spd_sdram.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * (C) Copyright 2006 Freescale Semiconductor, Inc.
  3. *
  4. * (C) Copyright 2006
  5. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  6. *
  7. * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
  8. * (C) Copyright 2003 Motorola Inc.
  9. * Xianghua Xiao (X.Xiao@motorola.com)
  10. *
  11. * See file CREDITS for list of people who contributed to this
  12. * project.
  13. *
  14. * This program is free software; you can redistribute it and/or
  15. * modify it under the terms of the GNU General Public License as
  16. * published by the Free Software Foundation; either version 2 of
  17. * the License, or (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
  27. * MA 02111-1307 USA
  28. */
  29. #include <common.h>
  30. #include <asm/processor.h>
  31. #include <i2c.h>
  32. #include <spd.h>
  33. #include <asm/mmu.h>
  34. #include <spd_sdram.h>
  35. #ifdef CONFIG_SPD_EEPROM
  36. DECLARE_GLOBAL_DATA_PTR;
  37. #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
  38. extern void dma_init(void);
  39. extern uint dma_check(void);
  40. extern int dma_xfer(void *dest, uint count, void *src);
  41. #endif
  42. #ifndef CFG_READ_SPD
  43. #define CFG_READ_SPD i2c_read
  44. #endif
  45. /*
  46. * Convert picoseconds into clock cycles (rounding up if needed).
  47. */
  48. int
  49. picos_to_clk(int picos)
  50. {
  51. unsigned int ddr_bus_clk;
  52. int clks;
  53. ddr_bus_clk = gd->ddr_clk >> 1;
  54. clks = picos / (1000000000 / (ddr_bus_clk / 1000));
  55. if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0)
  56. clks++;
  57. return clks;
  58. }
  59. unsigned int banksize(unsigned char row_dens)
  60. {
  61. return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
  62. }
  63. int read_spd(uint addr)
  64. {
  65. return ((int) addr);
  66. }
  67. #undef SPD_DEBUG
  68. #ifdef SPD_DEBUG
  69. static void spd_debug(spd_eeprom_t *spd)
  70. {
  71. printf ("\nDIMM type: %-18.18s\n", spd->mpart);
  72. printf ("SPD size: %d\n", spd->info_size);
  73. printf ("EEPROM size: %d\n", 1 << spd->chip_size);
  74. printf ("Memory type: %d\n", spd->mem_type);
  75. printf ("Row addr: %d\n", spd->nrow_addr);
  76. printf ("Column addr: %d\n", spd->ncol_addr);
  77. printf ("# of rows: %d\n", spd->nrows);
  78. printf ("Row density: %d\n", spd->row_dens);
  79. printf ("# of banks: %d\n", spd->nbanks);
  80. printf ("Data width: %d\n",
  81. 256 * spd->dataw_msb + spd->dataw_lsb);
  82. printf ("Chip width: %d\n", spd->primw);
  83. printf ("Refresh rate: %02X\n", spd->refresh);
  84. printf ("CAS latencies: %02X\n", spd->cas_lat);
  85. printf ("Write latencies: %02X\n", spd->write_lat);
  86. printf ("tRP: %d\n", spd->trp);
  87. printf ("tRCD: %d\n", spd->trcd);
  88. printf ("\n");
  89. }
  90. #endif /* SPD_DEBUG */
  91. long int spd_sdram()
  92. {
  93. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  94. volatile ddr83xx_t *ddr = &immap->ddr;
  95. volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
  96. spd_eeprom_t spd;
  97. unsigned int n_ranks;
  98. unsigned int odt_rd_cfg, odt_wr_cfg;
  99. unsigned char twr_clk, twtr_clk;
  100. unsigned char sdram_type;
  101. unsigned int memsize;
  102. unsigned int law_size;
  103. unsigned char caslat, caslat_ctrl;
  104. unsigned int trfc, trfc_clk, trfc_low, trfc_high;
  105. unsigned int trcd_clk, trtp_clk;
  106. unsigned char cke_min_clk;
  107. unsigned char add_lat, wr_lat;
  108. unsigned char wr_data_delay;
  109. unsigned char four_act;
  110. unsigned char cpo;
  111. unsigned char burstlen;
  112. unsigned char odt_cfg, mode_odt_enable;
  113. unsigned int max_bus_clk;
  114. unsigned int max_data_rate, effective_data_rate;
  115. unsigned int ddrc_clk;
  116. unsigned int refresh_clk;
  117. unsigned int sdram_cfg;
  118. unsigned int ddrc_ecc_enable;
  119. unsigned int pvr = get_pvr();
  120. /* Read SPD parameters with I2C */
  121. CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
  122. #ifdef SPD_DEBUG
  123. spd_debug(&spd);
  124. #endif
  125. /* Check the memory type */
  126. if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
  127. printf("DDR: Module mem type is %02X\n", spd.mem_type);
  128. return 0;
  129. }
  130. /* Check the number of physical bank */
  131. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  132. n_ranks = spd.nrows;
  133. } else {
  134. n_ranks = (spd.nrows & 0x7) + 1;
  135. }
  136. if (n_ranks > 2) {
  137. printf("DDR: The number of physical bank is %02X\n", n_ranks);
  138. return 0;
  139. }
  140. /* Check if the number of row of the module is in the range of DDRC */
  141. if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
  142. printf("DDR: Row number is out of range of DDRC, row=%02X\n",
  143. spd.nrow_addr);
  144. return 0;
  145. }
  146. /* Check if the number of col of the module is in the range of DDRC */
  147. if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
  148. printf("DDR: Col number is out of range of DDRC, col=%02X\n",
  149. spd.ncol_addr);
  150. return 0;
  151. }
  152. #ifdef CFG_DDRCDR_VALUE
  153. /*
  154. * Adjust DDR II IO voltage biasing. It just makes it work.
  155. */
  156. if(spd.mem_type == SPD_MEMTYPE_DDR2) {
  157. immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE;
  158. }
  159. #endif
  160. /*
  161. * ODT configuration recommendation from DDR Controller Chapter.
  162. */
  163. odt_rd_cfg = 0; /* Never assert ODT */
  164. odt_wr_cfg = 0; /* Never assert ODT */
  165. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  166. odt_wr_cfg = 1; /* Assert ODT on writes to CSn */
  167. }
  168. /* Setup DDR chip select register */
  169. #ifdef CFG_83XX_DDR_USES_CS0
  170. ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
  171. ddr->cs_config[0] = ( 1 << 31
  172. | (odt_rd_cfg << 20)
  173. | (odt_wr_cfg << 16)
  174. | (spd.nrow_addr - 12) << 8
  175. | (spd.ncol_addr - 8) );
  176. debug("\n");
  177. debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
  178. debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);
  179. if (n_ranks == 2) {
  180. ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
  181. | ((banksize(spd.row_dens) >> 23) - 1) );
  182. ddr->cs_config[1] = ( 1<<31
  183. | (odt_rd_cfg << 20)
  184. | (odt_wr_cfg << 16)
  185. | (spd.nrow_addr-12) << 8
  186. | (spd.ncol_addr-8) );
  187. debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
  188. debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
  189. }
  190. #else
  191. ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
  192. ddr->cs_config[2] = ( 1 << 31
  193. | (odt_rd_cfg << 20)
  194. | (odt_wr_cfg << 16)
  195. | (spd.nrow_addr - 12) << 8
  196. | (spd.ncol_addr - 8) );
  197. debug("\n");
  198. debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
  199. debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);
  200. if (n_ranks == 2) {
  201. ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
  202. | ((banksize(spd.row_dens) >> 23) - 1) );
  203. ddr->cs_config[3] = ( 1<<31
  204. | (odt_rd_cfg << 20)
  205. | (odt_wr_cfg << 16)
  206. | (spd.nrow_addr-12) << 8
  207. | (spd.ncol_addr-8) );
  208. debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
  209. debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
  210. }
  211. #endif
  212. /*
  213. * Figure out memory size in Megabytes.
  214. */
  215. memsize = n_ranks * banksize(spd.row_dens) / 0x100000;
  216. /*
  217. * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
  218. */
  219. law_size = 19 + __ilog2(memsize);
  220. /*
  221. * Set up LAWBAR for all of DDR.
  222. */
  223. ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
  224. ecm->ar = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
  225. debug("DDR:bar=0x%08x\n", ecm->bar);
  226. debug("DDR:ar=0x%08x\n", ecm->ar);
  227. /*
  228. * Find the largest CAS by locating the highest 1 bit
  229. * in the spd.cas_lat field. Translate it to a DDR
  230. * controller field value:
  231. *
  232. * CAS Lat DDR I DDR II Ctrl
  233. * Clocks SPD Bit SPD Bit Value
  234. * ------- ------- ------- -----
  235. * 1.0 0 0001
  236. * 1.5 1 0010
  237. * 2.0 2 2 0011
  238. * 2.5 3 0100
  239. * 3.0 4 3 0101
  240. * 3.5 5 0110
  241. * 4.0 6 4 0111
  242. * 4.5 1000
  243. * 5.0 5 1001
  244. */
  245. caslat = __ilog2(spd.cas_lat);
  246. if ((spd.mem_type == SPD_MEMTYPE_DDR)
  247. && (caslat > 6)) {
  248. printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
  249. return 0;
  250. } else if (spd.mem_type == SPD_MEMTYPE_DDR2
  251. && (caslat < 2 || caslat > 5)) {
  252. printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
  253. spd.cas_lat);
  254. return 0;
  255. }
  256. debug("DDR: caslat SPD bit is %d\n", caslat);
  257. max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
  258. + (spd.clk_cycle & 0x0f));
  259. max_data_rate = max_bus_clk * 2;
  260. debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);
  261. ddrc_clk = gd->ddr_clk / 1000000;
  262. effective_data_rate = 0;
  263. if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
  264. if (ddrc_clk <= 460 && ddrc_clk > 350) {
  265. /* DDR controller clk at 350~460 */
  266. effective_data_rate = 400; /* 5ns */
  267. caslat = caslat;
  268. } else if (ddrc_clk <= 350 && ddrc_clk > 280) {
  269. /* DDR controller clk at 280~350 */
  270. effective_data_rate = 333; /* 6ns */
  271. if (spd.clk_cycle2 == 0x60)
  272. caslat = caslat - 1;
  273. else
  274. caslat = caslat;
  275. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  276. /* DDR controller clk at 230~280 */
  277. effective_data_rate = 266; /* 7.5ns */
  278. if (spd.clk_cycle3 == 0x75)
  279. caslat = caslat - 2;
  280. else if (spd.clk_cycle2 == 0x75)
  281. caslat = caslat - 1;
  282. else
  283. caslat = caslat;
  284. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  285. /* DDR controller clk at 90~230 */
  286. effective_data_rate = 200; /* 10ns */
  287. if (spd.clk_cycle3 == 0xa0)
  288. caslat = caslat - 2;
  289. else if (spd.clk_cycle2 == 0xa0)
  290. caslat = caslat - 1;
  291. else
  292. caslat = caslat;
  293. }
  294. } else if (max_data_rate >= 323) { /* it is DDR 333 */
  295. if (ddrc_clk <= 350 && ddrc_clk > 280) {
  296. /* DDR controller clk at 280~350 */
  297. effective_data_rate = 333; /* 6ns */
  298. caslat = caslat;
  299. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  300. /* DDR controller clk at 230~280 */
  301. effective_data_rate = 266; /* 7.5ns */
  302. if (spd.clk_cycle2 == 0x75)
  303. caslat = caslat - 1;
  304. else
  305. caslat = caslat;
  306. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  307. /* DDR controller clk at 90~230 */
  308. effective_data_rate = 200; /* 10ns */
  309. if (spd.clk_cycle3 == 0xa0)
  310. caslat = caslat - 2;
  311. else if (spd.clk_cycle2 == 0xa0)
  312. caslat = caslat - 1;
  313. else
  314. caslat = caslat;
  315. }
  316. } else if (max_data_rate >= 256) { /* it is DDR 266 */
  317. if (ddrc_clk <= 350 && ddrc_clk > 280) {
  318. /* DDR controller clk at 280~350 */
  319. printf("DDR: DDR controller freq is more than "
  320. "max data rate of the module\n");
  321. return 0;
  322. } else if (ddrc_clk <= 280 && ddrc_clk > 230) {
  323. /* DDR controller clk at 230~280 */
  324. effective_data_rate = 266; /* 7.5ns */
  325. caslat = caslat;
  326. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  327. /* DDR controller clk at 90~230 */
  328. effective_data_rate = 200; /* 10ns */
  329. if (spd.clk_cycle2 == 0xa0)
  330. caslat = caslat - 1;
  331. }
  332. } else if (max_data_rate >= 190) { /* it is DDR 200 */
  333. if (ddrc_clk <= 350 && ddrc_clk > 230) {
  334. /* DDR controller clk at 230~350 */
  335. printf("DDR: DDR controller freq is more than "
  336. "max data rate of the module\n");
  337. return 0;
  338. } else if (ddrc_clk <= 230 && ddrc_clk > 90) {
  339. /* DDR controller clk at 90~230 */
  340. effective_data_rate = 200; /* 10ns */
  341. caslat = caslat;
  342. }
  343. }
  344. debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
  345. debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);
  346. /*
  347. * Errata DDR6 work around: input enable 2 cycles earlier.
  348. * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
  349. */
  350. if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
  351. if (caslat == 2)
  352. ddr->debug_reg = 0x201c0000; /* CL=2 */
  353. else if (caslat == 3)
  354. ddr->debug_reg = 0x202c0000; /* CL=2.5 */
  355. else if (caslat == 4)
  356. ddr->debug_reg = 0x202c0000; /* CL=3.0 */
  357. __asm__ __volatile__ ("sync");
  358. debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
  359. }
  360. /*
  361. * Convert caslat clocks to DDR controller value.
  362. * Force caslat_ctrl to be DDR Controller field-sized.
  363. */
  364. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  365. caslat_ctrl = (caslat + 1) & 0x07;
  366. } else {
  367. caslat_ctrl = (2 * caslat - 1) & 0x0f;
  368. }
  369. debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
  370. debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
  371. caslat, caslat_ctrl);
  372. /*
  373. * Timing Config 0.
  374. * Avoid writing for DDR I.
  375. */
  376. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  377. unsigned char taxpd_clk = 8; /* By the book. */
  378. unsigned char tmrd_clk = 2; /* By the book. */
  379. unsigned char act_pd_exit = 2; /* Empirical? */
  380. unsigned char pre_pd_exit = 6; /* Empirical? */
  381. ddr->timing_cfg_0 = (0
  382. | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
  383. | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
  384. | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
  385. | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
  386. );
  387. debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
  388. }
  389. /*
  390. * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
  391. * use conservative value.
  392. * For DDR II, they are bytes 36 and 37, in quarter nanos.
  393. */
  394. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  395. twr_clk = 3; /* Clocks */
  396. twtr_clk = 1; /* Clocks */
  397. } else {
  398. twr_clk = picos_to_clk(spd.twr * 250);
  399. twtr_clk = picos_to_clk(spd.twtr * 250);
  400. }
  401. /*
  402. * Calculate Trfc, in picos.
  403. * DDR I: Byte 42 straight up in ns.
  404. * DDR II: Byte 40 and 42 swizzled some, in ns.
  405. */
  406. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  407. trfc = spd.trfc * 1000; /* up to ps */
  408. } else {
  409. unsigned int byte40_table_ps[8] = {
  410. 0,
  411. 250,
  412. 330,
  413. 500,
  414. 660,
  415. 750,
  416. 0,
  417. 0
  418. };
  419. trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
  420. + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
  421. }
  422. trfc_clk = picos_to_clk(trfc);
  423. /*
  424. * Trcd, Byte 29, from quarter nanos to ps and clocks.
  425. */
  426. trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
  427. /*
  428. * Convert trfc_clk to DDR controller fields. DDR I should
  429. * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
  430. * 83xx controller has an extended REFREC field of three bits.
  431. * The controller automatically adds 8 clocks to this value,
  432. * so preadjust it down 8 first before splitting it up.
  433. */
  434. trfc_low = (trfc_clk - 8) & 0xf;
  435. trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
  436. ddr->timing_cfg_1 =
  437. (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) | /* PRETOACT */
  438. ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
  439. (trcd_clk << 20 ) | /* ACTTORW */
  440. (caslat_ctrl << 16 ) | /* CASLAT */
  441. (trfc_low << 12 ) | /* REFEC */
  442. ((twr_clk & 0x07) << 8) | /* WRRREC */
  443. ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | /* ACTTOACT */
  444. ((twtr_clk & 0x07) << 0) /* WRTORD */
  445. );
  446. /*
  447. * Additive Latency
  448. * For DDR I, 0.
  449. * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
  450. * which comes from Trcd, and also note that:
  451. * add_lat + caslat must be >= 4
  452. */
  453. add_lat = 0;
  454. if (spd.mem_type == SPD_MEMTYPE_DDR2
  455. && (odt_wr_cfg || odt_rd_cfg)
  456. && (caslat < 4)) {
  457. add_lat = trcd_clk - 1;
  458. if ((add_lat + caslat) < 4) {
  459. add_lat = 0;
  460. }
  461. }
  462. /*
  463. * Write Data Delay
  464. * Historically 0x2 == 4/8 clock delay.
  465. * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
  466. */
  467. wr_data_delay = 2;
  468. /*
  469. * Write Latency
  470. * Read to Precharge
  471. * Minimum CKE Pulse Width.
  472. * Four Activate Window
  473. */
  474. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  475. /*
  476. * This is a lie. It should really be 1, but if it is
  477. * set to 1, bits overlap into the old controller's
  478. * otherwise unused ACSM field. If we leave it 0, then
  479. * the HW will magically treat it as 1 for DDR 1. Oh Yea.
  480. */
  481. wr_lat = 0;
  482. trtp_clk = 2; /* By the book. */
  483. cke_min_clk = 1; /* By the book. */
  484. four_act = 1; /* By the book. */
  485. } else {
  486. wr_lat = caslat - 1;
  487. /* Convert SPD value from quarter nanos to picos. */
  488. trtp_clk = picos_to_clk(spd.trtp * 250);
  489. cke_min_clk = 3; /* By the book. */
  490. four_act = picos_to_clk(37500); /* By the book. 1k pages? */
  491. }
  492. /*
  493. * Empirically set ~MCAS-to-preamble override for DDR 2.
  494. * Your milage will vary.
  495. */
  496. cpo = 0;
  497. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  498. if (effective_data_rate == 266 || effective_data_rate == 333) {
  499. cpo = 0x7; /* READ_LAT + 5/4 */
  500. } else if (effective_data_rate == 400) {
  501. cpo = 0x9; /* READ_LAT + 7/4 */
  502. } else {
  503. /* Automatic calibration */
  504. cpo = 0x1f;
  505. }
  506. }
  507. ddr->timing_cfg_2 = (0
  508. | ((add_lat & 0x7) << 28) /* ADD_LAT */
  509. | ((cpo & 0x1f) << 23) /* CPO */
  510. | ((wr_lat & 0x7) << 19) /* WR_LAT */
  511. | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
  512. | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
  513. | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
  514. | ((four_act & 0x1f) << 0) /* FOUR_ACT */
  515. );
  516. debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
  517. debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
  518. /* Check DIMM data bus width */
  519. if (spd.dataw_lsb == 0x20) {
  520. if (spd.mem_type == SPD_MEMTYPE_DDR)
  521. burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
  522. else
  523. burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
  524. printf("\n DDR DIMM: data bus width is 32 bit");
  525. } else {
  526. burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
  527. printf("\n DDR DIMM: data bus width is 64 bit");
  528. }
  529. /* Is this an ECC DDR chip? */
  530. if (spd.config == 0x02)
  531. printf(" with ECC\n");
  532. else
  533. printf(" without ECC\n");
  534. /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
  535. Burst type is sequential
  536. */
  537. if (spd.mem_type == SPD_MEMTYPE_DDR) {
  538. switch (caslat) {
  539. case 1:
  540. ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
  541. break;
  542. case 2:
  543. ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
  544. break;
  545. case 3:
  546. ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
  547. break;
  548. case 4:
  549. ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
  550. break;
  551. default:
  552. printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
  553. return 0;
  554. }
  555. } else {
  556. mode_odt_enable = 0x0; /* Default disabled */
  557. if (odt_wr_cfg || odt_rd_cfg) {
  558. /*
  559. * Bits 6 and 2 in Extended MRS(1)
  560. * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
  561. * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
  562. */
  563. mode_odt_enable = 0x40; /* 150 Ohm */
  564. }
  565. ddr->sdram_mode =
  566. (0
  567. | (1 << (16 + 10)) /* DQS Differential disable */
  568. | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
  569. | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
  570. | ((twr_clk - 1) << 9) /* Write Recovery Autopre */
  571. | (caslat << 4) /* caslat */
  572. | (burstlen << 0) /* Burst length */
  573. );
  574. }
  575. debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);
  576. /*
  577. * Clear EMRS2 and EMRS3.
  578. */
  579. ddr->sdram_mode2 = 0;
  580. debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);
  581. switch (spd.refresh) {
  582. case 0x00:
  583. case 0x80:
  584. refresh_clk = picos_to_clk(15625000);
  585. break;
  586. case 0x01:
  587. case 0x81:
  588. refresh_clk = picos_to_clk(3900000);
  589. break;
  590. case 0x02:
  591. case 0x82:
  592. refresh_clk = picos_to_clk(7800000);
  593. break;
  594. case 0x03:
  595. case 0x83:
  596. refresh_clk = picos_to_clk(31300000);
  597. break;
  598. case 0x04:
  599. case 0x84:
  600. refresh_clk = picos_to_clk(62500000);
  601. break;
  602. case 0x05:
  603. case 0x85:
  604. refresh_clk = picos_to_clk(125000000);
  605. break;
  606. default:
  607. refresh_clk = 0x512;
  608. break;
  609. }
  610. /*
  611. * Set BSTOPRE to 0x100 for page mode
  612. * If auto-charge is used, set BSTOPRE = 0
  613. */
  614. ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
  615. debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);
  616. /*
  617. * SDRAM Cfg 2
  618. */
  619. odt_cfg = 0;
  620. if (odt_rd_cfg | odt_wr_cfg) {
  621. odt_cfg = 0x2; /* ODT to IOs during reads */
  622. }
  623. if (spd.mem_type == SPD_MEMTYPE_DDR2) {
  624. ddr->sdram_cfg2 = (0
  625. | (0 << 26) /* True DQS */
  626. | (odt_cfg << 21) /* ODT only read */
  627. | (1 << 12) /* 1 refresh at a time */
  628. );
  629. debug("DDR: sdram_cfg2 = 0x%08x\n", ddr->sdram_cfg2);
  630. }
  631. #ifdef CFG_DDR_SDRAM_CLK_CNTL /* Optional platform specific value */
  632. ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL;
  633. #endif
  634. debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);
  635. asm("sync;isync");
  636. udelay(600);
  637. /*
  638. * Figure out the settings for the sdram_cfg register. Build up
  639. * the value in 'sdram_cfg' before writing since the write into
  640. * the register will actually enable the memory controller, and all
  641. * settings must be done before enabling.
  642. *
  643. * sdram_cfg[0] = 1 (ddr sdram logic enable)
  644. * sdram_cfg[1] = 1 (self-refresh-enable)
  645. * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
  646. * 010 DDR 1 SDRAM
  647. * 011 DDR 2 SDRAM
  648. * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
  649. * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
  650. */
  651. if (spd.mem_type == SPD_MEMTYPE_DDR)
  652. sdram_type = 2;
  653. else
  654. sdram_type = 3;
  655. sdram_cfg = (0
  656. | (1 << 31) /* DDR enable */
  657. | (1 << 30) /* Self refresh */
  658. | (sdram_type << 24) /* SDRAM type */
  659. );
  660. /* sdram_cfg[3] = RD_EN - registered DIMM enable */
  661. if (spd.mod_attr & 0x02)
  662. sdram_cfg |= 0x10000000;
  663. /* The DIMM is 32bit width */
  664. if (spd.dataw_lsb == 0x20) {
  665. if (spd.mem_type == SPD_MEMTYPE_DDR)
  666. sdram_cfg |= 0x000C0000;
  667. if (spd.mem_type == SPD_MEMTYPE_DDR2)
  668. sdram_cfg |= 0x00080000;
  669. }
  670. ddrc_ecc_enable = 0;
  671. #if defined(CONFIG_DDR_ECC)
  672. /* Enable ECC with sdram_cfg[2] */
  673. if (spd.config == 0x02) {
  674. sdram_cfg |= 0x20000000;
  675. ddrc_ecc_enable = 1;
  676. /* disable error detection */
  677. ddr->err_disable = ~ECC_ERROR_ENABLE;
  678. /* set single bit error threshold to maximum value,
  679. * reset counter to zero */
  680. ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
  681. (0 << ECC_ERROR_MAN_SBEC_SHIFT);
  682. }
  683. debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
  684. debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
  685. #endif
  686. printf(" DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");
  687. #if defined(CONFIG_DDR_2T_TIMING)
  688. /*
  689. * Enable 2T timing by setting sdram_cfg[16].
  690. */
  691. sdram_cfg |= SDRAM_CFG_2T_EN;
  692. #endif
  693. /* Enable controller, and GO! */
  694. ddr->sdram_cfg = sdram_cfg;
  695. asm("sync;isync");
  696. udelay(500);
  697. debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
  698. return memsize; /*in MBytes*/
  699. }
  700. #endif /* CONFIG_SPD_EEPROM */
  701. #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
  702. /*
  703. * Use timebase counter, get_timer() is not availabe
  704. * at this point of initialization yet.
  705. */
  706. static __inline__ unsigned long get_tbms (void)
  707. {
  708. unsigned long tbl;
  709. unsigned long tbu1, tbu2;
  710. unsigned long ms;
  711. unsigned long long tmp;
  712. ulong tbclk = get_tbclk();
  713. /* get the timebase ticks */
  714. do {
  715. asm volatile ("mftbu %0":"=r" (tbu1):);
  716. asm volatile ("mftb %0":"=r" (tbl):);
  717. asm volatile ("mftbu %0":"=r" (tbu2):);
  718. } while (tbu1 != tbu2);
  719. /* convert ticks to ms */
  720. tmp = (unsigned long long)(tbu1);
  721. tmp = (tmp << 32);
  722. tmp += (unsigned long long)(tbl);
  723. ms = tmp/(tbclk/1000);
  724. return ms;
  725. }
  726. /*
  727. * Initialize all of memory for ECC, then enable errors.
  728. */
  729. /* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
  730. void ddr_enable_ecc(unsigned int dram_size)
  731. {
  732. volatile immap_t *immap = (immap_t *)CFG_IMMR;
  733. volatile ddr83xx_t *ddr= &immap->ddr;
  734. unsigned long t_start, t_end;
  735. register u64 *p;
  736. register uint size;
  737. unsigned int pattern[2];
  738. #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
  739. uint i;
  740. #endif
  741. icache_enable();
  742. t_start = get_tbms();
  743. pattern[0] = 0xdeadbeef;
  744. pattern[1] = 0xdeadbeef;
  745. #if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
  746. debug("ddr init: CPU FP write method\n");
  747. size = dram_size;
  748. for (p = 0; p < (u64*)(size); p++) {
  749. ppcDWstore((u32*)p, pattern);
  750. }
  751. __asm__ __volatile__ ("sync");
  752. #else
  753. debug("ddr init: DMA method\n");
  754. size = 0x2000;
  755. for (p = 0; p < (u64*)(size); p++) {
  756. ppcDWstore((u32*)p, pattern);
  757. }
  758. __asm__ __volatile__ ("sync");
  759. /* Initialise DMA for direct transfer */
  760. dma_init();
  761. /* Start DMA to transfer */
  762. dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
  763. dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
  764. dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
  765. dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
  766. dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
  767. dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
  768. dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
  769. dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
  770. dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
  771. dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
  772. for (i = 1; i < dram_size / 0x800000; i++) {
  773. dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
  774. }
  775. #endif
  776. t_end = get_tbms();
  777. icache_disable();
  778. debug("\nREADY!!\n");
  779. debug("ddr init duration: %ld ms\n", t_end - t_start);
  780. /* Clear All ECC Errors */
  781. if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
  782. ddr->err_detect |= ECC_ERROR_DETECT_MME;
  783. if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
  784. ddr->err_detect |= ECC_ERROR_DETECT_MBE;
  785. if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
  786. ddr->err_detect |= ECC_ERROR_DETECT_SBE;
  787. if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
  788. ddr->err_detect |= ECC_ERROR_DETECT_MSE;
  789. /* Disable ECC-Interrupts */
  790. ddr->err_int_en &= ECC_ERR_INT_DISABLE;
  791. /* Enable errors for ECC */
  792. ddr->err_disable &= ECC_ERROR_ENABLE;
  793. __asm__ __volatile__ ("sync");
  794. __asm__ __volatile__ ("isync");
  795. }
  796. #endif /* CONFIG_DDR_ECC */