uec->uccf->uf_regs->upsmr);
  277. upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM);
  278. switch (enet_if_mode) {
  279. case ENET_100_MII:
  280. case ENET_10_MII:
  281. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  282. break;
  283. case ENET_1000_GMII:
  284. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  285. break;
  286. case ENET_1000_TBI:
  287. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  288. upsmr |= UPSMR_TBIM;
  289. break;
  290. case ENET_1000_RTBI:
  291. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  292. upsmr |= (UPSMR_RPM | UPSMR_TBIM);
  293. break;
  294. case ENET_1000_RGMII_RXID:
  295. case ENET_1000_RGMII_ID:
  296. case ENET_1000_RGMII:
  297. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  298. upsmr |= UPSMR_RPM;
  299. break;
  300. case ENET_100_RGMII:
  301. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  302. upsmr |= UPSMR_RPM;
  303. break;
  304. case ENET_10_RGMII:
  305. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  306. upsmr |= (UPSMR_RPM | UPSMR_R10M);
  307. break;
  308. case ENET_100_RMII:
  309. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  310. upsmr |= UPSMR_RMM;
  311. break;
  312. case ENET_10_RMII:
  313. maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
  314. upsmr |= (UPSMR_R10M | UPSMR_RMM);
  315. break;
  316. case ENET_1000_SGMII:
  317. maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
  318. upsmr |= UPSMR_SGMM;
  319. break;
  320. default:
  321. return -EINVAL;
  322. break;
  323. }
  324. out_be32(&uec_regs->maccfg2, maccfg2);
  325. out_be32(&uec->uccf->uf_regs->upsmr, upsmr);
  326. return 0;
  327. }
  328. static int init_mii_management_configuration(uec_mii_t *uec_mii_regs)
  329. {
  330. uint timeout = 0x1000;
  331. u32 miimcfg = 0;
  332. miimcfg = in_be32(&uec_mii_regs->miimcfg);
  333. miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE;
  334. out_be32(&uec_mii_regs->miimcfg, miimcfg);
  335. /* Wait until the bus is free */
  336. while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--);
  337. if (timeout <= 0) {
  338. printf("%s: The MII Bus is stuck!", __FUNCTION__);
  339. return -ETIMEDOUT;
  340. }
  341. return 0;
  342. }
  343. static int init_phy(struct eth_device *dev)
  344. {
  345. uec_private_t *uec;
  346. uec_mii_t *umii_regs;
  347. struct uec_mii_info *mii_info;
  348. struct phy_info *curphy;
  349. int err;
  350. uec = (uec_private_t *)dev->priv;
  351. umii_regs = uec->uec_mii_regs;
  352. uec->oldlink = 0;
  353. uec->oldspeed = 0;
  354. uec->oldduplex = -1;
  355. mii_info = malloc(sizeof(*mii_info));
  356. if (!mii_info) {
  357. printf("%s: Could not allocate mii_info", dev->name);
  358. return -ENOMEM;
  359. }
  360. memset(mii_info, 0, sizeof(*mii_info));
  361. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  362. mii_info->speed = SPEED_1000;
  363. } else {
  364. mii_info->speed = SPEED_100;
  365. }
  366. mii_info->duplex = DUPLEX_FULL;
  367. mii_info->pause = 0;
  368. mii_info->link = 1;
  369. mii_info->advertising = (ADVERTISED_10baseT_Half |
  370. ADVERTISED_10baseT_Full |
  371. ADVERTISED_100baseT_Half |
  372. ADVERTISED_100baseT_Full |
  373. ADVERTISED_1000baseT_Full);
  374. mii_info->autoneg = 1;
  375. mii_info->mii_id = uec->uec_info->phy_address;
  376. mii_info->dev = dev;
  377. mii_info->mdio_read = &uec_read_phy_reg;
  378. mii_info->mdio_write = &uec_write_phy_reg;
  379. uec->mii_info = mii_info;
  380. qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num);
  381. if (init_mii_management_configuration(umii_regs)) {
  382. printf("%s: The MII Bus is stuck!", dev->name);
  383. err = -1;
  384. goto bus_fail;
  385. }
  386. /* get info for this PHY */
  387. curphy = uec_get_phy_info(uec->mii_info);
  388. if (!curphy) {
  389. printf("%s: No PHY found", dev->name);
  390. err = -1;
  391. goto no_phy;
  392. }
  393. mii_info->phyinfo = curphy;
  394. /* Run the commands which initialize the PHY */
  395. if (curphy->init) {
  396. err = curphy->init(uec->mii_info);
  397. if (err)
  398. goto phy_init_fail;
  399. }
  400. return 0;
  401. phy_init_fail:
  402. no_phy:
  403. bus_fail:
  404. free(mii_info);
  405. return err;
  406. }
  407. static void adjust_link(struct eth_device *dev)
  408. {
  409. uec_private_t *uec = (uec_private_t *)dev->priv;
  410. uec_t *uec_regs;
  411. struct uec_mii_info *mii_info = uec->mii_info;
  412. extern void change_phy_interface_mode(struct eth_device *dev,
  413. enet_interface_e mode);
  414. uec_regs = uec->uec_regs;
  415. if (mii_info->link) {
  416. /* Now we make sure that we can be in full duplex mode.
  417. * If not, we operate in half-duplex mode. */
  418. if (mii_info->duplex != uec->oldduplex) {
  419. if (!(mii_info->duplex)) {
  420. uec_set_mac_duplex(uec, DUPLEX_HALF);
  421. printf("%s: Half Duplex\n", dev->name);
  422. } else {
  423. uec_set_mac_duplex(uec, DUPLEX_FULL);
  424. printf("%s: Full Duplex\n", dev->name);
  425. }
  426. uec->oldduplex = mii_info->duplex;
  427. }
  428. if (mii_info->speed != uec->oldspeed) {
  429. if (uec->uec_info->uf_info.eth_type == GIGA_ETH) {
  430. switch (mii_info->speed) {
  431. case 1000:
  432. break;
  433. case 100:
  434. printf ("switching to rgmii 100\n");
  435. /* change phy to rgmii 100 */
  436. change_phy_interface_mode(dev,
  437. ENET_100_RGMII);
  438. /* change the MAC interface mode */
  439. uec_set_mac_if_mode(uec,ENET_100_RGMII);
  440. break;
  441. case 10:
  442. printf ("switching to rgmii 10\n");
  443. /* change phy to rgmii 10 */
  444. change_phy_interface_mode(dev,
  445. ENET_10_RGMII);
  446. /* change the MAC interface mode */
  447. uec_set_mac_if_mode(uec,ENET_10_RGMII);
  448. break;
  449. default:
  450. printf("%s: Ack,Speed(%d)is illegal\n",
  451. dev->name, mii_info->speed);
  452. break;
  453. }
  454. }
  455. printf("%s: Speed %dBT\n", dev->name, mii_info->speed);
  456. uec->oldspeed = mii_info->speed;
  457. }
  458. if (!uec->oldlink) {
  459. printf("%s: Link is up\n", dev->name);
  460. uec->oldlink = 1;
  461. }
  462. } else { /* if (mii_info->link) */
  463. if (uec->oldlink) {
  464. printf("%s: Link is down\n", dev->name);
  465. uec->oldlink = 0;
  466. uec->oldspeed = 0;
  467. uec->oldduplex = -1;
  468. }
  469. }
  470. }
  471. static void phy_change(struct eth_device *dev)
  472. {
  473. uec_private_t *uec = (uec_private_t *)dev->priv;
  474. /* Update the link, speed, duplex */
  475. uec->mii_info->phyinfo->read_status(uec->mii_info);
  476. /* Adjust the interface according to speed */
  477. adjust_link(dev);
  478. }
  479. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  480. && !defined(BITBANGMII)
  481. /*
  482. * Find a device index from the devlist by name
  483. *
  484. * Returns:
  485. * The index where the device is located, -1 on error
  486. */
  487. static int uec_miiphy_find_dev_by_name(char *devname)
  488. {
  489. int i;
  490. for (i = 0; i < MAXCONTROLLERS; i++) {
  491. if (strncmp(devname, devlist[i]->name, strlen(devname)) == 0) {
  492. break;
  493. }
  494. }
  495. /* If device cannot be found, returns -1 */
  496. if (i == MAXCONTROLLERS) {
  497. debug ("%s: device %s not found in devlist\n", __FUNCTION__, devname);
  498. i = -1;
  499. }
  500. return i;
  501. }
  502. /*
  503. * Read a MII PHY register.
  504. *
  505. * Returns:
  506. * 0 on success
  507. */
  508. static int uec_miiphy_read(char *devname, unsigned char addr,
  509. unsigned char reg, unsigned short *value)
  510. {
  511. int devindex = 0;
  512. if (devname == NULL || value == NULL) {
  513. debug("%s: NULL pointer given\n", __FUNCTION__);
  514. } else {
  515. devindex = uec_miiphy_find_dev_by_name(devname);
  516. if (devindex >= 0) {
  517. *value = uec_read_phy_reg(devlist[devindex], addr, reg);
  518. }
  519. }
  520. return 0;
  521. }
  522. /*
  523. * Write a MII PHY register.
  524. *
  525. * Returns:
  526. * 0 on success
  527. */
  528. static int uec_miiphy_write(char *devname, unsigned char addr,
  529. unsigned char reg, unsigned short value)
  530. {
  531. int devindex = 0;
  532. if (devname == NULL) {
  533. debug("%s: NULL pointer given\n", __FUNCTION__);
  534. } else {
  535. devindex = uec_miiphy_find_dev_by_name(devname);
  536. if (devindex >= 0) {
  537. uec_write_phy_reg(devlist[devindex], addr, reg, value);
  538. }
  539. }
  540. return 0;
  541. }
  542. #endif
  543. static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr)
  544. {
  545. uec_t *uec_regs;
  546. u32 mac_addr1;
  547. u32 mac_addr2;
  548. if (!uec) {
  549. printf("%s: uec not initial\n", __FUNCTION__);
  550. return -EINVAL;
  551. }
  552. uec_regs = uec->uec_regs;
  553. /* if a station address of 0x12345678ABCD, perform a write to
  554. MACSTNADDR1 of 0xCDAB7856,
  555. MACSTNADDR2 of 0x34120000 */
  556. mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \
  557. (mac_addr[3] << 8) | (mac_addr[2]);
  558. out_be32(&uec_regs->macstnaddr1, mac_addr1);
  559. mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000;
  560. out_be32(&uec_regs->macstnaddr2, mac_addr2);
  561. return 0;
  562. }
  563. static int uec_convert_threads_num(uec_num_of_threads_e threads_num,
  564. int *threads_num_ret)
  565. {
  566. int num_threads_numerica;
  567. switch (threads_num) {
  568. case UEC_NUM_OF_THREADS_1:
  569. num_threads_numerica = 1;
  570. break;
  571. case UEC_NUM_OF_THREADS_2:
  572. num_threads_numerica = 2;
  573. break;
  574. case UEC_NUM_OF_THREADS_4:
  575. num_threads_numerica = 4;
  576. break;
  577. case UEC_NUM_OF_THREADS_6:
  578. num_threads_numerica = 6;
  579. break;
  580. case UEC_NUM_OF_THREADS_8:
  581. num_threads_numerica = 8;
  582. break;
  583. default:
  584. printf("%s: Bad number of threads value.",
  585. __FUNCTION__);
  586. return -EINVAL;
  587. }
  588. *threads_num_ret = num_threads_numerica;
  589. return 0;
  590. }
  591. static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx)
  592. {
  593. uec_info_t *uec_info;
  594. u32 end_bd;
  595. u8 bmrx = 0;
  596. int i;
  597. uec_info = uec->uec_info;
  598. /* Alloc global Tx parameter RAM page */
  599. uec->tx_glbl_pram_offset = qe_muram_alloc(
  600. sizeof(uec_tx_global_pram_t),
  601. UEC_TX_GLOBAL_PRAM_ALIGNMENT);
  602. uec->p_tx_glbl_pram = (uec_tx_global_pram_t *)
  603. qe_muram_addr(uec->tx_glbl_pram_offset);
  604. /* Zero the global Tx prameter RAM */
  605. memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t));
  606. /* Init global Tx parameter RAM */
  607. /* TEMODER, RMON statistics disable, one Tx queue */
  608. out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE);
  609. /* SQPTR */
  610. uec->send_q_mem_reg_offset = qe_muram_alloc(
  611. sizeof(uec_send_queue_qd_t),
  612. UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
  613. uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *)
  614. qe_muram_addr(uec->send_q_mem_reg_offset);
  615. out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset);
  616. /* Setup the table with TxBDs ring */
  617. end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1)
  618. * SIZEOFBD;
  619. out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base,
  620. (u32)(uec->p_tx_bd_ring));
  621. out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address,
  622. end_bd);
  623. /* Scheduler Base Pointer, we have only one Tx queue, no need it */
  624. out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0);
  625. /* TxRMON Base Pointer, TxRMON disable, we don't need it */
  626. out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0);
  627. /* TSTATE, global snooping, big endian, the CSB bus selected */
  628. bmrx = BMR_INIT_VALUE;
  629. out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT));
  630. /* IPH_Offset */
  631. for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) {
  632. out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0);
  633. }
  634. /* VTAG table */
  635. for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) {
  636. out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0);
  637. }
  638. /* TQPTR */
  639. uec->thread_dat_tx_offset = qe_muram_alloc(
  640. num_threads_tx * sizeof(uec_thread_data_tx_t) +
  641. 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT);
  642. uec->p_thread_data_tx = (uec_thread_data_tx_t *)
  643. qe_muram_addr(uec->thread_dat_tx_offset);
  644. out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset);
  645. }
  646. static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx)
  647. {
  648. u8 bmrx = 0;
  649. int i;
  650. uec_82xx_address_filtering_pram_t *p_af_pram;
  651. /* Allocate global Rx parameter RAM page */
  652. uec->rx_glbl_pram_offset = qe_muram_alloc(
  653. sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT);
  654. uec->p_rx_glbl_pram = (uec_rx_global_pram_t *)
  655. qe_muram_addr(uec->rx_glbl_pram_offset);
  656. /* Zero Global Rx parameter RAM */
  657. memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t));
  658. /* Init global Rx parameter RAM */
  659. /* REMODER, Extended feature mode disable, VLAN disable,
  660. LossLess flow control disable, Receive firmware statisic disable,
  661. Extended address parsing mode disable, One Rx queues,
  662. Dynamic maximum/minimum frame length disable, IP checksum check
  663. disable, IP address alignment disable
  664. */
  665. out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE);
  666. /* RQPTR */
  667. uec->thread_dat_rx_offset = qe_muram_alloc(
  668. num_threads_rx * sizeof(uec_thread_data_rx_t),
  669. UEC_THREAD_DATA_ALIGNMENT);
  670. uec->p_thread_data_rx = (uec_thread_data_rx_t *)
  671. qe_muram_addr(uec->thread_dat_rx_offset);
  672. out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset);
  673. /* Type_or_Len */
  674. out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072);
  675. /* RxRMON base pointer, we don't need it */
  676. out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0);
  677. /* IntCoalescingPTR, we don't need it, no interrupt */
  678. out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0);
  679. /* RSTATE, global snooping, big endian, the CSB bus selected */
  680. bmrx = BMR_INIT_VALUE;
  681. out_8(&uec->p_rx_glbl_pram->rstate, bmrx);
  682. /* MRBLR */
  683. out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN);
  684. /* RBDQPTR */
  685. uec->rx_bd_qs_tbl_offset = qe_muram_alloc(
  686. sizeof(uec_rx_bd_queues_entry_t) + \
  687. sizeof(uec_rx_prefetched_bds_t),
  688. UEC_RX_BD_QUEUES_ALIGNMENT);
  689. uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *)
  690. qe_muram_addr(uec->rx_bd_qs_tbl_offset);
  691. /* Zero it */
  692. memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \
  693. sizeof(uec_rx_prefetched_bds_t));
  694. out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset);
  695. out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr,
  696. (u32)uec->p_rx_bd_ring);
  697. /* MFLR */
  698. out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN);
  699. /* MINFLR */
  700. out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN);
  701. /* MAXD1 */
  702. out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN);
  703. /* MAXD2 */
  704. out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN);
  705. /* ECAM_PTR */
  706. out_be32(&uec->p_rx_glbl_pram->ecamptr, 0);
  707. /* L2QT */
  708. out_be32(&uec->p_rx_glbl_pram->l2qt, 0);
  709. /* L3QT */
  710. for (i = 0; i < 8; i++) {
  711. out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0);
  712. }
  713. /* VLAN_TYPE */
  714. out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100);
  715. /* TCI */
  716. out_be16(&uec->p_rx_glbl_pram->vlantci, 0);
  717. /* Clear PQ2 style address filtering hash table */
  718. p_af_pram = (uec_82xx_address_filtering_pram_t *) \
  719. uec->p_rx_glbl_pram->addressfiltering;
  720. p_af_pram->iaddr_h = 0;
  721. p_af_pram->iaddr_l = 0;
  722. p_af_pram->gaddr_h = 0;
  723. p_af_pram->gaddr_l = 0;
  724. }
  725. static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec,
  726. int thread_tx, int thread_rx)
  727. {
  728. uec_init_cmd_pram_t *p_init_enet_param;
  729. u32 init_enet_param_offset;
  730. uec_info_t *uec_info;
  731. int i;
  732. int snum;
  733. u32 init_enet_offset;
  734. u32 entry_val;
  735. u32 command;
  736. u32 cecr_subblock;
  737. uec_info = uec->uec_info;
  738. /* Allocate init enet command parameter */
  739. uec->init_enet_param_offset = qe_muram_alloc(
  740. sizeof(uec_init_cmd_pram_t), 4);
  741. init_enet_param_offset = uec->init_enet_param_offset;
  742. uec->p_init_enet_param = (uec_init_cmd_pram_t *)
  743. qe_muram_addr(uec->init_enet_param_offset);
  744. /* Zero init enet command struct */
  745. memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t));
  746. /* Init the command struct */
  747. p_init_enet_param = uec->p_init_enet_param;
  748. p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0;
  749. p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1;
  750. p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2;
  751. p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3;
  752. p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4;
  753. p_init_enet_param->largestexternallookupkeysize = 0;
  754. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx)
  755. << ENET_INIT_PARAM_RGF_SHIFT;
  756. p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx)
  757. << ENET_INIT_PARAM_TGF_SHIFT;
  758. /* Init Rx global parameter pointer */
  759. p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset |
  760. (u32)uec_info->risc_rx;
  761. /* Init Rx threads */
  762. for (i = 0; i < (thread_rx + 1); i++) {
  763. if ((snum = qe_get_snum()) < 0) {
  764. printf("%s can not get snum\n", __FUNCTION__);
  765. return -ENOMEM;
  766. }
  767. if (i==0) {
  768. init_enet_offset = 0;
  769. } else {
  770. init_enet_offset = qe_muram_alloc(
  771. sizeof(uec_thread_rx_pram_t),
  772. UEC_THREAD_RX_PRAM_ALIGNMENT);
  773. }
  774. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  775. init_enet_offset | (u32)uec_info->risc_rx;
  776. p_init_enet_param->rxthread[i] = entry_val;
  777. }
  778. /* Init Tx global parameter pointer */
  779. p_init_enet_param->txglobal = uec->tx_glbl_pram_offset |
  780. (u32)uec_info->risc_tx;
  781. /* Init Tx threads */
  782. for (i = 0; i < thread_tx; i++) {
  783. if ((snum = qe_get_snum()) < 0) {
  784. printf("%s can not get snum\n", __FUNCTION__);
  785. return -ENOMEM;
  786. }
  787. init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t),
  788. UEC_THREAD_TX_PRAM_ALIGNMENT);
  789. entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) |
  790. init_enet_offset | (u32)uec_info->risc_tx;
  791. p_init_enet_param->txthread[i] = entry_val;
  792. }
  793. __asm__ __volatile__("sync");
  794. /* Issue QE command */
  795. command = QE_INIT_TX_RX;
  796. cecr_subblock = ucc_fast_get_qe_cr_subblock(
  797. uec->uec_info->uf_info.ucc_num);
  798. qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET,
  799. init_enet_param_offset);
  800. return 0;
  801. }
  802. static int uec_startup(uec_private_t *uec)
  803. {
  804. uec_info_t *uec_info;
  805. ucc_fast_info_t *uf_info;
  806. ucc_fast_private_t *uccf;
  807. ucc_fast_t *uf_regs;
  808. uec_t *uec_regs;
  809. int num_threads_tx;
  810. int num_threads_rx;
  811. u32 utbipar;
  812. enet_interface_e enet_interface;
  813. u32 length;
  814. u32 align;
  815. qe_bd_t *bd;
  816. u8 *buf;
  817. int i;
  818. if (!uec || !uec->uec_info) {
  819. printf("%s: uec or uec_info not initial\n", __FUNCTION__);
  820. return -EINVAL;
  821. }
  822. uec_info = uec->uec_info;
  823. uf_info = &(uec_info->uf_info);
  824. /* Check if Rx BD ring len is illegal */
  825. if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \
  826. (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) {
  827. printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n",
  828. __FUNCTION__);
  829. return -EINVAL;
  830. }
  831. /* Check if Tx BD ring len is illegal */
  832. if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) {
  833. printf("%s: Tx BD ring length must not be smaller than 2.\n",
  834. __FUNCTION__);
  835. return -EINVAL;
  836. }
  837. /* Check if MRBLR is illegal */
  838. if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) {
  839. printf("%s: max rx buffer length must be mutliple of 128.\n",
  840. __FUNCTION__);
  841. return -EINVAL;
  842. }
  843. /* Both Rx and Tx are stopped */
  844. uec->grace_stopped_rx = 1;
  845. uec->grace_stopped_tx = 1;
  846. /* Init UCC fast */
  847. if (ucc_fast_init(uf_info, &uccf)) {
  848. printf("%s: failed to init ucc fast\n", __FUNCTION__);
  849. return -ENOMEM;
  850. }
  851. /* Save uccf */
  852. uec->uccf = uccf;
  853. /* Convert the Tx threads number */
  854. if (uec_convert_threads_num(uec_info->num_threads_tx,
  855. &num_threads_tx)) {
  856. return -EINVAL;
  857. }
  858. /* Convert the Rx threads number */
  859. if (uec_convert_threads_num(uec_info->num_threads_rx,
  860. &num_threads_rx)) {
  861. return -EINVAL;
  862. }
  863. uf_regs = uccf->uf_regs;
  864. /* UEC register is following UCC fast registers */
  865. uec_regs = (uec_t *)(&uf_regs->ucc_eth);
  866. /* Save the UEC register pointer to UEC private struct */
  867. uec->uec_regs = uec_regs;
  868. /* Init UPSMR, enable hardware statistics (UCC) */
  869. out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE);
  870. /* Init MACCFG1, flow control disable, disable Tx and Rx */
  871. out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE);
  872. /* Init MACCFG2, length check, MAC PAD and CRC enable */
  873. out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE);
  874. /* Setup MAC interface mode */
  875. uec_set_mac_if_mode(uec, uec_info->enet_interface);
  876. /* Setup MII management base */
  877. #ifndef CONFIG_eTSEC_MDIO_BUS
  878. uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg);
  879. #else
  880. uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS;
  881. #endif
  882. /* Setup MII master clock source */
  883. qe_set_mii_clk_src(uec_info->uf_info.ucc_num);
  884. /* Setup UTBIPAR */
  885. utbipar = in_be32(&uec_regs->utbipar);
  886. utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK;
  887. enet_interface = uec->uec_info->enet_interface;
  888. if (enet_interface == ENET_1000_TBI ||
  889. enet_interface == ENET_1000_RTBI) {
  890. utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num)
  891. << UTBIPAR_PHY_ADDRESS_SHIFT;
  892. } else {
  893. utbipar |= (0x10 + uec_info->uf_info.ucc_num)
  894. << UTBIPAR_PHY_ADDRESS_SHIFT;
  895. }
  896. out_be32(&uec_regs->utbipar, utbipar);
  897. /* Configure the TBI for SGMII operation */
  898. if (uec->uec_info->enet_interface == ENET_1000_SGMII) {
  899. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  900. ENET_TBI_MII_ANA, TBIANA_SETTINGS);
  901. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  902. ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
  903. uec_write_phy_reg(uec->dev, uec_regs->utbipar,
  904. ENET_TBI_MII_CR, TBICR_SETTINGS);
  905. }
  906. /* Allocate Tx BDs */
  907. length = ((uec_info->tx_bd_ring_len * SIZEOFBD) /
  908. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) *
  909. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  910. if ((uec_info->tx_bd_ring_len * SIZEOFBD) %
  911. UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) {
  912. length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
  913. }
  914. align = UEC_TX_BD_RING_ALIGNMENT;
  915. uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align));
  916. if (uec->tx_bd_ring_offset != 0) {
  917. uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align)
  918. & ~(align - 1));
  919. }
  920. /* Zero all of Tx BDs */
  921. memset((void *)(uec->tx_bd_ring_offset), 0, length + align);
  922. /* Allocate Rx BDs */
  923. length = uec_info->rx_bd_ring_len * SIZEOFBD;
  924. align = UEC_RX_BD_RING_ALIGNMENT;
  925. uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align)));
  926. if (uec->rx_bd_ring_offset != 0) {
  927. uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align)
  928. & ~(align - 1));
  929. }
  930. /* Zero all of Rx BDs */
  931. memset((void *)(uec->rx_bd_ring_offset), 0, length + align);
  932. /* Allocate Rx buffer */
  933. length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN;
  934. align = UEC_RX_DATA_BUF_ALIGNMENT;
  935. uec->rx_buf_offset = (u32)malloc(length + align);
  936. if (uec->rx_buf_offset != 0) {
  937. uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align)
  938. & ~(align - 1));
  939. }
  940. /* Zero all of the Rx buffer */
  941. memset((void *)(uec->rx_buf_offset), 0, length + align);
  942. /* Init TxBD ring */
  943. bd = (qe_bd_t *)uec->p_tx_bd_ring;
  944. uec->txBd = bd;
  945. for (i = 0; i < uec_info->tx_bd_ring_len; i++) {
  946. BD_DATA_CLEAR(bd);
  947. BD_STATUS_SET(bd, 0);
  948. BD_LENGTH_SET(bd, 0);
  949. bd ++;
  950. }
  951. BD_STATUS_SET((--bd), TxBD_WRAP);
  952. /* Init RxBD ring */
  953. bd = (qe_bd_t *)uec->p_rx_bd_ring;
  954. uec->rxBd = bd;
  955. buf = uec->p_rx_buf;
  956. for (i = 0; i < uec_info->rx_bd_ring_len; i++) {
  957. BD_DATA_SET(bd, buf);
  958. BD_LENGTH_SET(bd, 0);
  959. BD_STATUS_SET(bd, RxBD_EMPTY);
  960. buf += MAX_RXBUF_LEN;
  961. bd ++;
  962. }
  963. BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY);
  964. /* Init global Tx parameter RAM */
  965. uec_init_tx_parameter(uec, num_threads_tx);
  966. /* Init global Rx parameter RAM */
  967. uec_init_rx_parameter(uec, num_threads_rx);
  968. /* Init ethernet Tx and Rx parameter command */
  969. if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx,
  970. num_threads_rx)) {
  971. printf("%s issue init enet cmd failed\n", __FUNCTION__);
  972. return -ENOMEM;
  973. }
  974. return 0;
  975. }
  976. static int uec_init(struct eth_device* dev, bd_t *bd)
  977. {
  978. uec_private_t *uec;
  979. int err, i;
  980. struct phy_info *curphy;
  981. uec = (uec_private_t *)dev->priv;
  982. if (uec->the_first_run == 0) {
  983. err = init_phy(dev);
  984. if (err) {
  985. printf("%s: Cannot initialize PHY, aborting.\n",
  986. dev->name);
  987. return err;
  988. }
  989. curphy = uec->mii_info->phyinfo;
  990. if (curphy->config_aneg) {
  991. err = curphy->config_aneg(uec->mii_info);
  992. if (err) {
  993. printf("%s: Can't negotiate PHY\n", dev->name);
  994. return err;
  995. }
  996. }
  997. /* Give PHYs up to 5 sec to report a link */
  998. i = 50;
  999. do {
  1000. err = curphy->read_status(uec->mii_info);
  1001. udelay(100000);
  1002. } while (((i-- > 0) && !uec->mii_info->link) || err);
  1003. if (err || i <= 0)
  1004. printf("warning: %s: timeout on PHY link\n", dev->name);
  1005. uec->the_first_run = 1;
  1006. }
  1007. /* Set up the MAC address */
  1008. if (dev->enetaddr[0] & 0x01) {
  1009. printf("%s: MacAddress is multcast address\n",
  1010. __FUNCTION__);
  1011. return -1;
  1012. }
  1013. uec_set_mac_address(uec, dev->enetaddr);
  1014. err = uec_open(uec, COMM_DIR_RX_AND_TX);
  1015. if (err) {
  1016. printf("%s: cannot enable UEC device\n", dev->name);
  1017. return -1;
  1018. }
  1019. phy_change(dev);
  1020. return (uec->mii_info->link ? 0 : -1);
  1021. }
  1022. static void uec_halt(struct eth_device* dev)
  1023. {
  1024. uec_private_t *uec = (uec_private_t *)dev->priv;
  1025. uec_stop(uec, COMM_DIR_RX_AND_TX);
  1026. }
  1027. static int uec_send(struct eth_device* dev, volatile void *buf, int len)
  1028. {
  1029. uec_private_t *uec;
  1030. ucc_fast_private_t *uccf;
  1031. volatile qe_bd_t *bd;
  1032. u16 status;
  1033. int i;
  1034. int result = 0;
  1035. uec = (uec_private_t *)dev->priv;
  1036. uccf = uec->uccf;
  1037. bd = uec->txBd;
  1038. /* Find an empty TxBD */
  1039. for (i = 0; bd->status & TxBD_READY; i++) {
  1040. if (i > 0x100000) {
  1041. printf("%s: tx buffer not ready\n", dev->name);
  1042. return result;
  1043. }
  1044. }
  1045. /* Init TxBD */
  1046. BD_DATA_SET(bd, buf);
  1047. BD_LENGTH_SET(bd, len);
  1048. status = bd->status;
  1049. status &= BD_WRAP;
  1050. status |= (TxBD_READY | TxBD_LAST);
  1051. BD_STATUS_SET(bd, status);
  1052. /* Tell UCC to transmit the buffer */
  1053. ucc_fast_transmit_on_demand(uccf);
  1054. /* Wait for buffer to be transmitted */
  1055. for (i = 0; bd->status & TxBD_READY; i++) {
  1056. if (i > 0x100000) {
  1057. printf("%s: tx error\n", dev->name);
  1058. return result;
  1059. }
  1060. }
  1061. /* Ok, the buffer be transimitted */
  1062. BD_ADVANCE(bd, status, uec->p_tx_bd_ring);
  1063. uec->txBd = bd;
  1064. result = 1;
  1065. return result;
  1066. }
  1067. static int uec_recv(struct eth_device* dev)
  1068. {
  1069. uec_private_t *uec = dev->priv;
  1070. volatile qe_bd_t *bd;
  1071. u16 status;
  1072. u16 len;
  1073. u8 *data;
  1074. bd = uec->rxBd;
  1075. status = bd->status;
  1076. while (!(status & RxBD_EMPTY)) {
  1077. if (!(status & RxBD_ERROR)) {
  1078. data = BD_DATA(bd);
  1079. len = BD_LENGTH(bd);
  1080. NetReceive(data, len);
  1081. } else {
  1082. printf("%s: Rx error\n", dev->name);
  1083. }
  1084. status &= BD_CLEAN;
  1085. BD_LENGTH_SET(bd, 0);
  1086. BD_STATUS_SET(bd, status | RxBD_EMPTY);
  1087. BD_ADVANCE(bd, status, uec->p_rx_bd_ring);
  1088. status = bd->status;
  1089. }
  1090. uec->rxBd = bd;
  1091. return 1;
  1092. }
  1093. int uec_initialize(bd_t *bis, uec_info_t *uec_info)
  1094. {
  1095. struct eth_device *dev;
  1096. int i;
  1097. uec_private_t *uec;
  1098. int err;
  1099. dev = (struct eth_device *)malloc(sizeof(struct eth_device));
  1100. if (!dev)
  1101. return 0;
  1102. memset(dev, 0, sizeof(struct eth_device));
  1103. /* Allocate the UEC private struct */
  1104. uec = (uec_private_t *)malloc(sizeof(uec_private_t));
  1105. if (!uec) {
  1106. return -ENOMEM;
  1107. }
  1108. memset(uec, 0, sizeof(uec_private_t));
  1109. /* Adjust uec_info */
  1110. #if (MAX_QE_RISC == 4)
  1111. uec_info->risc_tx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1112. uec_info->risc_rx = QE_RISC_ALLOCATION_FOUR_RISCS;
  1113. #endif
  1114. devlist[uec_info->uf_info.ucc_num] = dev;
  1115. uec->uec_info = uec_info;
  1116. uec->dev = dev;
  1117. sprintf(dev->name, "FSL UEC%d", uec_info->uf_info.ucc_num);
  1118. dev->iobase = 0;
  1119. dev->priv = (void *)uec;
  1120. dev->init = uec_init;
  1121. dev->halt = uec_halt;
  1122. dev->send = uec_send;
  1123. dev->recv = uec_recv;
  1124. /* Clear the ethnet address */
  1125. for (i = 0; i < 6; i++)
  1126. dev->enetaddr[i] = 0;
  1127. eth_register(dev);
  1128. err = uec_startup(uec);
  1129. if (err) {
  1130. printf("%s: Cannot configure net device, aborting.",dev->name);
  1131. return err;
  1132. }
  1133. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \
  1134. && !defined(BITBANGMII)
  1135. miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write);
  1136. #endif
  1137. return 1;
  1138. }
  1139. int uec_eth_init(bd_t *bis, uec_info_t *uecs, int num)
  1140. {
  1141. int i;
  1142. for (i = 0; i < num; i++)
  1143. uec_initialize(bis, &uecs[i]);
  1144. return 0;
  1145. }
  1146. int uec_standard_init(bd_t *bis)
  1147. {
  1148. return uec_eth_init(bis, uec_info, ARRAY_SIZE(uec_info));
  1149. }